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LIPSCHITZ CONSTANTS FOR POSITIVE SOLUTIONS OF
SECOND-ORDER ELLIPTIC EQUATIONS

ANTONIO VITOLO

Abstract. We are concerned with positive solutions of second order fully non-

linear elliptic equations. Here we present Lipschitz estimates, in the viscosity
setting, and bounds for optimal constants.

1. Introduction and statement of the results

In a series of papers [6, 7, 8], jointly with Italo Capuzzo Dolcetta, the author
proved the inequalities

C−1|Du(x)| ≤


√

u(0)M if 2|x| ≤
√

2u(0)
M ≤ R

u(0)
R + MR if 2|x| ≤ R ≤

√
2u(0)

M ,
(1.1)

for a positive constant C, when u ≥ 0 and

|F (x,Du(x), D2u(x))| ≤ M

in the ball BR of radius R > 0 centered at the origin.
Here F is a second-order uniformly elliptic operator satisfying suitable assump-

tions, that will be made precise in the sequel.
The estimate (1.1) extends the Glaeser’s inequality [10],

|u′(0)| ≤


√

2u(0)M if R ≥
√

2u(0)
M

u(0)
R + MR if R <

√
2u(0)

M

(1.2)

for non-negative C2-functions u with |u′′| ≤ M in [−R,R], which is a local version
of the Landau inequality [13]

|u′(0)| ≤
√

2 sup
R
|u|M (1.3)

for C2-functions u such that |u′′| ≤ M on the whole real axis, see [15] and [16] for
other variants. Applications of this kind of inequalities can be found for instance
in [17] and [4].
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In the case of a linear second-order uniformly elliptic operator

Lu := aij(x)Diju + bi(x)Diu

the inequalities (1.1) for non-negative functions u ∈ C2(BR) such that

|Lu| ≤ M

are due to Yan Yan Li and Louis Nirenberg [14]. They also observe that C =
√

2
is optimal for n = 1 in the first of (1.1) and the best constant in higher dimensions
is not known even for the Laplace operator.

Concerning this, denote by BR the ball of radius R > 0 centered at the origin in
Rn and consider the set Fn of all pairs (u, BR) such that u ∈ C2(BR) and

u ≥ 0 in BR, sup
BR

|∆u| := MR ≥ 2u(0)
R2

.

For (u, BR) ∈ Fn let Cu(R) be the greatest lower bound of the positive real numbers
C such that

|Du(0)| ≤ C
√

u(0)MR . (1.4)

If u(0) = 0, then u has a local mininum at x = 0 so that Du(0) = 0 and Cu(R) = 0.
The same happens if MR = 0. Otherwise

Cu(R) =
|Du(0)|√
u(0)MR

.

Denote by Cn the optimal constant (in the class Fn)

Cn := sup
(u,BR)∈Fn

Cu(R) .

Note that, if (u, BR) ∈ Fn is such that MR > 2u(0)
R2 , by continuity we find r ∈ (0, R)

such that Mr = 2u(0)
r2 . Since obviously (u, Br) ∈ Fn and Cu(r) ≥ Cu(R), then Cn

can be computed as the least upper bound of Cu(R) over all the pairs (u, BR) ∈ Fn

such that

sup
BR

|∆u| := MR =
2u(0)
R2

.

Note also that we can also include in F2 the limit case u ≥ 0 in B∞ = R and
M∞ = 0. By the Liouville theorem we shall have Cu(∞) = 0.

According to the above notations, the quoted result of Li and Nirenberg [14] can
be reformulated saying that

C1 =
√

2.

The following Example shows that for n ≥ 2 we have instead

Cn ≥ 3/2.

Example 1.1. For the polynomial

u(x, y) = x2 − 1
5

y2 − 2x +
10
9

,

we have ∆u = 8/5 and u ≥ 0 in BR with R = 5
6

√
2. Therefore, u ∈ F2 and

Cu(R) =
|Du(0, 0)|√
u(0, 0) ∆u

=
3
2

.



EJDE-2010/CONF/19/ LIPSCHITZ CONSTANTS 259

In Section 3 we see that this is the optimal constant in the class F2,2 of the pairs
(u, BR) ∈ F2 such that u is a polynomial of degree ≤ 2 in BR, i.e.

sup
(u,BR)∈F2,2

Cu(R) = 3/2.

