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POSITIVE SOLUTIONS TO A NONLINEAR THIRD ORDER
THREE-POINT BOUNDARY VALUE PROBLEM

JOHN R. GRAEF, LINGJU KONG, BO YANG

Abstract. We consider a third order three point boundary value problem.

Some upper and lower estimates for positive solutions of the problem are

proved. Sufficient conditions for the existence and nonexistence of positive
solutions for the problem are obtained. An example is included to illustrate

the results.

1. Introduction

Recently, second and higher order multi-point boundary value problems have
attracted a lot of attention. In 2004, Henderson [5] considered the second order
three point boundary value problem

u′′(t) + f(u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u(p)− u(1) = 0.
(1.1)

In 2006, Graef and Yang [3] studied the third order nonlocal boundary value prob-
lem

u′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.2)

u(0) = u′(p) = u′′(1) = 0. (1.3)

For some other results on third order boundary value problems we refer the reader
to the papers [1, 2, 4, 6, 8, 9]. Motivated by these works, in this paper we consider
the third order three point nonlinear boundary value problem

u′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.4)

u(0) = u(p)− u(1) = u′′(1) = 0. (1.5)

To our knowledge, the problem (1.4)–(1.5) has not been considered before. The
boundary conditions (1.5) are closely related to some other boundary conditions.
Firstly, (1.5) contains (1.1) as a part. We also note that u(p)−u(1) = 0 implies that
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there exists β ∈ (p, 1) such that u′(β) = 0, and therefore the boundary conditions
(1.5) imply

u(0) = u′(β) = u′′(1) = 0.

Hence, boundary conditions (1.5) are closely related to the conditions (1.3). If we
let p → 1−, then (1.5) “tends to”

u(0) = u′(1) = u′′(1) = 0, (1.6)

which are often referred to as the (1,2) focal boundary conditions.
In this paper, we are interested in the existence and nonexistence of positive

solutions of the problem (1.4)–(1.5). By a positive solution, we mean a solution
u(t) to the boundary value problem such that u(t) > 0 for 0 < t < 1. Throughout
the paper, we assume that

(H1) The functions f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous,
and g(t) 6≡ 0 on [0, 1];

(H2) The constant p satisfies 1/2 < p < 1.
We will use the following fixed point theorem, which is due to Krasnosel’skii, to

prove the existence results.

Theorem 1.1 ([7]). Let X be a Banach space over the reals, and let P ⊂ X be a
cone in X. Let ≤ be the partial order on X determined by P . Assume that Ω1 and
Ω2 are bounded open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let

L : P ∩ (Ω2 − Ω1) → P

be a completely continuous operator such that, either
(K1) Lu 6≥ u if u ∈ P ∩ ∂Ω1, and Lu 6≤ u if u ∈ P ∩ ∂Ω2; or
(K2) Lu 6≤ u if u ∈ P ∩ ∂Ω1, and Lu 6≥ u if u ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ (Ω2 − Ω1).

Before the Krasnosel’skii fixed point theorem can be used to obtain any existence
result, we need to find some nice estimates to positive solutions to the problem
(1.4)–(1.5) first. These a priori estimates are essential to a successful application of
the Krasnosel’skii fixed point theorem. It is based on these estimates that we can
define an appropriate cone on which Theorem 1.1 can be applied. Better estimates
will result in sharper existence and nonexistence conditions.

We now fix some notation. Throughout we let X = C[0, 1] with the supremum
norm

‖v‖ = max
t∈[0,1]

|v(t)| for all v ∈ X.

Clearly, X is a Banach space. Also, we define the constants

F0 = lim sup
x→0+

f(x)
x

, f0 = lim inf
x→0+

f(x)
x

,

F∞ = lim sup
x→+∞

f(x)
x

, f∞ = lim inf
x→+∞

f(x)
x

.

These constants will be used later in the statements of our existence theorems.
This paper is organized as follows. In Section 2, we obtain some a priori estimates

to positive solutions to the problem (1.4)–(1.5). In Section 3, we define a positive
cone of the Banach space X using the estimates obtained in Section 2, and apply
Theorem 1.1 to establish some existence results for positive solutions of the problem
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(1.4)–(1.5). In Section 4, we present some nonexistence results. An example is given
at the end of the paper to illustrate our results.

