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NONLINEAR STOCHASTIC HEAT EQUATIONS WITH CUBIC
NONLINEARITIES AND ADDITIVE Q-REGULAR NOISE IN R1

HENRI SCHURZ

Abstract. Semilinear stochastic heat equations perturbed by cubic-type non-
linearities and additive space-time noise with homogeneous boundary condi-

tions are discussed in R1. The space-time noise is supposed to be Gaussian

in time and possesses a Fourier expansion in space along the eigenfunctions
of underlying Lapace operators. We follow the concept of approximate strong

(classical) Fourier solutions. The existence of unique continuous L2-bounded

solutions is proved. Furthermore, we present a procedure for its numerical ap-
proximation based on nonstandard methods (linear-implicit) and justify their

stability and consistency. The behavior of related total energy functional turns

out to be crucial in the presented analysis.

1. Introduction

Consider semilinear stochastic heat equations with cubic-type nonlinearities
du

dt
= σ2∆u + B(u) + G(u)

dW (t, x)
dt

u = u(t, x), 0 < x < L, t ≥ 0
(1.1)

perturbed by additive space-time random noise W which is supposed to be Gaussian
in time and possesses a Fourier expansion in terms of the eigenfunctions of the
Laplace operator ∆ in R1. The objective of this paper is to discuss properties of
its strong Fourier-type solutions u = u(t, x) and its numerical approximations by
appropriate truncation of its Fourier series and nonstandard methods to integrate
them numerically in time.

Analytical aspects of solvability of equations (1.1) with Lipschitz-continuous B
and G are discussed by several authors. For example, see Bensoussan & Temam
(1972), Pardoux (1975/79), Walsh (1984/86), DaPrato & Zabzcyk (1992), Greksch
& Tudor (1996), among many others. Moreover, equations with monotone B are
treated in Pardoux (1979), Bessaih & S. (2005, JCAM), S. (2007, JMAA). Not so
much known is for equations with cubic-type B(u) = u(a1 − a2‖u‖2

L2) with real
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parameters a2 > 0 and a1. Such equations occur in neurophysiological modeling
of large nerve cell systems with action potential B in mathematical biology (see
also remarks in Walsh (1984/86)). For example, there are biochemical models of
the form (1.1) to calculate the flow of the electric current and voltage along active
neuronal fibres (neurites) in computational neurosciences (Recall that neuronal fi-
bres are composed of segments with dendritic membranes with voltage-dependent
capacitances and resistance, equipped with voltage-gated ion channels). For more
details, see Hodgkin and Rushton (1946), Koch (1999), Koch and Segev (1998),
Stuart and Sakmann (1994), Tuckwell and Walsh (1983). Especially, we shall treat
here the most biologically relevant one-dimensional special case

du = [σ2 ∂2u

∂x2
+ u

(
a1 − a2‖u‖2

L2

)
]dt + b dW (t, x) (1.2)

where the norm ‖u‖L2 is taken with respect to the L2-space L2(0, L) and b ∈ R1 is
an overall noise intensity parameter. Homogenous boundary conditions (BC)

u(t, 0) = u(t, L) = 0 ∀t ≥ 0 (1.3)

and L2(0, L)-integrable initial conditions (IC)

u(0, x) = u0(x) ∀x ∈ (0, L) (1.4)

are opposed on the solutions u throughout the paper. Moreover, the equation (1.2)
is driven by space-time Q-regular noise

W (t, x) =
+∞∑
n=1

αnWn(t)

√
2
L

sin
(nπx

L

)
︸ ︷︷ ︸

=en(x)

(1.5)

with i.i.d. Wiener processes Wn with Wn(t) ∈ N (0, t), where

trace(Q) =
+∞∑
n=1

α2
n < +∞. (1.6)

Note that

en(x) =

√
2
L

sin
(nπx

L

)
, n ≥ 1 (1.7)

are the eigenfunctions of the Laplace operator ∆ in R1, ∆en = −(n2π2/L2)en, and
they form an orthonormal system in L2(0, L); i.e.,

