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NUMERICAL SOLUTION FOR NONLOCAL SOBOLEV-TYPE
DIFFERENTIAL EQUATIONS

SHRUTI A. DUBEY

Abstract. We present a numerical approximate solution to Sobolev-type dif-
ferential equation subject to nonlocal initial boundary conditions. A Laplace

transform method is described for the solution of considered equation. Fol-

lowing Laplace transform of the original problem, an appropriate method of
solving differential equations is used to solve the resultant time-independent

modified equation and solution is inverted numerically back into the time do-

main. Numerical results are provided to show the accuracy of the proposed
method.

1. Introduction

This work is concerned with the Sobolev-type partial differential equation

∂

∂t

(
u(x, t)− ∂2

∂x2
u(x, t)

)
− ∂2

∂x2
u(x, t) = f(x, t), x ∈ [0, 1], t > 0, (1.1)

subject to the conditions

u(x, 0) = u0(x), x ∈ [0, 1],

u(0, t) =
∫ 1

0

a(x)u(x, t)dx + p(t), t > 0,

u(1, t) =
∫ 1

0

b(x)u(x, t)dx + q(t), t > 0.

(1.2)

where, f , u0, a, b, p, q are prescribed continuous functions and u(x, t) is an
unknown function which is a solution of (1.1) and satisfies conditions (1.2) at the
same time.

Sobolev-type equation appears in a variety of physical problems such as flow
of fluid through fissured rocks, thermodynamics and propagation of long waves
of small amplitude. There is an extensive literature in which Sobolev type of
equations are investigated, in the abstract framework, see for instance [2, 5, 13,
15, 18]. Some other models of nonlocal boundary conditions are numerically solved
by Dehghan [9, 10]. The first results on Sobolev-type equation were obtained by
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Hilbert space methods [19]. Subsequently several authors studied and discussed
same type of problem subject to classical as well as nonlocal conditions. Very strong
and complete results are known concerning existence,uniqueness and properties of
solutions. Brill [8] and Showalter [17] established the existence of solutions of
semilinear evolution equations of Sobolev type in Banach space. Balachandran
and Park [6] investigated integrodifferential equation of Sobolev type with nonlocal
condition and proved the existence of mild and strong solutions using semigroup
theory and Schauder fixed point theorem. Recently, the existence of solution to
semilinear Sobolev type equation with integral conditions is studied by Bouziani
and Merazga [7] using Rothe time discretization method.

So far not much seems to be done for obtaining an explicit solution of Sobolev
type partial differential equations, however the solvability of these equations have
been theoretically studied in terms of the existence and uniqueness of a solution.
The purpose of present article is to give a method of solution to Equation (1.1),
(1.2) using Laplace transform technique. In recent years, Laplace transform method
has been used to approximate the solution of different class of linear partial differ-
ential equations [3, 4, 14, 16]. Suying et al [21], established a numerical method
based on Laplace transform for solving initial problem of nonlinear dynamic differ-
ential equations. The main difficulty in using Laplace transform method consists
in finding its inverse. Numerical inversion methods are then used to overcome this
difficulty. There are many numerical techniques available in literature to invert
Laplace transform. In this paper we focus exclusively on the Stehfest inversion
algorithm [20] in order to efficiently and accurately invert the Laplace transform
(which cannot be done analytically).

The plan of the paper is as follows. In section 2, we develop a method of solution
and find out a solution of the problem in Laplace domain. Obtained solution is then
converted in to real domain by the means of numerical inversion algorithm. Some
examples are given in Section 3 to demonstrate the competence of the method,
followed by conclusion in Section 4.