From the qualitative viewpoint we will consider fully nonlinear second-order uni-
formly elliptic operators

F (x,Du, D2u)

with at most linear growth in the gradient, see the definition in the next Section.
Here Du and D2u denote the gradient vector and the Hessian matrix of u.

This is the case of linear second-order uniformly elliptic operators

Lu = Tr(A(x)D2u) + bi(x)Diu ,

where the A(x) := [aij(x)] has eigenvalues in [λ, Λ] and |bi(x)| ≤ b0 for positive
constants λ ≤ Λ (ellipticity constants) and b0 (first order constant).

Different examples of fully nonlinear elliptic operators are the upper and lower
envelopes of linear uniformly elliptic operators Lk or Lhk with (positive) ellipticity
constants λ and Λ (≥ λ), for instance Bellman operators

F (x, Du,D2u) := inf
k

Lku

and Isaacs operators
F (x, Du,D2u) := sup

h
inf
k

Lhku ,

arising in optimal control problems and differential games. Taking the upper and
lower envelope of the totality of linear uniformly elliptic operators with (positive)
ellipticity constants Λ and Λ (≥ λ), we obtain the maximal and minimal Pucci
operators P+

λ,Λ(D2u) and P+
λ,Λ(D2u), such that

P+
λ,Λ(Z) := Λ Tr(Z+)− λ Tr(Z−) ,

P−λ,Λ(Z) := λ Tr(Z+)− Λ Tr(Z−)

for all n×n real symmetric matrices Z. Note that P±1,1(D
2u) is the Laplace operator

∆u. For more examples and results about elliptic differential operators we refer to
[9] and [3].

In [7] and [8], based on the perturbation method of Caffarelli [2], qualitative
Glaeser’s type results in BR are obtained by restraining the oscillations of the main
term with respect to the x-variable. There, letting

β(x, y) := sup
X 6=0

|F (x, 0, X)− F (y, 0, X)|
|X|

,

it is required, for some τ ∈ (0, 1
2 ),

sup
y∈BR/2

(
−
∫

BτR(y)

|β(x, y)|n dx
)1/n

≤ θ (1.5)

with a suitably small positive constant θ.

Remark 1.2. The integral condition (1.5) allows a generalization the Cordes-
Nirenberg type estimates here below.
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Let L be a linear second-order uniformly elliptic operator with ellipticity con-
stants λ, Λ and first order constant b0, and f ∈ L∞(B1). For any α ∈ (0, 1) there
exists θ such that, if

|aij(x)− aij(y)| ≤ θ, x, y ∈ B1/2, |x− y| < r0 (< 1
2 ) ,

then a bounded solution u of the equation

Lu = f(x) in B1

is C1,α(B1/2) and

‖u‖C1,α(B1/2)
≤ C(‖u‖L∞(B1) + ‖f‖L∞(B1)) ,

see [2]. This is the case of continuous coefficients aij(x) with a sufficiently (uni-
formly) small modulus of continuity.

The integral condition (1.5) is used by Caffarelli [2] to have C1,α estimates for
viscosity solutions, see also [19], [18] and [8]. Suppose now that

β(x, y) = µ(|x− y|),

where µ : [0, 2R] → [0,+∞). Combined with the uniform ellipticity, from which
(recall that F (x, 0, 0) = 0)

β(x, y) ≤ |F (x, 0, X)− F (x, 0, 0)
|X|

+
|F (y, 0, 0)− F (y, 0, X)|

|X|

≤ 2
P+

λ,Λ(X)
|X|

≤ 2Λ,

this yields

−
∫

Br0 (y)

β(x, y)n dx ≤ n 2n−1Λn−1

∫ r0

0

µ(σ)
σ

dσ.

for r0 ∈ (0, R).
Hence, according to condition (1.5), in order to have C1,α-estimates we should

require the latter integral to be small.
However, if we only ask for Lipschitz estimates, then by Ishii-Lions [11] we may

just assume that integral to be finite.