〈en, ek〉L2(0,L) =
∫ L

0

en(x)ek(x)dx = δn,k =

{
1 if n = k

0 if n 6= k

where δn,k is the Kronecker symbol. Moreover, it is not too restrictive that the noise
W has an eigenfunction expansion (1.5) in the separable Hilbert space L2([0,+∞)×
[0, L]) with respect to the same eigenfunctions as the underlying Laplace operator
with homogeneous boundary conditions (1.3). This is due to the perturbations
by additive space-time noise (Gaussian in time), the specific Dirichlet boundary
conditions (1.3) and the other part of the eigenbasis determined by cos(nπx/L)
and spanning the space L2(0, L) is orthogonal to en, n ≥ 1 (while forming together
a complete orthonormal system in L2(0, L)).

The paper is organized as follows. After this introduction, we begin with the
verification of the unique existence of strong global solutions with not more than
exponentially increasing second moments in time in Section 2. Section 3 provides
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a truncation procedure of Fourier series solutions approximating those strong solu-
tions. There a finite-dimensional system of nonlinear stochastic ODEs determining
its Fourier coefficients ck(t) is derived. The unique existence of strong solutions
of those systems is justified by estimating the truncated total energy. Section 4
reports on the total expected energy of the original infinite-dimensional stochastic
system (1.2). We are going to show that the energy functional is linearly bounded
in time in the mean sense, provided that the initial Fourier coefficients ck(0) are
mean square summable. In the final Section 5 we suggest 3 numerical methods
(explicit and implicit difference methods) to find those Fourier coefficients.

2. Existence of Unique Approximate Strong Solutions

Indeed we may verify the existence of a.s. unique, approximately strong global
solution with finite second moments. For this purpose, we exploit the technique of
monotonicity of semilinearities. Recall the concept of approximate strong solution
from [37].

To be more self-explanatory, we consider the following definition of strong solu-
tion concepts. Let (Ω,F , (Ft)0≤t≤T , P) be a complete probability space equipped
with a nondecreasing filtration (Ft)0≤t≤T ). Suppose that H is a Hilbert space and
A a linear operator of H with domain D(A). Then, an H-valued stochastic process
u = (u(t))0≤t≤T is said to be a strong solution of the SPDE

du = [A(t)u + B(u)]dt + G(u)dW (2.1)

on ([0, T ]×H × Ω,F , (Ft)0≤t≤T , P) if and only if
(a) u is an element of the class of progressively measurable processes with

values in H (which is also closed with respect to progressively measurable
versions),

(b) u(t) ∈ D(A(t)) ∩D(B(t, ·)) ∩D(G(t, ·)) (P-almost surely) for all t ∈ [0, T ]
(almost everywhere) and A(.)u(.) ∈ L1

loc([0, T ],H),
(c) and, for every 0 ≤ s ≤ t ≤ T , we have (P-almost surely)

u(t) = u(s) +
∫ t

s

[
A(r)u(r) + B(r, u)

]
dr +

∫ t

s

G(r, u)dW (r).

Moreover, an H-valued stochastic process u = (u(t))0≤t≤T is called an approx-
imate strong solution of (2.1) on ([0, T ] × H × Ω,F , (Ft)0≤t≤T , P) if there
is a sequence of stopping times τr(t) with limr→+∞ τr(t) = t (P-almost surely)
such that ur = (u(τr(t)))0≤t≤T is a strong solution of (2.1) on ([0, τr(T )] × H ×
Ω,F , (Ft)0≤t≤T , P) for all r > 0 and u = limr→+∞ ur ∈ H (P-almost surely). Be-
sides, the process ur = (ur(t))0≤t≤T is said to be a localized (strong) solution of
(2.1). There are other solution concepts such as mild, weak and evolution solutions.
For more details and relations between those concepts, see Grecksch and Tudor [12].
We shall devote our studies to the concept of approximate strong solutions here.