2. Method based on Laplace transform

2.1. Laplace transform technique. Laplace transform is widely used in the area
of engineering technology and mathematical science. There are many problems
whose solution may be found in terms of a Laplace transform. In fact, it is an
efficient method for solving various differential equations. Laplace transform of a
function w(x, t) with respect to t can be expressed as

W (x; s) = L{w(x, t); t → s} =
∫ ∞

0

w(x, t)e−stdt,

where, s is known as Laplace variable. A capital letter W represents Laplace
transform of a function w, i.e., W is a function in Laplace domain. Starting with
this approach and taking Laplace transform on both sides of (1.1), (1.2) with respect
to t, we get

d2

dx2
U(x; s)− s

(1 + s)
U(x; s) = − 1

(1 + s)

[
F (x; s) + U(x; 0)− d2

dx2
U(x; 0)

]
,

U(x; 0) = u0(x),

U(0; s) =
∫ 1

0

a(x)U(x; s)dx + P (s),
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U(1; s) =
∫ 1

0

b(x)U(x; s)dx + Q(s).

Using the initial condition into the differential equation, we obtain

d2

dx2
U(x; s)− s

(1 + s)
U(x; s) = − 1

(1 + s)

[
F (x; s) + u0(x)− d2

dx2
u0(x)

]
,

U(0; s) =
∫ 1

0

a(x)U(x; s)dx + P (s),

U(1; s) =
∫ 1

0

b(x)U(x; s)dx + Q(s),

(2.1)

where, U(x; s) = L{u(x, t); t → s}, F (x; s) = L{f(x, t); t → s}, P (s) = L{p(t); t →
s} and Q(s) = L{q(t); t → s}. Thus, considered equation is reduced in bound-
ary value problem governed by a second order inhomogeneous ordinary differential
equation. On solving it, we obtain a general solution of (2.1) as

U(x; s) =
−1

(1 + s)

√
(s + 1)

s

∫ x

0

[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)]

× sinh
(√ s

s + 1
(x− τ)

)
dτ + C1(s)e

−
√

s
s+1 x + C2(s)e

√
s

s+1 x,

(2.2)

where, C1 and C2 are arbitrary functions of s. Substituting (2.2) in to the boundary
conditions, we have

C1(s)
[
1−

∫ 1

0

a(x)e−
√

s
s+1 xdx

]
+ C2(s)

[
1−

∫ 1

0

a(x)e
√

s
s+1 xdx

]
=

−1
(s + 1)

√
s + 1

s

∫ 1

0

[
[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)]

×
∫ 1

τ

a(x) sinh
(√ s

s + 1
(x− τ)

)
dx
]
dτ + P (s),

C1(s)
[
e−
√

s
s+1 −

∫ 1

0

b(x)e−
√

s
s+1 xdx

]
+ C2(s)

[
e
√

s
s+1 −

∫ 1

0

b(x)e
√

s
s+1 xdx

]
=

−1
(s + 1)

√
s + 1

s

∫ 1

0

[
[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)]

×
∫ 1

τ

b(x) sinh
(√ s

s + 1
(x− τ)

)
dx
]
dτ + Q(s)

+
1

(s + 1)

√
s + 1

s

∫ 1

0

[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)] sinh

(√ s

s + 1
(1− τ)

)
dτ.

It gives (
C1(s)
C2(s)

)
=
(

a11(s) a12(s)
a21(s) a22(s)

)−1(
b1(s)
b2(s)

)
, (2.3)
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where,

a11(s) = 1−
∫ 1

0

a(x)e−
√

s
s+1 xdx, a12(s) = 1−

∫ 1

0

a(x)e
√

s
s+1 xdx,

a21(s) = e−
√

s
s+1 −

∫ 1

0

b(x)e−
√

s
s+1 xdx, a22(s) = e

√
s

s+1 −
∫ 1

0

b(x)e
√

s
s+1 xdx,

b1(s) = − 1
(s + 1)

√
s + 1

s

∫ 1

0

[
[F (τ ; s) + u0(τ)

− d2

dτ2
u0(τ)

∫ 1

τ

a(x) sinh
(√ s

s + 1
(x− τ)

)
dx
]
dτ + P (s),

b2(s) =
−1

(s + 1)

√
s + 1

s

∫ 1

0

[
[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)]

×
∫ 1

τ

b(x) sinh
(√ s

s + 1
(x− τ)

)
dx
]
dτ + Q(s) +

1
(s + 1)

√
s + 1

s

×
∫ 1

0

[F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)] sinh

(√ s

s + 1
(1− τ)

)
dτ.

