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QUASIREVERSIBILITY FOR INHOMOGENEOUS ILL-POSED
PROBLEMS IN HILBERT SPACES

BETH M. CAMPBELL HETRICK

Abstract. In a Hilbert spaceH, the inhomogeneous ill-posed abstract Cauchy

problem is given by du
dt

= Au(t)+h(t), u(0) = χ, 0 ≤ t < T ; where A is a posi-

tive self-adjoint linear operator acting on H, χ ∈ H, and h : [0, T )→H. Using

semigroup theory, we obtain Hölder continuous dependence for the control

problem generated by the method of quasireversibility.

1. Introduction

In a Hilbert space H, we consider the problem

du

dt
= Au(t) + h(t), 0 ≤ t < T,

u(0) = χ,
(1.1)

where A is a positive self-adjoint linear operator, χ ∈ H, and h : [0, T ) → H. Since
A is unbounded, the problem is ill-posed. Lattes and Lions introduced the method
of quasireversibility in [16] in the 1960s as a way to generate approximate solutions
to ill-posed problems. As part of their technique, they perturb the operator A to
construct an approximate problem. We do the same, considering the approximate
problem

dv

dt
= f(A)v(t) + h(t),

v(0) = χ,
(1.2)

where f(λ) is a real-valued Borel function bounded above. Since f(A) is bounded
above, the approximate problem (1.2) is well-posed with solution v(t). Following
work done by Ames and Hughes [6], we have proved that the solution to the ill-
posed problem, if it exists, depends continuously on the solution to the approximate
problem. These results have been obtained both in Hilbert space (including the
nonlinear case) [7] and in Banach space [8].

As mentioned above, Lattes and Lions perturb the operator to define an approx-
imate problem. However, they use the solution v(t) to this approximate problem
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to generate data w(T ) used to solve the problem

dw

dt
= Aw(t), 0 ≤ t < T,

w(T ) = v(T ).
(1.3)

As a final-value problem, this problem is well-posed. Lattes and Lions show that

‖u(0)− w(0)‖ ≤ ε.

Note that the method of Lattes and Lions does not give an approximation for u(t)
where t > 0. In [19], Miller points out an additional concern: that the norm of the
operator ef(A) is large for small ε. Miller refines the method of quasireversibility,
making additional assumptions on f in order to obtain a logarithmic convexity
result for the difference of the solutions u(t) and w(t). He calls this approach a
stabilized quasireversibility method. We show here that we are able to obtain the
same results as Miller using our assumptions. In particular, we use the solution to
(1.2) to create the final-value problem

dw

dt
= Aw(t) + h(t), 0 ≤ t < T,

w(T ) = v(T ).
(1.4)

Under the appropriate stabilizing conditions, we show that there exist computable
constants C and M , independent of 0 < β < 1, such that

‖u(t)− w(t)‖ ≤ Cβ1− t
T M t/T ,

where u(t) and w(t) are solutions to (1.1) and (1.4), respectively, assuming a solu-
tion to (1.1) exists.

2. Theory

In Hilbert space, the linear inhomogeneous ill-posed problem is given by

du

dt
= Au(t) + h(t),

u(0) = χ,
(2.1)

for 0 ≤ t < T , where A is a positive self-adjoint operator on a Hilbert space H,
χ ∈ H, and h : [0, T ) → H. We assume that h is differentiable on (0, T ) and that
h′ ∈ L1((0, T );H). The following theorem states conditions under which a solution
exists.

Theorem 2.1 ([22, Corollary 4.2.10]). Let X be a Banach space and let A be
the infinitesimal generator of a C0 semigroup T (t) on X. If h : [0, T ) → X is
differentiable almost everywhere on [0, T ] and h′ ∈ L1((0, T );X), then for every
χ ∈ Dom(A) the initial value problem (2.1) has a unique strong solution u on [0, T ]
given by

u(t) = T (t)χ+
∫ t

0

T (t− s)h(s)ds. (2.2)

Recall that self-adjoint operators bounded above generate C0 semigroups. This
yields the following corollary:



EJDE-2010/CONF/19/ QUASIREVERSIBILITY 39

Corollary 2.2. Let H be a Hilbert space, and let A : H → H be a closed, densely-
defined linear operator. If A is self-adjoint and bounded above and h : [0, T ) → H
is differentiable on (0, T ) with h′ ∈ L1(0, T ), then for every χ ∈ Dom(A) the initial
value problem (2.1) has a unique solution u on [0, T ] given by (2.2).