The existence and uniqueness of strong solutions of (2.1) is well-known when
all operators are globally Lipschitz-continuous on H. In this case, a stochastic
localization procedure is not needed. For example, see Bensoussan and Temam [4],
Da Prato and Zabzcyk [7, 8], Grecksch and Tudor [12], Rozovskii [27] or Pardoux
[22, 23]. Their main results imply the existence of local pathwise unique continuous
(strong) solutions ur ∈ H of (2.1) on balls

Kr = {u ∈ H : ‖u‖H < r}. (2.2)
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Thus, the remaining important question is how we can guarantee that u cannot
explode as r tends to +∞ and stays in H, i.e. our aim is to establish an exis-
tence and uniqueness result of global pathwise unique continuous (strong) solutions
u of (1.1) under conditions weaker than global Lipschitz-continuity such as local
Lipschitz-continuity of nonlinearities B on the Hilbert-space H = L2([0, T ]× [0, L]).

Let B(S) be the σ-algebra of all Borel sets of inscribed set S and Ft = σ(Wj(s) :
s ≤ t, j ∈ N) the naturally generated σ-algebra belonging to the Wiener processes
Wj and forming the underlying filtration.

Theorem 2.1. Assume that the assumptions in Section 1 are satisfied together
with

E‖u(0, ·)‖2
H < +∞

for B(0, L) × F0-measurable initial data u(0, ·) ∈ H, where H = L2([0, L]). Then
the approximate strong, global solution of (1.2) exist and has uniformly bounded
second moments on any finite-time interval t ∈ [0, T ]. More precisely,

∀T < +∞ ∃K0,K1 ≥ 0 ∀0 ≤ t ≤ T : E‖u(t, ·)‖2
H ≤ (E‖u(0, ·)‖2

H + K0) exp(K1T ).

Remark 2.2. In fact, if σ2π2 > L2a1, we shall be able to improve qualitatively
these estimates of second moments to linearly bounded ones (in time)

∀T < +∞ ∃c ≥ 0 ∀0 ≤ t ≤ T : E‖u(t, ·)‖2
H ≤ E‖u(0, ·)‖2

H + ct

with universal constant c (depending on diverse parameters) by using the energy
estimates from Section 4.

Proof. First, note that the unique localized (strong) solution ur of SPDE (1.2) with
local Lipschitzian coefficients exists. This fact we know from [7], [5] or [12]. Now,
apply Lemma 2.3 from below and check that the conditions of Theorem 3 from [37]
(p. 339) are fulfilled. Thus, the unique, approximate strong, continuous solution u
to SPDE (1.2) exists and its second moments E‖u(t, ·)‖2

H are exponentially bounded
in time. This confirms the conclusion. �

Lemma 2.3. Let H be a Hilbert space equipped with the real-valued scalar product
〈., .〉H and naturally induced norm ‖u‖H =

√
〈u, u〉H . Then, for all a2 ≥ 0, the

mapping u ∈ H 7−→ B(u) = (a1 − a2‖u‖2
H)u satisfies the angle condition on H,

i.e., for all γ ≥ 0 and all u, v ∈ H, we have

F (u, v) := 〈B(u)−B(v), u− v〉H

≤
(
a1 − a2

‖u‖2
H + ‖v‖2

H

2

)
‖u− v‖2

H ≤ a1‖u− v‖2
H

and

〈B(u), u〉H ≤
(
a1 − a2

‖u‖2
H

2

)
‖u‖2

H ≤ a1‖u‖2
H .

Proof. For u, v ∈ H, define f(u) := ‖u‖2
Hu and

g(u, v) :=< f(u)− f(v), u− v〉H ≥ ‖u‖2
H + ‖v‖2

H

2
‖u− v‖2

H .

First, note that the above defined g is symmetric, i.e. g(u, v) = g(v, u) for all
u, v ∈ H. Thus, 2g(u, v) = g(u, v) + g(v, u). Second, we find that

g(u, v) = 〈‖u‖2
Hu− ‖u‖2

Hv + ‖u‖2
Hv − ‖v‖2

Hv, u− v〉H

= ‖u‖2
H〈u− v, u− v〉H +

(
‖u‖2

H − ‖v‖2
H

)
〈v, u− v〉H .