Theorem 1.3. Let F be uniformly elliptic with ellipticity constants λ > 0, Λ ≥ λ
and first order constant b0 > 0. Suppose that F is continuous, F (x, 0, 0) = 0 and

|F (x, ξ, X)− F (y, ξ,X)| ≤ µ(|x− y|)|X|+ ω(|x− y|)|ξ| (1.6)

for x, y ∈ BR, ξ ∈ Rn, X ∈ Sn, where µ, ω are non-negative real functions such
that ∫ 2R

0

µ(σ)
σ

dσ < +∞

and limσ→0+ ω(σ) = 0. Let u ∈ C(BR) be a viscosity solution of the equation

F (x, Du,D2u) = f(x)

in BR with f ∈ C(BR) such that ‖f‖L∞(BR) = M < +∞.
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Then u is locally Lipschitz continuous in BR. If in addition we assume that
u ≥ 0, then there exists a positive constant C = C(n, λ,Λ, b0R,µ, ω) such that

C−1 lim sup
y→x

|u(x)− u(y)|
|x− y|

≤


√

u(0)M if 2|x| ≤
√

2u(0)
M ≤ R

u(0)
R + MR if 2|x| ≤ R ≤

√
2u(0)

M .
(1.7)

Remark 1.4. By Rademacher’s Theorem it follows from Theorem 1.3 that the
inequalities (1.1) hold true almost everywhere for x ∈ BR/2 with a positive constant
C depending on n, λ,Λ, b0R,µ, ω, and everywhere if u is differentiable in BR/2.

This Theorem is based on a result of Ishii-Lions [11, Theorem VII.2] which
yields the Lipschitz continuity of viscosity solutions under assumptions which are
guaranteed by (1.6).

The proof will be given in Section 2 after a few preliminaries about viscosity
solutions. In Section 3 we will be concerned with a lower bound for the optimal
constant, as mentioned in advance.

2. Lipschitz inequalities for viscosity solutions

We start with the basic notations and definitions. Throughout the paper Br(y)
will be a ball of radius r > 0 centered at y ∈ Rn and Br := Br(0). By Sn we denote
the set of n×n real symmetric matrices endowed with the partial ordering induced
by semidefinite positiveness.

Let Ω be a domain (open connected set) of Rn, then F : Ω × Rn × Sn → R is
said uniformly elliptic in Ω with ellipticity constants λ > 0 and Λ ≥ λ and first
order constant b0 > 0 if

P−λ,Λ(Z)− b0|ζ| ≤ F (x, ξ + ζ, X + Z)− F (x, ξ, X) ≤ P+
λ,Λ(Z) + b0|ζ|

for all x ∈ Ω, ξ, ζ ∈ Rn and X, Z ∈ Sn.
A viscosity subsolution u of the equation F (x, Du,D2u) = f(x) is a function

u ∈ C(Ω) such that for all (y, ϕ) ∈ Ω×C2(Br(y)) a local maximum for u− ϕ at y
implies

F (y, Dϕ(y), D2ϕ(y)) ≥ f(y).

Similarly for a viscosity supersolution u ∈ C(Ω), a local minimum for u − ϕ at y
will imply

F (y, Dϕ(y), D2ϕ(y)) ≤ f(y).

The viscosity solutions are both viscosity subsolutions and supersolutions.
We recall that in the above definition we may equivalently require that the local
maximum or minimum is equal zero, so that the graph of the test function ϕ touches
above or below, respectively, that one of the solution u. For a widespread treatment
of viscosity solutions we refer to [5] and [3].

Proof of Theorem 1.3. It is sufficient to consider the case R = 1, we can use a
rescaling argument for arbitrary R > 0 .
From [11, Theorem VII.2], which provides the Lipschitz continuity of u, we deduce
for ‖u‖L∞(B3/4), ‖f‖L∞(B3/4) ≤ 1 the inequality

|u(x)− u(y)| ≤ C|x− y|, x, y ∈ B1/2, (2.1)
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with a positive constant C depending on n, λ, Λ, b0, µ and ω. For general u and
f , we set

K := ‖u‖L∞(B3/4) + ‖f‖L∞(B3/4)

and v = K−1u. Since F (x,Du,D2u) = f(x) then

G(x,Dv, D2v) = g(x),

where

G(x, ξ, X) = K−1F (x,Kξ, KX), g(x) = K−1f(x).