2. Green Function and Estimates of Positive Solutions

In this section, we give the Green function for the problem (1.4)–(1.5) and prove
some estimates for positive solutions of the problem.

We need the indicator function χ to write the expression for the Green’s function
for the problem (1.4)–(1.5). Recall that if [a, b] ⊂ R := (−∞,+∞) is a closed
interval, then the indicator function χ of [a, b] is given by

χ[a,b](t) =

{
1, if t ∈ [a, b],
0, if t 6∈ [a, b].

Now we define the function G : [0, 1]× [0, 1] → [0,∞) by

G(t, s) =
t(1 + p)− t2

2
− t(1− s)2

2(1− p)
+

t(p− s)2

2(1− p)
χ[0,p](s)

+
(t− s)2

2
χ[0,t](s).

(2.1)

Then G(t, s) is the Green function associated with the problem (1.4)–(1.5). More-
over, the problem (1.4)–(1.5) is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1. (2.2)

It can be shown that G(t, s) ≥ 0 if (t, s) ∈ [0, 1]2.
The following result is based on Lemmas 2.1 and 2.2 of Graef and Yang [3].

Lemma 2.1. If u′′′(t) ≥ 0 for 0 ≤ t ≤ 1, and u(0) = u′(β) = u′′(1) = 0, where
β ∈ (1/2, 1) is a constant, then u(t) ≥ 0 for 0 ≤ t ≤ 1, and

2βt− t2

β2
u(β) ≤ u(t) ≤ u(β) for 0 ≤ t ≤ 1.

Throughout this paper we let

a(t) =

{
2t− t2, if t ≤ 2p

1+p ,
2pt−t2

p2 , if t ≥ 2p
1+p .

It can be shown that

a(t) ≥ min{t, 1− t}, 0 ≤ t ≤ 1.

The proof of the last inequality is straightforward and therefore is omitted.

Lemma 2.2. If u ∈ C3[0, 1] is such that

u′′′(t) ≥ 0, 0 ≤ t ≤ 1, (2.3)

and
u(0) = u(p)− u(1) = u′′(1) = 0,

then u(t) ≥ a(t)‖u‖ for 0 ≤ t ≤ 1.
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Proof. Since u(p) = u(1), there exists β ∈ (p, 1) ⊂ (1/2, 1) such that u′(β) = 0.
Since u′′′(t) ≥ 0 for 0 ≤ t ≤ 1 and u(0) = u′(β) = u′′(1) = 0, by Lemma 2.1 we
have

2βt− t2

β2
u(β) ≤ u(t) ≤ u(β) = ‖u‖, 0 ≤ t ≤ 1.

If 0 ≤ t ≤ 2p/(1 + p), then

u(t)− a(t)‖u‖ ≥ u(β)
[
2βt− t2

β2
− (2t− t2)

]
=

u(β)
β2

t(1− β)[2β − t(1 + β)]

≥ u(β)
β2

t(1− β)
[
2β − 2p

1 + p
(1 + β)

]
=

2tu(β)(1− β)
β2(1 + p)

(β − p) ≥ 0.

If 2p/(1 + p) ≤ t ≤ 1, then

u(t)− a(t)‖u‖ ≥ u(β)
[
2βt− t2

β2
− 2pt− t2

p2

]
=

tu(β)(β − p)
β2p2

[(p + β)t− 2pβ]

=
tu(β)(β − p)

β2p2
(pt + β(t− 2p))

≥ tu(β)(β − p)
β2p2

[
2p2

1 + p
+ β

(
2p

1 + p
− 2p

)]
=

tu(β)(β − p)
β2p2

2p2

1 + p
(1− β) ≥ 0.

Thus, we have proved that u(t) ≥ a(t)‖u‖ on [0, 1]. �

The following lemma is immediate.

Lemma 2.3. If u ∈ C3[0, 1] is such that u′′′(t) ≥ 0, 0 ≤ t ≤ 1, and

u(0) = u(p)− u(1) = u′′(1) = 0,

then

u(2p/(1 + p)) ≥ 4p

(1 + p)2
‖u‖,

or equivalently,

‖u‖ ≤ (1 + p)2

4p
u(2p/(1 + p)).

We can summarize our findings in the following theorem.