EJDE-2010/CONF/19/ NONLINEAR STOCHASTIC HEAT EQUATIONS 225

for all u, v ∈ H. Third, both findings imply that

2g(u, v) =
(
‖u‖2

H + ‖v‖2
H

)
‖u− v‖2

H +
(
‖u‖2

H − ‖v‖2
H

)
·
(
‖u‖2

H − ‖v‖2
H

)
.

Note that the last product term is always positive-definite. Consequently, we have

g(u, v) ≥ ‖u‖2
H + ‖v‖2

H

2
‖u− v‖2

H (2.3)

for all u, v ∈ H. Hence, f is increasing (In fact, g(u, v) = 0 or g(u, v) is equal to
the right side of last inequality if and only if u = v in H). Now, we find that

B(u) = a1u− a2f(u).

Hence, we have

F (u, v) = 〈B(u)−B(v), u− v〉H = a1‖u− v‖2
H − a2g(u, v).

Finally, applying the estimate (2.3) to the above expression of F confirms that

F (u, v) ≤
(
a1 − a2

‖u‖2
H + ‖v‖2

H

2

)
‖u− v‖2

H ≤ a1‖u− v‖2
H , (2.4)

〈B(u), u〉H ≤
(
a1 − a2

‖u‖2
H

2

)
‖u‖2

H ≤ a1‖u‖2
H (2.5)

since a2 ≥ 0. In passing, we note that the relation (2.5) is obtained directly from
(2.4) by setting v = 0. Thus, the proof of Lemma 2.3 is complete. �

3. Fourier-Series Solutions

By the principle of linear superposition (LSP), it is clear that the Fourier series

u(t, x) =
+∞∑
n=1

cn(t)en(x), t ≥ 0, 0 ≤ x ≤ L (3.1)

forms a strong solution of (1.2), provided that this series converges and cn(0) are
chosen such that the initial conditions (IC) are satisfied. This series is truncated
as

uN (t, x) =
N∑

n=1

cn(t)en(x), t ≥ 0, 0 ≤ x ≤ L (3.2)

which also form strong solutions of (1.2).

Theorem 3.1. The Fourier coefficients of (3.1) satisfy (P-a.s.) the infinite-di-
mensional system of ordinary SDEs

dck =
[
− σ2 k2π2

L2
+ a1 − a2

+∞∑
n=1

c2
n

]
ckdt + bkdWk (3.3)

for k = 1, 2, . . . , where bk = bαk.

Proof. First, plug the Fourier series (3.1) into the SPDE (1.2). So, one arrives at

du(t, x) =
∞∑

n=1

cn(t)en(x)
[
−σ2 n2π2

L2
+ a1− a2

∞∑
k=1

[ck(t)]2
]
dt+ b

∞∑
n=1

αnen(x)dWn(t)
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for 0 ≤ t ≤ T , 0 ≤ x ≤ L. Second, multiply this differential identity by the
eigenfunctions ek(x). Third, integrate the obtained identity with respect to the
space-coordinate x over [0, L]. Thus, for all k ∈ N, we encounter∫ L

0

du(t, x)ek(x)dx

=
∞∑

n=1

dcn(t)
∫ L

0

en(x)ek(x)dx

=
∞∑

n=1

dcn(t)δn,k = dck(t)

=
∞∑

n=1

cn(t)
∫ L

0

en(x)ek(x)dx
[
− σ2 n2π2

L2
+ a1 − a2

∞∑
k=1

[ck(t)]2
]
dt

+ b
∞∑

n=1

∫ L

0

en(x)ek(x)dxαndWn(t)

= ck

[
− σ2 n2π2

L2
+ a1 − a2

∞∑
k=1

[ck(t)]2
]
dt + bαkdWk(t)

for 0 ≤ t ≤ T . Note that we may exchange differentiation and integration in the
above computations since we know that the unique strong solution u of (1.2) with

‖u(t, ·)‖2
H =

∞∑
k=1

[ck(t)]2 < +∞

and continuous Fourier coefficients ck(t) exists for all 0 ≤ t ≤ T (which implies
that all terms are finite and mean square summable). Consequently, Theorem 3.1
is proven. �

Remark 3.2. The truncated Fourier solutions uN have Fourier coefficients ck which
can be approximated by the truncated finite-dimensional system of ordinary SDEs

dck =
[
− σ2 k2π2

L2
+ a1 − a2

N∑
n=1

c2
n

]
ckdt + bkdWk (3.4)

for k = 1, 2, . . . , where bk = bαk. Notice also that, for stochastic systems with
additive noise, the stochastic integration leads to the same type of stochastic inte-
gral (i.e. Itô, Stratonovich, α– and quadrature-integrals are all the same, see [35],
[39]). That is why we have not mentioned earlier in which sense we interpret the
stochastic integration (as it does not matter in our calculations).

4. Total Energy Evolution

For the case of sufficiently strong diffusion with σ2π2 > L2a1, we investigate the
behavior of related energy functional. The total energy E of system (1.2) at time
t ≥ 0 is defined

E(t) =
σ2

2
‖ux(t, ·)‖2

L2 −
a1

2
‖u(t, ·)‖2

L2 +
a2

4
‖u(t, ·)‖4

L2 . (4.1)
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This energy functional is indeed nonnegative and finite (a.s.) as one can see from
the following theorem. For its proof, we express this functional in terms of its
Fourier coefficients ck by

V (t) := V (ck(t) : k ∈ N) =
1
2

+∞∑
n=1

[σ2 n2π2

L2
− a1]c2

n(t) +
a2

4

( +∞∑
n=1

c2
n(t)

)2

(4.2)

for t ≥ 0. Note that V ≥ 0 for all sequences (ck(t))k∈N under σ2π2 > L2a1. More-
over, under σ2π2 > a1L

2 and a2 ≥ 0, V acts as a Lyapunov functional. Besides,
E(t) = V (t) for all t ≥ 0. Furthermore, this energy functional directly relates to the
total temperature distribution absorbed (and stored) by the underlying physical
system over time t ∈ [0, T ].

Theorem 4.1. Assume that e(0) = EV (ck(0) : k ∈ N) < +∞, σ2π2 ≥ L2a1 and
trace(Q) =

∑∞
n=1 α2

n < +∞. Then, the total expected energy of the original system
(1.2) is linearly bounded in time by

e(t) = EV (ck(t) : k ∈ N)

≤ e(0) +
[
b2

∞∑
n=1

α2
n

(σ2n2π2

L2
− a1

)
+ a2(b2β2)3/2

( 1
12a2

)1/2 5
6

]
t

where

β2 =
∞∑

n=1

α2
n + 2 max

n∈N
α2

n.

Remark 4.2. Therefore, the quadratic magnitude of the temperature u averaged
in space cannot grow faster than a linear curve in time t.

Proof of Theorem 4.1. Consider the energy of the truncated system (3.4) given by

VN (t) := VN (ck(t) : k = 0, 1, . . . , N) =
1
2

N∑
n=1

[σ2 n2π2

L2
− a1]c2

n(t) +
a2

4

( N∑
n=1

c2
n(t)

)2

(4.3)
for t ≥ 0. Now, apply Dynkin formula (see [9], [18], cf. also Itô Formula in [2])
to the functional eN (t) = E[VN (t)] with coefficients ck satisfying (3.4). For this
purpose, compute its infinitesimal generator

LVN =
( N∑

n=1

[
− σ2n2π2

L2
+ a1 − a2

N∑
n=1

c2
k

]
cn

∂

∂cn
+

b2

2

N∑
n=1

α2
n

∂2

∂c2
n

)
VN .