Since G satisfies, as F does, the structure conditions of [11, Theorem VII.2] with
‖v‖L∞(B3/4), ‖g‖L∞(B3/4) ≤ 1, then from (2.1) we have

sup
x,y∈B1/2, x 6=y

|u(x)− u(y)|
|x− y|

≤ C(‖u‖L∞(B3/4) + ‖f‖L∞(B3/4)) . (2.2)

For u ≥ 0 in B1, using the Harnack inequality (see for instance [3, 12, 1]) we get

sup
x,y∈B1/2, x 6=y

|u(x)− u(y)|
|x− y|

≤ C(u(0) + ‖f‖L∞(B1)) (2.3)

with a possibly different constant C > 0. Next, for each point x0 ∈ B1/2 we localize
the equation in Br(x0) with r ∈ (0, 1

2 ) and rescale setting

u(x) = v(r−1(x− x0)), x ∈ Br(x0).

Then v ∈ C(B1) satisfies the equation

G(y, Dv,D2v) = g(y) (2.4)

where

G(y, η, Y ) := r2F (x0 + ry, r−1η, r−2Y ), g(y) = r2f(x0 + ry).

Note that G is uniformly elliptic in B1 with elliptic constants λ, Λ and first order
constant coefficient b0r. Moreover G satisfies (1.6) with R = 1 and slightly modified
µ and ω, namely

|G(x, ξ, X)−G(y, ξ,X)| ≤ µ(r|x− y|)|X|+ rω(r|x− y|)|ξ|.

So by (2.3) we can infer that

sup
x,y∈Br/2(x0), x 6=y

|u(x)− u(y)|
|x− y|

≤ C
(u(x0)

r
+ r‖f‖L∞(B1)

)
. (2.5)

From this, again by the Harnack inequality, it follows that

lim sup
x→x0

|u(x)− u(x0)|
|x− x0|

≤ C
(u(0)

r
+

Mr

2

)
, r ≤ 1 , (2.6)

for a possibly larger constant C. Therefore, minimizing the right-hand side by the

choice r =
√

2u(0)
M if u(0) ≤ M

2 , r = 1 otherwise, we obtain the result in the case
R = 1, as it suffices. �
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3. Computation for optimal constants

Let u be a C2-function in BR and Mu(x) be the maximum modulus of the
eigenvalues of D2u(x). The natural extension of the Glaeser’s one-dimensional
inequality (1.2) to higher dimensions would be the following.

Suppose that u(x) ≥ 0, supx∈BR
Mu(x) = M ≥ 2u(0)

R2 . Using the Taylor’s formula
for |x| < R we have

0 ≤ u(x) ≤ u(0) + Du(0) · x +
1
2

M |x|2.

If Du(0) 6= 0, letting x = rω with ω = − Du(0)
|Du(0)| and r ∈ (0, R), we get

|Du(0)| ≤ u(0)
r

+
Mr

2
.

Optimizing the right-hand side to get the inequalities (1.1) we see that the inter-
polation inequality (1.4) continues to hold with C =

√
2 and MR = M as in the

one-dimensional case.
If we assume instead

M = sup
x∈BR

|∆u(x)|,

we will find in general larger constants C = Cu(R) in dimension n > 1. This is not
the case of convex or concave functions, because |∆u| ≤ M implies Mu(x) ≤ M

and hence again Cu(R) =
√

2, but it may happen as soon as the eigenvalues of D2u
have different sign, as Example 1.1 shows.

The remaining part of this Section is essentially devoted to prove that Cu :=
Cu(R) ≤ 3

2 for any (u, BR) ∈ F2,2. Indeed, let

u(x, y) = a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33

be a quadratic polynomial in F2, namely

u ≥ 0 in BR, |∆u| = 2|a11 + a22| = M, a33 = 1
2MR2.

We may suppose a11 + a22 ≥ 0, otherwise we consider the polynomial

v(x, y) = u(x, y)− 2(a11 + a22)x2.

Let λ1 and λ2 be the eigenvalues of the quadratic form

q(x, y) = a11x
2 + 2a12xy + a22y

2.

Since λ1λ2 ≥ 0 implies either the convexity or the concavity of u, from the above
discussion we still have in this case Cu ≤

√
2.

