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FAST EVALUATION OF COMPLEX EQUATIONS OF STATE

ERIC M. COLLINS, EDWARD A. LUKE

Abstract. One of the most common operations encountered in computa-

tional fluid dynamics (CFD) solvers is the evaluation of the caloric and thermal
equations of state (EoS) which are required to compute thermodynamic state

variables from the conserved values that are typically being advanced by the

simulation. The complexity of these calculations can vary widely depending
on the nature of the fluid under consideration. We present a method for gen-

erating an interpolated representation of the EoS that is fairly inexpensive to

evaluate regardless of the complexity of the actual underlying state equations.
This approach has the advantage of being agnostic towards the original rep-

resentation; whether it be a complex analytic expression, expensive iterative

method, or interpolated from empirical data.

1. Introduction

Computational efficiency has always been one of the most important issues fac-
ing developers of high-performance computing applications. However, as high-
performance computing hardware continues to improve – delivering ever-increasing
FLOPs – engineers continue to crave increasingly accurate simulations based on
increasingly complex physical models. Obviously, this comes with additional com-
putational cost, but what often goes unacknowledged is that different types of model
complexity contribute to computational cost in significantly different ways.

In this paper, we briefly look at some of the competing demands of efficiency ver-
sus complexity, particularly when that complexity is embedded deep within solver
iteration hierarchy. We then propose a solution which could shift much of the ex-
pense required to evaluate certain aspects of the model to a pre-processing step.
This step generates an approximation of the original model to some prescribed level
of accuracy. A fairly simple algorithm is then employed evaluate the interpolated
function within the context of the solver hierarchy.

The present technique is largely derived from several previous efforts which have
utilized tabular look-up techniques to avoid costly computations [4][5]. Our pro-
posed solution extends these techniques by offering adaptive table sizes and resolu-
tions to satisfy user specified accuracy constraints as well as support for enforcement
of the continuity of the tabular approximation function and its derivatives.
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1.1. Motivation. As high-performance computing hardware continues to improve,
engineers continue to push the fidelity of computational simulations to accurately
model increasingly complex physical phenomena. The increased complexity of the
underlying physical models can have a drastic impact on the computational solvers
that implement them.

At a wide range of pressures and temperatures most gases behave according to
the linear ideal gas law. The ideal gas law provides a simple closed form that relates
pressure, temperature, and mixture to fluid enthalpy, density, and entropy. When
subject to sufficiently high pressures and/or low temperatures, however, many gases
will behave very differently. This change in behavior is often due to close range
effects, such as Van der Waals forces. Under these conditions, the behavior of the
gas can depart substantially from the linear model of the ideal gas, and closed form
solutions may no longer exist that accurately describe the relationship between
various thermodynamic variables.

For fluid conditions in which simple closed form equations are not available, non-
linear iterative solvers are often required to obtain values for enthalpy, density, or
entropy at a given pressure and temperature. Luke and Cinnella [2] describe solving
fluid equations using the Hirschfelder, Buehler, McGee and Sutton (HBMS) EoS.
These relations involve three regions with nested non-linear functions. Another
method which is often employed is the NIST REFPROP EoS that uses a modified
Benedict-Webb-Rubin (MBWR) EoS [6]. The MBWR EoS is described by 32
coefficients with an additional 20 coefficients used to describe saturation curve data
and critical point properties.

In the context of computational fluid dynamics solvers, in which each cell or
mesh point requires a solution to these complex systems of equations, the use of
non-linear solvers to obtain the required thermodynamic variables can easily become
the dominant computational cost. In practice, many solvers will resort to utilizing
simpler, less-accurate equations simply to make the simulation computationally
tractable.

In our approach, we have utilized an interpolated representation that is fairly
inexpensive to evaluate, regardless of the complexity of the actual underlying state
equations. This approach has the advantage of being agnostic towards the original
representation, whether it be based on complex analytical expressions, expensive
iterative methods, or interpolations of empirical data. The expensive evaluation op-
erations are performed as a pre-processing step during which the underlying tabular
approximation is generated. Once converted to our representation, all equations
have nearly the same look-up and evaluation cost.