Thus, one arrives at the estimate

LVN ≤ b2
∞∑

n=1

α2
n

(σ2n2π2

L2
− a1

)
+ a2(b2β2

N )3/2
( 1
12a2

)1/2 5
6

where

β2
N =

N∑
n=1

α2
n + 2 max

n=1,2,...,N
α2

n.
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Consequently, Dynkin formula says that

eN (t) = E[VN (ck(t) : k = 1, 2, . . . , N)]

= E[VN (ck(0) : k = 1, 2, . . . , N)] + E
[ ∫ t

0

LVN (ck(s) : k = 1, 2, . . . , N)ds
]

≤ e(0) +
[
b2

N∑
n=1

α2
n

(σ2n2π2

L2
− a1

)
+ a2(b2β2

N )3/2

(
1

12a2

)1/2 5
6

]
t

for t ≥ 0. Since eN ≥ 0 is increasing in N and uniformly bounded in time t for any
t ∈ [0, T ], we know that the limit limN→+∞ eN (t) exists, e(t) = limN→+∞ eN (t)
and

0 ≤ e(t) ≤ e(0) +
[
b2

∞∑
n=1

α2
n

(σ2n2π2

L2
− a1

)
+ a2(b2β2)3/2

( 1
12a2

)1/2 5
6

]
t

for t ∈ [0, T ], as long as e(0) < +∞, σ2π2 ≥ L2a1, and trace(Q) =
∑∞

n=1 α2
n < +∞.

This completes the proof of Theorem 4.1. �

5. Numerical Methods for Fourier Coefficients ck

Recall the form of Fourier solutions u and its approximate Fourier solutions uN

given by

uN (t, x) =
N∑

k=1

ck(t)

√
2
L

sin
(kπx

L

)
with its coefficients ck satisfying (3.4) (see Remark 3.2). An explicit solution of the
system of nonlinear equations for ck is not known under the presence of nonlinear-
ities with a2 > 0. Thus, one has to resort to numerical approximations. For k ∈ N,
set

bk = bαk.

Along partitions
t0 = 0 < t1 < t2 < · · · < tnT

= T

of time-intervals [0, T ] with current step sizes hn = tn+1 − tn > 0, consider the
forward Euler method (FEM) for ck,

ck(n + 1) = ck(n) + hnck(n)
(
− σ2 k2π2

L2
+ a1 − a2

N∑
l=1

[cl(n)]2
)

+ bk∆W k
n (5.1)

where
∆W k

n = Wk(tn+1)−Wk(tn) ∈ N (0, hn), hn = tn+1 − tn.

An alternative to is given by the backward Euler method (BEM)

ck(n+1) = ck(n)+hnck(n+1)
(
−σ2 k2π2

L2
+a1−a2

N∑
l=1

[cl(n+1)]2
)

+bk∆W k
n (5.2)

where
∆W k

n = Wk(tn+1)−Wk(tn) ∈ N (0, hn), hn = tn+1 − tn.

Our favorite choice is the linear-implicit Euler-type method (LIM)

ck(n + 1) = ck(n) + hnck(n + 1)
(
− σ2 k2π2

L2
+ a1 − a2

N∑
l=1

[cl(n)]2
)

+ bk∆W k
n (5.3)



EJDE-2010/CONF/19/ NONLINEAR STOCHASTIC HEAT EQUATIONS 229

where

∆W k
n = Wk(tn+1)−Wk(tn) ∈ N (0, hn), hn = tn+1 − tn.

The disadvantage of FEM (5.1) is their lack of stability (in fact substability) (see
[28, 29, 30, 31, 32]) and monotonicity deficits. Moreover, global convergence and
its rates have not been shown for nonlinear equations with nonLipschitzian coef-
ficients. The advantage of methods (5.2) and (5.3) is seen with respect to their
good stability and moment dissipativity behavior, and they keep some monotonic-
ity properties (see [28, 29, 30, 31, 32]). Besides, convergence has been shown for
some nonlinear equations with nonLipschitzian coefficients (e.g. see [15, 34]). A
slight disadvantage of methods (5.2) is given by their superstable behavior and by
the necessity to solve locally implicit algebraic equations at each iteration step n.
The latter problem is more computationally efficiently solved by our methods (5.3)
where no implicit algebraic equations need to be solved due to their linear-implicit
character which can be naturally managed in explicit representation form. Note
that the local solvability of those implicit algebraic equations exhibited by methods
(5.2) needs to be discussed and it would lead to additional computational errors
which could impact significantly the accuracy of approximations in the course of
numerical integration.