(2.4)
Thus, to find out the solution in Laplace domain one has to evaluate all the integrals
appear in (2.2) and (2.4). This can be done for known functions F, P,Q, a, b, u0,
however, in many cases, the resulting function is not easy to integrate exactly.
Therefore, there is need for numerical approximation of the integrals. A well known
Gaussian Quadrature formula exists for computing integrals numerically (see [1]).
Using this formula we have the following approximations of the above integrals:∫ 1

0

(
a(x)
b(x)

)
e±
√

s
s+1 x dx ' 1

2

n∑
i=1

wi

(
a( 1

2 (xi + 1))
b( 1

2 (xi + 1))

)
)e±

√
s

s+1 ( 1
2 (xi+1)),∫ x

0

[
F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)

]
sinh

(√ s

s + 1
(x− τ)

)
dτ

' x

2

n∑
i=1

wi

[
F
(x

2
(xi + 1); s

)
+ u0

(x

2
(xi + 1)

)
− d2

dτ̃2
u0

(x

2
(xi + 1)

) ]
× sinh

(√ s

s + 1

(
x− x

2
(xi + 1)

))
,

where τ̃ = x
2 (xi + 1).∫ 1

0

[(
F (τ ; s) + u0(τ)− d2

dτ2
u0(τ)

)∫ 1

τ

(
a(x)
b(x)

)
sinh

(√ s

s + 1
(x− τ)

)
dx
]
dτ

' 1
2

n∑
i=1

wi

[
F

(
1
2
(xi + 1); s

)
+ u0

(
1
2
(xi + 1)

)
− d2

dτ̃2
u0

(
1
2
(xi + 1)

)]
×
(

1− 1
2 (xi + 1)

2

) n∑
j=1

wj

(
a
( 1− 1

2 (xi+1)

2 xj + 1+ 1
2 (xi+1)

2

)
b
( 1− 1

2 (xi+1)

2 xj + 1+ 1
2 (xi+1)

2

))

× sinh
(√ s

s + 1

((1− 1
2 (xi + 1)

2
)
xj +

1 + 1
2 (xi + 1)

2
− 1

2
(xi + 1)

))
,
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where, τ̃ = 1
2 (xi + 1). xi and wi are defined by

xi : ith zero of Pn(x), wi = 2/(1− x2
i )[P

′
n(xi)]2

and known as abscissas and weights respectively. Their tabulated values can be
found in [1] for different values of n.

2.2. Numerical inversion of Laplace transform. Now, we have a solution in
Laplace transform domain as given in (2.2). So we expect to obtain a solution of
original problem by means of inverting the Laplace transform. Simple transforms
can often be inverted using readily available table. More complex functions can be
analytically inverted through the complex inversion formula

g(t) =
1

2πj

∫ c+j∞

c−j∞
estG(s)ds,

where, c is a positive real number such that all the poles of the function G(s) lie at
the left of the line Re(s) = c.

Sometimes analytical inversion of a Laplace domain solution is difficult to ob-
tain, therefore, a numerical inversion method must be used. A variety of different
methods for numerically inverting the Laplace transform are available that can be
employed. There exists no universal method but different types of methods work
well for different classes of functions. A nice comparison of four frequently used
numerical Laplace inversion algorithms is given by Hasan et al. [12]. We use the
Stehfest algorithm [20] in the work as it is easy to implement and leads to result of
sufficient accuracy throughout the time range. This numerical technique was first
introduced by Graver [11] and its algorithm then offered by Stehfest. Stehfest’s
algorithm approximates the time domain solution as

u(x, t) ≈ ln 2
t

2m∑
k=1

βkU
(
x;

ln 2
t

k
)
,

where, m is the positive integer and

βk = (−1)m+k

min(k,m)∑
l=[ k+1

2 ]

lm(2l)!
(m− l)! l! (l − 1)!(k − l)!(2l − k)!

.