Theorem 2.4. Suppose that (H1) and (H2) hold. If u ∈ C3[0, 1] satisfies (2.3)
and the boundary conditions (1.5), then u(t) ≥ a(t)‖u‖ on [0, 1]. In particular, if
u ∈ C3[0, 1] is a nonnegative solution to the boundary value problem (1.4)–(1.5),
then u(t) ≥ a(t)‖u‖ on [0, 1].
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Now we define

P = {v ∈ X : a(t)‖v‖ ≤ v(t) on [0, 1]}.
Clearly, P is a positive cone of the Banach space X. Define an operator T : P → X
by

Tu(t) =
∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, for all u ∈ X.

It is well known that T : P → X is a completely continuous operator. And by the
same arguments as those used to prove Theorem 2.4, we can show that T (P ) ⊂ P .
We also note that if v ∈ P , then

‖v‖ ≤ (1 + p)2

4p
v(2p/(1 + p)).

Now the integral equation (2.2) is equivalent to the equality

Tu = u, u ∈ P,

so in order to solve the problem (1.4)–(1.5), we only need to find a fixed point of T
in P .

3. Existence of Positive Solutions

We begin by defining the constants

A =
∫ 1

0

G(2p/(1 + p), s)g(s)a(s) ds and B =
∫ 1

0

G(2p/(1 + p), s)g(s) ds.

Our first existence result is the following.

Theorem 3.1. If

BF0
(1 + p)2

4p
< 1 < Af∞,

then the problem (1.4)–(1.5) has at least one positive solution.

Proof. Choose ε > 0 such that (F0 + ε)B(1+ p)2/4p < 1. Then there exists H1 > 0
such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)(2p/(1 + p)) =
∫ 1

0

G(2p/(1 + p), s)g(s)f(u(s)) ds

≤
∫ 1

0

G(2p/(1 + p), s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖
∫ 1

0

G(2p/(1 + p), s)g(s)ds

= (F0 + ε)‖u‖B

≤ B(F0 + ε)
(1 + p)2

4p
u(2p/(1 + p))

< u(2p/(1 + p)),

which means Tu 6≥ u. If we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

Tu 6≥ u, for any u ∈ P ∩ ∂Ω1.
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To construct Ω2, we first choose c ∈ (0, 1/4) and δ > 0 such that

(f∞ − δ)
∫ 1−c

c

G(2p/(1 + p), s)g(s)a(s) ds > 1.

Now, there exists H3 > 0 such that f(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 =
H1 + H3/c. If u ∈ P with ‖u‖ = H2, then for c ≤ t ≤ 1− c, we have

u(t) ≥ min{t, 1− t}‖u‖ ≥ cH2 ≥ H3.

So, if u ∈ P with ‖u‖ = H2, then

(Tu)(2p/(1 + p)) ≥
∫ 1−c

c

G(2p/(1 + p), s)g(s)f(u(s)) ds

≥
∫ 1−c

c

G(2p/(1 + p), s)g(s)(f∞ − δ)u(s)ds

≥ (f∞ − δ)‖u‖
∫ 1−c

c

G(2p/(1 + p), s)g(s)a(s) ds

> ‖u‖
≥ u(2p/(1 + p)),

which means Tu 6≤ u. So, if we let Ω2 = {u ∈ X : ‖u‖ < H2}, then Ω1 ⊂ Ω2, and

Tu 6≤ u, for any u ∈ P ∩ ∂Ω2.

Therefore, condition (K1) of Theorem 1.1 is satisfied, and so there exists a fixed
point of T in P . This completes the proof of the theorem. �

Our next theorem is a companion result to the one above.

Theorem 3.2. If

BF∞
(1 + p)2

4p
< 1 < Af0,

then the problem (1.4)–(1.5) has at least one positive solution.

Proof. We first choose ε > 0 such that

A(f0 − ε) > 1.