We approximate the inhomogeneous ill-posed problem with

dv

dt
= f(A)v(t) + h(t),

v(0) = χ,

where f is a real-valued Borel function bounded above that approximates A in
a suitable sense. Take f(A) = A − εA2, following Lattes and Lions [16], Miller
[18], and Ames [2], or f(A) = A(I + εA)−1, following Showalter [24]. Since f(A)
is bounded above, by Corollary 2.2 the approximate problem is well-posed with
solution

v(t) = etf(A)χ+
∫ t

0

e(t−s)f(A)h(s) ds.

Now consider the final -value problem given by

dw

dt
= Aw(t) + h(t),

w(T ) = v(T ) = eTf(A)χ+
∫ T

0

e(T−s)f(A)h(s) ds.
(2.3)

This problem is well-posed with solution

w(t) = e(t−T )A
(
eTf(A)χ+

∫ T

0

e(T−s)f(A)h(s) ds
)
−
∫ T

t

e(t−s)Ah(s) ds,

where χ ∈ Dom(f(A)). Under certain stabilizing conditions, we prove that

‖u(t)− w(t)‖ ≤ Cβ1− t
T M t/T ,

where 0 < β < 1 and C and M are computable constants independent of β.

Definition 2.3 ([6, Definition 1]). Let A be a positive self-adjoint operator on a
Hilbert space H. Let f : [0,∞) → R be a Borel function, and assume that there
exists ω ∈ R such that f(λ) ≤ ω for all λ ∈ [0,∞). Then f is said to satisfy
Condition (A) if there exist positive constants β, δ, with 0 < β < 1, for which
Dom(A1+δ) ⊆ Dom(f(A)), and

‖(−A+ f(A))ψ‖ ≤ β‖A1+δψ‖, (2.4)

for all ψ ∈ Dom(A1+δ).

Note that f(A) and A1+δ are defined by the functional calculus for self-adjoint
operators that follows from the Spectral Theorem. Set

g(λ) = −λ+ f(λ). (2.5)

Lemma 2.4 ([6, Lemma 1]). For all t ≥ 0,

etg(A) = e−tAetf(A).
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We will use this repeatedly in our proofs, together with the fact that this rela-
tionship holds for all α ∈ C:

eαg(A) = e−αAeαf(A).

Recall that A is unbounded and thus not defined everywhere. We need to regularize
our data so that it is in the domain of these operators. In Hilbert space, we use the
resolution of the identity for this regularization. As mentioned above, we also rely
on the functional calculus for unbounded operators that follows from the Spectral
Theorem. Before stating our result and its proof, we review these ideas.

Theorem 2.5. Spectral Theorem for Unbounded Self-Adjoint Operators [11, The-
orem XII.2.3] Let T be a self-adjoint operator on a Hilbert space H. Then its
spectrum is real and there is a uniquely determined regular countably additive self-
adjoint spectral measure E defined on the Borel sets of the plane, vanishing on the
complement of the spectrum, and related to T by the equations

(a) Dom(T ) = {x ∈ H :
∫

σ(T )
λ2d(E(λ)x, x) <∞}, and

(b) Tx = limn→∞
∫ n

−n
λdE(λ)x, where x ∈ Dom(T ).

Definition 2.6 ([11, Definition XII.2.4]). The unique spectral measure associated
with a self-adjoint operator T as in the above theorem is called the resolution of
the identity for T .

3. Results

We assume that there exists a strong solution u(t) to the ill-posed inhomogeneous
problem given in (2.1).

Theorem 3.1. Let A be a positive self-adjoint operator acting on a Hilbert space
H and let f satisfy Condition (A). Assume that h(t) : [0, T ) → H is continu-
ously differentiable with h′(t) ∈ L1(0, T ) and h(t) ∈ Dom(eTA) for all t ∈ [0, T ).
Also, assume that there exists a constant γ, independent of β and ω, such that
(g(A)ψ,ψ) ≤ γ(ψ,ψ), for all ψ ∈ Dom(g(A)). Further, suppose that χ ∈ Dom(eTA)
and ‖eTAχ‖ ≤ L, ‖eTAh(t)‖ ≤ N for all t ∈ [0, T ). Then there exist constants C
and M , independent of β, such that for 0 ≤ t < T ,

‖u(t)− w(t)‖ ≤ Cβ1− t
T M t/T .

As discussed above, since A is unbounded we need to regularize our data so
that it is in the domain of the operators with which we are working. We use the
resolution of the identity for this regularization. Let {E(·)} represent the resolution
of the identity for the linear operator A. Set en = {λ ∈ [0,∞) : |g(λ)| ≤ n}. Using
the definition of g given above in (2.5), where f satisfies Condition (A), we see that
en is a bounded set since

en = {λ ∈ [0,∞) : |g(λ)| ≤ n}
⊆ {λ : 0 ≤ λ ≤ n+ ω}.