Theorem 5.1 (Explicit Representation + Stability of Methods (LIM)). Suppose
that

a2 ≥ 0, ∀n ∈ N : (a1 − σ2π2/L2)hn < 1.

Then the method (LIM) governed by (5.3) has the nonexploding explicit represen-
tation

ck(n + 1) =
ck(n) + bk∆W k

n

1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[cl(n)]2

) (5.4)

where n ∈ N, bk = bαk and ∆W k
n ∈ N (0, hn). Moreover, if σ2π2 ≥ a1L

2, their
second moments are linearly bounded in time t; i.e.,

E[ck(n + 1)]2 ≤ E[ck(n)]2 + (bk)2hn ≤ E[ck(0)]2 + (bk)2 tn+1 (5.5)

for all k = 1, 2, . . . , N , where n ∈ N. Hence, we have in the limit (as both N → +∞
and hn → 0+)

E[‖u(tn, ·)‖2
H ] =

∞∑
k=1

E[ck(n)]2 ≤
∞∑

k=1

E[ck(0)]2 + b2
∞∑

k=1

α2
k tn (5.6)

which replicates the consistent estimate of second moments of underlying exact so-
lution u in the course of integration, provided that

σ2π2

L2
≥ a1, E[‖u(0, ·)‖2

H ] =
∞∑

k=1

E[ck(0)]2 < +∞,
∞∑

k=1

α2
k < +∞.

Proof. Suppose that 1 + hn(σ2π2/L2 − a1) > 0. The explicit representation (5.4)
is finite and a rather obvious result due to the linear-implicit character of method
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(5.3). It remains to consider the second moments

E[ck(n + 1)]2 = E
[ ck(n) + bk∆W k

n

1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[cl(n)]2

)]2

= E
[ [ck(n)]2 + 2ck(n)∆W k

n + b2
k(∆W k

n )2[
1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[cl(n)]2

)]2

]

= E
[ [ck(n)]2 + b2

khn[
1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[cl(n)]2

)]2

]
since the increments ∆W k

n = Wk(tn+1)−Wk(tn) ∈ N (0, hn) are independent (Here,
note that we exploited a tower property of conditional expectations). Now, suppose
that σ2π2 ≥ L2a1 . In this case one can estimate these second moments as stated
by (5.5). Finally, the relation (5.5) is summed over k to verify the claim (5.6) of
Theorem 5.1. �

Recall the following definition (e.g. see [32, 34]). Let ch
k denote the numerical

approximation of the k-th Fourier coefficients ck along partitions of fixed time-
intervals [0, T ] of the form

0 = t0 < t1 < t2 < · · · < tn < · · · < tnT
= T.

Then the numerical approximation ch = (ch
k)k=1,2,...,N is said to be mean consis-

tent with rate r0 iff there are a constant C0 = C0(T ) and a positive continuous
function V (or functional) such that

∀n = 0, 1, 2, . . . , nT − 1 : ‖E[c(n + 1)]− E[ch(n + 1)]‖N ≤ C0V (c(n))hr0
n

along any (nonrandom) partitions with sufficiently small step sizes hn ≤ δ ≤ 1,
where ‖ ·‖N is the Euclidean vector norm in RN , provided that one has nonrandom
data c(n) = ch(n). Moreover, the numerical approximation (ch

k)k=1,2,...,N is said
to be p-th mean consistent with rate rp if and only if there are a constant
Cp = Cp(T ) and a positive continuous function V (or functional) such that

∀n = 0, 1, 2, . . . , nT − 1 :
(
E

[
‖c(tn+1)− ch(n + 1)‖p

N

])1/p

≤ CpV (c(tn))hrp
n

along any (nonrandom) partitions with sufficiently small step sizes hn ≤ δ ≤ 1,
where ‖ ·‖N is the Euclidean vector norm in RN , provided that one has nonrandom
data c(tn) = ch(n). Note that the choice of vector norm ‖ · ‖N in RN is not so
essential for the qualitative property of consistency due to the equivalence of all
vector norms in RN (only the constants Cp and functional V could differ for different
norms).