While our initial inspiration was drawn from the adaptive Cartesian reconstruc-
tions of Xia, Li, and Merkle [5], the underlying topological configuration of our table
representation, is probably more similar to the polynomial splines over hierarchical
T-meshes (PHT-Splines) of Deng et al. [1]. However, rather than using B-spline
based representations, we have chosen to utilize independent Bezier patches which
have been carefully reconstructed to ensure C1-continuity at the patch edges. Our
algorithm allows for anisotropic refinement of the mesh depending on the features
of the underlying surface data, while allowing, at most, only one hanging node per
mesh element edge.

In the following sections we describe a generic function approximation algorithm
for real valued functions of two independent variables, and a method for efficiently
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evaluating the approximated surface. For the sake of generality, the independent
variables will be referred to as x and y, while the function to be approximated will
be denoted as F (x, y). The actual choice of independent variables will depend on
the details of a particular application. Our immediate application for this approx-
imation method is to determine an unknown thermodynamic state variable from
two known variables which uniquely define the state. For example, density or en-
ergy can be computed from pressure and temperature. We may make occasional
reference to this application in the following sections as it has been the primary
motivation for some of our design choices.

2. Methodology

At the lowest level, the underlying representation is a piecewise C1-continuous
cubic Bezier surface. The cubic Bezier surface is a commonly used modeling element
which is found in computer graphics (CG) and computer-aided geometry design
(CAGD) applications. The mathematical description of the surface is both flexible
and easy to evaluate [3].

F (u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)bij (2.1)

Here, B3
i (u) are the third-degree (fourth-order) Bernstein polynomials,

B3
i (u) =

3!
i!(3− i)!

(1− u)3−iui (2.2)

and bij are the control points. The shape of the surface is completely determined
by a linear combination of these control points. The blending coefficients can be
determined by evaluating the Bernstein polynomials (Eq. 2.2) at the parametric
location (u, v) ∈ [0, 1]× [0, 1], corresponding to the desired point on the surface, or
by the evaluation of an equivalent algorithm such as the deCasteljau algorithm [3].

Each cubic Bezier surface in the representation is referred to as a patch. Each
patch has boundaries aligned with constant coordinate directions (e.g. constant
x and y). The surface is generated by performing a recursive subdivision of the
desired domain until the resulting Bezier patches are capable of interpolating the
original function to a specified error tolerance or a prescribed maximum recursion
depth. Depending on the nature of the function to be approximated, sampling and
subdivision can be accomplished in the space of the original independent variables
(x and y), or in the logarithmic space (log(x) and log(y)).

Once the patches are sufficiently refined to resolve the function, we establish C1-
continuity conditions at the interface between the patches. This process involves
several steps to ensure that the resulting surface is both well defined, and well
behaved. Details are provided in the following sections.

2.1. Lagrange approximation. During the first stage of approximation, all Bezier
patches are generated by sampling the underlying function at 16 uniformly spaced
locations (4× 4) within the respective sub-domain of the patch. The control points
for the patch are then computed such that the cubic Bezier surface will pass through
the sampled points. We refer to this as the Lagrange approximation.

The control points may be found by solving a 16× 16 linear system formed from
the evaluation of the Bezier surface at the parametric locations of the sampled
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Figure 1. Sampling sites for Lagrange interpolation

points. Let Bij(u, v) = B3
i (u)B3

j (v), and our system is formed as:

f = Bb

where f is a vector of the 16 sampled values. The matrix B stores computed values
of Bij(u, v). The parametric values for (u, v) are fixed in each row according to the
location at which the corresponding sample point f ∈ f was evaluated. And finally,
b is a vector of 16 control points which uniquely define the surface. If we utilize
a 2D indexing scheme to reflect the 2D nature of both the sample mesh and the
control net, the matrix and vectors can be expanded as follows:

f00

...
fmn

...
f33

 =



B00(u0, v0) · · · Bij(u0, v0) · · · B33(u0, v0)
...