Let En = E(en). The following lemma is used repeatedly throughout this work.

Lemma 3.2. Let A be a self-adjoint operator with E the resolution of the identity
for A and en = {λ ∈ [0,∞) : |g(λ)| ≤ n}. Let τ ∈ H. Then Enτ ∈ Dom(f(A)),
where f is a complex Borel function defined E-almost everywhere on the real axis
and bounded on bounded sets.
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Our proof begins with approximations un(t) and wn(t). Set χn = Enχ and
hn(s) = Enh(s). Note that f(λ) = etλ is a Borel function bounded on bounded
sets, so by Lemma 3.2 χn, hn ∈ Dom(A) ∩Dom(etA). Define

un(t) = Enu(t),

wn(t) = Enw(t).

Lemma 3.3 ([7, Lemma 9]).

un(t) = etAχn +
∫ t

0

e(t−s)Ahn(s)ds.

We have an analogous result for wn:

Lemma 3.4.

wn(t) = e(t−T )A
(
eTf(A)χn +

∫ T

0

e(T−s)f(A)hn(s) ds
)
−
∫ T

t

e(t−s)Ahn(s) ds.

Proof. Note that we may write the final value problem given in (2.3) as an initial
value problem by replacing t with T − t. Then the differential equation becomes

dw

dt
= −Aw(t) + h(t).

Since −A is bounded above, −A generates a C0 semigroup. Then by Corollary 2.2,
the problem given in (2.3) has a unique solution given by

w(t) = e(t−T )A
(
eTf(A)χ+

∫ T

0

e(T−s)f(A)h(s) ds
)
−
∫ T

t

e(t−s)Ah(s).

Thus

Enw(t) = En

[
e(t−T )A

(
eTf(A)χ+

∫ T

0

e(T−s)f(A)h(s) ds
)
−
∫ T

t

e(t−s)Ah(s)
]

= e(t−T )A
(
eTf(A)χn +

∫ T

0

e(T−s)f(A)hn(s) ds
)
−
∫ T

t

e(t−s)Ahn(s),

so

wn(t) = e(t−T )A
(
eTf(A)χn +

∫ T

0

e(T−s)f(A)hn(s) ds
)
−
∫ T

t

e(t−s)Ahn(s).

�

Proof of Theorem 3.1. To obtain our result we use the Three Lines Theorem (cf.
[23, p. 33]), which requires us to extend un and wn into the complex strip {α =
t+ iη : 0 ≤ t ≤ T, η ∈ R}. To do so, set

un(α) = eiηAun(t)

wn(α) = eiηAwn(t),

Note that the complex-valued function un − wn is analytic and continuous on the
strip. Define

φn(α) = (un(α)− wn(α), τ),
where (·, ·) is the inner product in H and τ is an arbitrary element in H. To use
the Three Lines Theorem, we must show that φn(α) is bounded in the strip. For
α = t+ iη we have
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‖φn(α)‖
≤ ‖un(α)− wn(α)‖‖τ‖
= ‖eiηA‖‖un(t)− wn(t)‖‖τ‖

=
∥∥∥∥(etAχn +

∫ t

0

e(t−s)Ahn(s)ds
)
−
(
etAeT (−A+f(A))χn

+e(t−T )A

∫ T

0

e(T−s)f(A)hn(s)ds−
∫ T

t

e(t−s)Ahn(s)ds
)∥∥∥∥∥ ‖τ‖

≤

∥∥∥∥∥(I − eT (−A+f(A))
)
etAχn +

∫ T

0

(
e(t−s)A − e(t−T )Ae(T−s)f(A)

)
hn(s) ds

∥∥∥∥∥ ‖τ‖
≤

(
‖
(
I − eTg(A)

)
etAχn‖+

∥∥∥∥∥
∫ T

0

(
e(t−s)A − e(t−s+s−T )Ae(T−s)f(A)

)
hn(s) ds

∥∥∥∥∥
)
‖τ‖

≤

(
‖
(
I − eTg(A)

)
etAχn‖+

∥∥∥∥∥
∫ T

0

e(t−s)A
(
I − e(T−s)(−A+f(A))

)
hn(s) ds

∥∥∥∥∥
)
‖τ‖

≤

(
‖
(
I − eTg(A)

)
etAχn‖+

∥∥∥∥∥
∫ T

0

(
I − e(T−s)g(A)

)
e(t−s)Ahn(s) ds

∥∥∥∥∥
)
‖τ‖.