There exists H1 > 0 such that f(x) ≥ (f0−ε)x for x ≥ H1. If u ∈ P with ‖u‖ = H1,
then

(Tu)(2p/(1 + p)) ≥
∫ 1

0

G(2p/(1 + p), s)g(s)f(u(s)) ds

≥
∫ 1

0

G(2p/(1 + p), s)g(s)(f0 − ε)u(s)ds

≥ (f0 − ε)‖u‖
∫ 1

0

G(2p/(1 + p), s)g(s)a(s) ds

> ‖u‖
≥ u(2p/(1 + p)),

which means Tu 6≤ u. So, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

Tu 6≤ u, for any u ∈ P ∩ ∂Ω1.
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To construct Ω2, we choose δ ∈ (0, 1) such that

((F∞ + δ)B + δ)
(1 + p)2

4p
< 1.

There exists H3 > 0 such that f(x) ≤ (F∞ + δ)x for x ≥ H3. If we let M =
max0≤x≤H3 f(x), then f(x) ≤ M + (F∞ + δ)x for x ≥ 0. Let

K = M

∫ 1

0

G(2p/(1 + p), s)g(s)ds + 1,

and let H2 = H1 + K
(

4p
(1+p)2 − (F∞+ δ)B

)−1. Now for each u ∈ P with ‖u‖ = H2,
we have

(Tu)(2p/(1 + p)) =
∫ 1

0

G(2p/(1 + p), s)g(s)f(u(s)) ds

≤
∫ 1

0

G(2p/(1 + p), s)g(s)(M + (F∞ + δ)u(s)) ds

< K + (F∞ + δ)
∫ 1

0

G(2p/(1 + p), s)g(s)u(s) ds

≤ K + (F∞ + δ)‖u‖
∫ 1

0

G(2p/(1 + p), s)g(s) ds

≤ K + (F∞ + δ)B‖u‖

≤
( 4p

(1 + p)2
− (F∞ + δ)B

)
H2 + (F∞ + δ)BH2

=
4p

(1 + p)2
‖u‖

≤ u(2p/(1 + p)),

which means Tu 6≥ u. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then

Tu 6≥ u, for any u ∈ P ∩ ∂Ω2.

By Theorem 1.1, T has a fixed point in P∩(Ω2−Ω1). Therefore, problem (1.4)–(1.5)
has at least one positive solution, and this completes the proof of the theorem. �

4. Nonexistence Results and Example

In this section, we give some sufficient conditions for the nonexistence of positive
solutions.

Theorem 4.1. Suppose that (H1) and (H2) hold. If (1+p)2

4p Bf(x) < x for all
x ∈ (0,+∞), then the problem (1.4)–(1.5) has no positive solutions.
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Proof. Assume to the contrary that u(t) is a positive solution of problem (1.4)–(1.5).
Then u ∈ P , u(t) > 0 for 0 < t < 1, and

u(2p/(1 + p)) =
∫ 1

0

G(2p/(1 + p), s)g(s)f(u(s)) ds

<
4p

(1 + p)2
B−1

∫ 1

0

G(2p/(1 + p), s)g(s)u(s) ds

≤ 4p

(1 + p)2
B−1‖u‖

∫ 1

0

G(2p/(1 + p), s)g(s)ds

≤ 4p

(1 + p)2
‖u‖

≤ u(2p/(1 + p),

which is a contradiction. �

In a similar fashion, we can prove the next theorem.

Theorem 4.2. Suppose that (H1) and (H2) hold. If Af(x) > x for all x ∈ (0,+∞),
then the problem (1.4)–(1.5) has no positive solutions.

We conclude the paper with an example.

Example 4.3. Consider the third-order boundary-value problem

u′′′(t) = g(t)f(u(t)), 0 < t < 1, (4.1)

u(0) = u(3/4)− u(1) = u′′(1) = 0, (4.2)

where

g(t) = (1 + t)/10, 0 ≤ t ≤ 1,

f(u) = λu
1 + 3u

1 + u
, u ≥ 0.

Here λ > 0 is a parameter. We easily see that F0 = f0 = λ and F∞ = f∞ = 3λ.
Calculations indicate that

A =
5268393409

216850636800
, B =

33611
1229312

.

From Theorem 3.1 we see that if

13.7203 ≈ 1
3A

< λ <
48

49B
≈ 35.8282,

then problem (4.1)–(4.2) has at least one positive solution. From Theorems 4.1 and
4.2, we see that if

λ <
16

49B
≈ 11.9427 or λ >

1
A
≈ 41.1607,

then problem (4.1)–(4.2) has no positive solutions.
This example shows that our existence and nonexistence conditions work very

well.
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