Theorem 5.2. The method (LIM) governed by (5.3) is mean consistent with rate
r0 = 1.5 and p-th mean consistent with rate rp = 1.0, where p ≥ 1.

Proof. Let ch be governed by the method (5.3). Suppose that we have nonrandom
local initial data satisfying

c(tn) = ch(n)

along partitions (tn)n∈N of time-intervals [0, T ] with current step sizes hn = tn+1−
tn ≤ 1. Let α = diag(α1, α2, . . . , αN ) be the diagonal matrix in RN×N with



EJDE-2010/CONF/19/ NONLINEAR STOCHASTIC HEAT EQUATIONS 231

diagonal entries αk and W the N -dimensional vector of the Wiener processes Wk.
Furthermore, define

fh(ch(n)) = diag
( −σ2 k2π2

L2 + a1 − a2

∑N
l=1[c

h
l (n)]2

1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[c

h
l (n)]2

))
(ch(n) + b∆Wn),

gh(c(n)) = bα

where c(n) is the vector of Fourier coefficients ck(n) for all n ∈ N. Besides, note
that the method (5.3) poessesses the explicit one-step representation

ch(n + 1) = ch(n) + fh(ch(n))hn + gh(ch(n))∆Wn.

Consider the property of mean consistency by estimating

‖E[c(tn+1)− ch(n + 1)]‖N

=
∥∥E[c(tn) +

∫ tn+1

tn

f(c(s))ds

+ bα

∫ tn+1

tn

dW (s)− ch(n)− fh(ch(n))hn − gh(ch(n))∆Wn]
∥∥

N

=
∥∥E[

∫ tn+1

tn

f(c(s))ds− fh(c(tn))hn]
∥∥

N
(since ch(n) = c(tn))

= ‖E
[ ∫ tn+1

tn

[f(c(s))− fh(c(n))]ds
]
‖N

= ‖
∫ tn+1

tn

E[f(c(s))− fh(c(tn))]ds‖N (for nonrandom partitions (tn)n∈N)

≤ E
[ ∫ tn+1

tn

‖f(c(s))− f̄h(c(tn))‖Nds
]

(due to ∆ -inequality)

≤ E
[ ∫ tn+1

tn

‖f(c(s))− f(c(tn))‖Nds
]

+ E
[ ∫ tn+1

tn

‖f(c(tn))− f̄h(c(tn))‖Nds
]

≤ C0(1 + [V (c(tn))]2)h3/2
n

where V is the Lyapunov functional (4.2) with appropriate constant C0 and

f̄h(c(tn)) = diag
( −σ2 k2π2

L2 + a1 − a2

∑N
l=1[cl(tn)]2

1 + hn

(
σ2 k2π2

L2 − a1 + a2

∑N
l=1[cl(tn)]2

))
c(tn)

and

f(c(s)) = diag
(
− σ2 k2π2

L2
+ a1 − a2

N∑
l=1

[cl(s)]2
)
c(s).

Thus, the method (5.3) has at least a mean consistency rate r0 ≥ 1.5. Similarly,
one may establish an estimation of the rate rp = 1.0 of p-th mean consistency for
p ≥ 1. Consequently, the proof of Theorem 5.2 can be completed. �

Anyway, a detailed simulation study using those methods and comparing them
to others with respect to their performance should follow. An overview of stan-
dard numerical methods for SDEs can be found in [1, 6, 10, 17, 24, 32, 36, 42]
among others. For SPDEs with Lipschitzian coefficients, direct standard differ-
ence methods and finite element techniques have also been investigated, e.g. see
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[11, 13, 26, 40, 45, 46]. It can be shown that some nonstandard methods such as the
linear-implicit method possess an expected total energy which is linearly bounded
in time (a fact which shows its dynamical consistency with the estimates from Sec-
tion 4). However, this requires much more explanations and space, and hence it is
beyond of the scope of this paper.
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