Recall that (g(A)ψ,ψ) ≤ γ(ψ,ψ) for all ψ ∈ Dom(g(A)), and so g(A) is the gen-
erator of a strongly continuous semigroup {etg(A)}t≥0 of bounded operators with
‖etg(A)‖ ≤ eγt. Thus ‖

(
I − etg(A)

)
ψ‖ ≤ K‖ψ‖ for all t ∈ [0, T ], where K is a

constant. Using our assumptions that ‖eTAχ‖ ≤ L and ‖eTAh(t)‖ ≤ N , we have

‖φn(α)‖ ≤

(
‖
(
I − eTg(A)

)
etAχn‖+

∥∥∥∥∥
∫ T

0

(
I − e(T−s)g(A)

)
e(t−s)Ahn(s) ds

∥∥∥∥∥
)
‖τ‖

≤

(
K‖etAχn‖+K

∫ T

0

‖e(t−s)Ahn(s)‖ ds

)
‖τ‖

≤ K

(
‖eTAχn‖+

∫ T

0

‖eTAhn(s)‖ ds

)
‖τ‖ (3.1)

≤ K(L+ TN)‖τ‖,

and thus φn is bounded. Hence we may apply the Three Lines Theorem to this
inner product. By the Three Lines Theorem,

|(φn(t), τ)| ≤M(0)1−
t
T M(T )t/T

for 0 ≤ t ≤ T , where
M(t) = max

α=t+iη,η∈R
|(φn(α), τ)|.

Using properties of semigroups and Condition (A), we have

M(0) ≤

(
‖
(
I − eTg(A)

)
χn‖+

∥∥∥∥∥
∫ T

0

(
I − e(T−s)g(A)

)
e(−s)Ahn(s) ds

∥∥∥∥∥
)
‖τ‖
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≤

(∥∥∥∥∥
∫ T

0

eσg(A)g(A)χn dσ

∥∥∥∥∥+
∫ T

0

‖
(
I − e(T−s)g(A)

)
e(−s)Ahn(s)‖ ds

)
‖τ‖

≤

(
eγT

∫ T

0

‖g(A)χn‖ dσ +
∫ T

0

∥∥∥∥∥
∫ T−s

0

eσg(A)g(A)e(−s)Ahn(s) dσ

∥∥∥∥∥ ds
)
‖τ‖

≤
(
βT eγT ‖A1+δχn‖+

∫ T

0

∫ T−s

0

eγσ‖g(A)e(−s)Ahn(s)‖ dσds
)
‖τ‖

≤
(
βT eγT ‖A1+δχn‖+

∫ T

0

eγ(T−s)

∫ T−s

0

β‖A1+δe(−s)Ahn(s)‖ dσds
)
‖τ‖

≤
(
βT eγT ‖A1+δχn‖+

∫ T

0

eγ(T−s)β(T − s)‖A1+δe(−s)Ahn(s)‖ ds
)
‖τ‖

≤ βT eγT
(
‖A1+δχn‖+

∫ T

0

‖A1+δe(−s)Ahn(s)‖ ds
)
‖τ‖

≤ βT eγT
(
‖A1+δχn‖+

∫ T

0

‖A1+δhn(s)‖ ds
)
‖τ‖

≤ kβT eγT
(
‖eTAχn‖+

∫ T

0

‖eTAhn(s)‖ ds
)
‖τ‖,

where k is a positive constant. Also, from (3.1) we have

M(T ) ≤

(
‖
(
I − eTg(A)

)
eTAχn‖+

∥∥∥∥∥
∫ T

0

(
I − e(T−s)g(A)

)
e(T−s)Ahn(s) ds

∥∥∥∥∥
)
‖τ‖

≤ K
(
‖eTAχn‖+

∫ T

0

‖eTAhn(s)‖ ds
)
‖τ‖.

Thus by the Three Lines Theorem,

|φn(t)| ≤
{
kβT eγT

(
‖eTAχn‖+

∫ T

0

‖eTAhn(s)‖ ds
)}1− t

T

×
{
K
(
‖eTAχn‖+

∫ T

0

‖eTAhn(s)‖ ds
)}t/T

‖τ‖.

Letting n→∞ and using our stability assumptions, we have

|φ(t)| ≤ {kβT eγT (L+ TN)}1− t
T {K (L+ TN)}t/T ‖τ‖ ≤ Cβ1− t

T M t/T ,

where C and M are computable constants independent of β and

φ(t) = (u(t)− w(t), τ).

Taking the supremum over all τ ∈ H with ‖τ‖ ≤ 1, we have

‖u(t)− w(t)‖ ≤ Cβ1− t
T M t/T ,

our desired result. �
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