Here [r] denotes the integer part of r. The parameter m is a free parameter that
should be optimized by trial and error. It was seen that with increasing m accuracy
of result increases up to a point and then owing to the rounding errors it decreases
[20]. Thus, for choosing optimum m, it is beneficial to apply an algorithm repeatedly
for different values of m and study its effect on the solution. The other way to
choose optimal value of m could be, to apply the Stehfest’s algorithm for inverting
the Laplace transform of some elementry functions which are known.
Remarks: * Stehfest’s method gives accurate results for many problems including
diffusion problem, fractional functions in the Laplace domain. However, it fails to
predict et type functions or those with oscillatory behavior such as sine and wave
functions (see [12]).

* Note that more than one numerical inversion algorithm can also be performed
to check the accuracy of the result.
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3. Numerical results

This section illustrates some of the numerical examples that we carried out in
order to test the reliability of the method proposed. We consider the problem (1.1),
(1.2) with different choice of functions as follows:

Example 3.1. Here, we take

f(x, t) =
(
x(x− 1)− 1

7

)
e−t, u0(x) = x(1− x) +

1
7
,

a(x) = b(x) = 6/13, p(t) = q(t) = 0.

In this case exact solution is

u(x, t) =
(
x(1− x) +

1
7

)
e−t.

We use developed method for finding the numerical solution. It is found that the
best choice of the parameter m for this and subsequent example is 5. Thus we take
m=5, n=8 and follow exactly the same steps described in the previous section for
the method of solution. Obtained numerical result is compared with exact solution
in Fig. 1 and Fig. 2.

Fig. 1 provides the contrast of the numerical result and the exact solution for
t = 0.5 and x ∈ [0, 1]. In Fig. 2, the comparison between these solutions are given
for a fixed value of x = 0.2 and for t ∈ [0.1, 1]. Results show that in both cases,
approximate solution agrees well with the exact solution.

u 
(x

,t)

x

+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

Exact
Computed

Figure 1. Comparison between numerical and exact solutions for
t = 0.5, x ∈ [0, 1]

Example 3.2. Here, we take

f(x, t) =
−2(x2 + t + 1)

(t + 3)3
, u0(x) = x2/9, a(x) = b(x) = x,

p(t) = − 1
4(t + 3)2

, q(t) =
3

4(t + 3)2
.
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+

u 
(x

,t)

t

 0.1

 0.12

 0.14

 0.16
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 0.22

 0.24

 0.26

 0.28

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Exact
Computed

Figure 2. Comparison between numerical and exact solutions for
x = 0.2, t ∈ [0.1, 1]

Its exact solution is
x2

(t + 3)2
.

To apply the numerical method proposed, we need the Laplace transform of the
above mentioned functions f(x, t), p(t), q(t) with respect to t which can be given
by

F (x; s) =
∫ ∞

0

−2s(sx2 + ξ + s)
(ξ + 3s)3

e−ξdξ,

P (s) =
∫ ∞

0

−s

4(ξ + 3s)2
e−ξdξ,

Q(s) =
∫ ∞

0

3s

4(ξ + 3s)2
e−ξdξ.

Integrals involved here are evaluated with the help of numerical approximation
formula [1, (25.45)].

Proceeding in the similar manner as of the previous example and choosing m = 5
and n = 8, a comparison of numerical and exact solutions is done. In Fig. 3 graphs
of the approximate and exact solution are given for t = 0.4 and x ∈ [0, 1]. For
x = 0.6 and t ∈ [0.1, 1] results are drawn in Fig. 4. Presented graphs clearly show
that the approximate and exact solutions are almost superposed.
Remarks: * The numerical solution matches with exact solution up to at least 4
significant places of decimal.

* The simulation results show that our proposed method achieves good perfor-
mance.

3.1. Conclusion. A method of solution based on Laplace transform to the con-
sidered nonlocal problem is described. The benefit of the presented method is that
it gives explicitly a numerical approximate solution of the problem, however, sev-
eral theoretical approaches to existence and uniqueness of solution to Sobolev-type
equations are summarized in literature since last few decades. Numerical results
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x
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Figure 3. Comparison between numerical and exact solutions for
t = 0.4, x ∈ [0, 1]

+

u 
(x

,t)
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Figure 4. Comparison between numerical and exact solutions for
x = 0.6, t ∈ [0.1, 1]

show that the time domain solution evaluated by presented method is comparable
with the exact solution.
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