Thus we are left with λ1λ2 < 0, and we may assume, eventually interchanging
the axes with each other:

−λ1 < λ2 < 0 < λ1 .

Introducing the parameter α = −λ2/λ1, the above reads 0 < α < 1.

Remark 3.1. As a matter of fact, since u ∈ F2, we cannot have
1
2

< α < 1.

To see this, it is convenient to put u in the form

u(x, y) = λ1(x− x0)2 + λ2(y + y0)2 + c
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with x0 ≥ 0, y0 ≥ 0. By positivity in polar coordinates x = r cos θ, y = r sin θ we
have

λ1r
2 cos2 θ + λ2r

2 sin2 θ − 2λ1x0r cos θ

+ λ2y0r sin θ + λ1x
2
0 + λ2y

2
0 + c ≥ 0

(3.1)

for all r ∈ (0, R) and θ ∈ [0, 2π]. Since u ∈ F2,

λ1x
2
0 + λ2y

2
0 + c =: u(0, 0) =

1
2
MR2 := (λ1 + λ2)R2, (3.2)

and substituting in (3.1) we obtain

λ1R
2 cos2 θ + λ2R

2 sin2 θ − 2λ1x0R cos θ

+ 2λ2y0R sin θ + (λ1 + λ2)R2 ≥ 0.
(3.3)

Dividing both the sides of (3.3) by λ1, we obtain

(1− α + cos2 θ − α sin2 θ)R ≥ 2 (x0 cos θ + αy0 sin θ) . (3.4)

Since y0 ≥ 0, computing the above for θ = π/2 we deduce that α ≤ 1
2 , as claimed.

For α = 1/2, again taking θ = π/2 in (3.4), we have y0 = 0 and (3.4) implies
3
2

cos2 θ − 2x0

R
cos θ ≥ 0, θ ∈ [0, 2π],

which implies x0 = 0. Therefore, the standard equation is

u(x, y) = λ1x
2 + λ2y

2 + c,

so Du(0, 0) = 0 and consequently Cu = 0. Hence, by Remark 3.1, we are left with
α ∈ (0, 1

2 ). In this case we derive from (3.4) the lower bound

R ≥ 2 max
θ∈[0,π/2]

x0 cos θ + αy0 sin θ

1− α + cos2 θ − α sin2 θ
. (3.5)

to estimate

Cu =
|Du(0, 0)|√
u(0, 0)∆u

=
√

2
R

√
λ2

1x
2
0 + λ2

2y
2
0

λ1 + λ2
=
√

2
R

√
x2

0 + α2y2
0

1− α
. (3.6)

If x0 = 0 (with y0 6= 0, otherwise Cu = 0), using the above inequalities with θ = π/2
and recalling that α < 1/2, we have

Cu ≤
√

2
2

1− 2α

1− α
≤ 1√

2
.

Next, we set ξ = y0/x0 and t = tan θ. If x0 > 0 then, combining inequalities
(3.5) and (3.6) once more, we obtain

Cu ≤
√

2 inf
θ∈(0,π/2)

1− α + cos2 θ − α sin2 θ

2(x0 cos θ + αy0 sin θ)

√
x2

0 + α2y2
0

1− α

≤
√

2 sup
0<α<1/2, ξ>0

inf
t>0

√
1 + α2ξ2

1− α

2− α + (1− 2α)t2

2(1 + αξt)
√

1 + t2

≤
√

2 inf
t>0

sup
0<α<1/2, ξ>0

√
1 + α2ξ2

1− α

2− α + (1− 2α)t2

2(1 + αξt)
√

1 + t2

≤
√

2 inf
t>0

σ(t)
2
√

1 + t2
,
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where

σ(t) := sup
0<α<1/2, ξ>0

2− α + (1− 2α)t2

1− α

√
1 + ξ2

1 + ξt
.

Observing that

σ(t) ≤

{
3/t if t ≤ 1
2 + t2 if t > 1

and choosing t = 1 we finally get

Cu ≤
√

2 inf
t

σ(t)
2
√

1 + t2
≤ 3

2
.

The above discussion shows that C = 3/2 is an upper bound for the optimal
constant in F2,2. By Example 1.1 we conclude that sup(u,BR)∈F2,2

Cu(R) = 3/2.
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