...
. . .

...
B00(um, vn) · · · Bij(um, vn) · · · B33(um, vn)

...
...

. . .
...

B00(u3, v3) · · · Bij(u3, v3) · · · B33(u3, v3)





b00

...
bij

...
b33


Here, the fmn values correspond to the 16 sampled values which are located at the
parametric coordinates (um, vn):

um =
m

3
, vn =

n

3
and the mapping from parametric to state space is given by:

x = (1− u) ∗ xlo + u ∗ xhi, y = (1− v) ∗ ylo + v ∗ yhi

with bounds of each patch from (xlo, ylo) to (xhi, yhi).
To obtain the control points, we invert the system matrix B and apply it to both

sides.
B−1f = b

Since the Bernstein polynomials are independent of both the sampled values and
the control points, the entries in the system matrix B are constant. Therefore, B
and B−1 should only need to be evaluated once.

2.2. Recursive refinement. The recursive subdivision step is carried out by choos-
ing a split-plane in the x or y direction. The splits are computed so as to divide
the patch’s subdomain in half. In the x-direction, the split is computed using:

x̄ =
1
2

(xhi + xlo).
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The split in the y direction is computed in a similar manner. For each candidate
split, two pairs of Bezier patches are generated - one on either side of the split
plane. The pair which reduces the error in the approximation the most is the one
selected for the refinement. This approach allows for anisotropic refinement of the
domain in the direction where it is needed most first.

Figure 2. Candidate patch splits with recomputed sample sites

Notice that the recomputed sample points along shared edges are evaluated from
the original function definition. When these sampled values are used as input into
the Lagrange approximation algorithm, the resulting surface definitions produce a
common shared edge approximation.

This patch splitting process continues until each patch satisfies a prescribed local
error tolerance. Alternative stopping criteria can also be provided. For example, a
maximum number of recursive refinements can be specified to prevent the algorithm
from excessive refinement near features such as singularities or discontinuities. The
recursion halts once a patch either satisfies the convergence criteria, or it exceeds
the stopping criteria.

The error in the patch approximations are evaluated by performing a numerical
integration using tenth-order Gauss-Legendre quadrature. Technically, only a fifth
or sixth order quadrature should be required to properly account for the leading
error terms. However, we felt that the extra sampling resolution was justified
to ensure that no important features were left unresolved during this refinement
process. More importantly, care must be taken to ensure that the locations chosen
to sample the error for the numerical integration do not coincide with the locations
where the function was sampled to generate the approximation. It is in these
sampled locations that the Bezier surface approximation will exactly interpolate
to the sampled function, which would result in the integrated error norms being
inappropriately biased.

2.3. Balance criteria. After the initial refinement process has completed, the
resulting set of patches form a piecewise discontinuous surface as a collection of
fully independent cubic Bezier surfaces (i.e. each patch has their own unique set of
control points). As previously mentioned, any patches which share a common edge
with exactly one other patch will have interpolated to the same four sampled values
on that edge, and will therefore be C0-continuous along that edge. However, any
patch that shares an edge with more than one adjacent patch is not guaranteed to
possess this property. It is likely that the approximated surface will be discontinuous
along those edges.

Before we can establish C1 continuity throughout the surface, we must first at-
tempt to minimize the effects of sampling bias by reducing the amount by which
adjacent patches are allowed to differ in size. A balancing criteria has been estab-
lished whereby all patches are required to be within one level of refinement of each
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of its neighbors. One consequence of this criteria is that all hanging nodes will only
appear on the mid-points of patch edges. In other words, each patch will have at
most two adjacent neighboring patches along each of its edges. Thus the sampling
rate for adjacent patches will vary by a factor of two at most.

Figure 3. Patch splits are required to satisfy the balance criteria.

The set of patches which resulted from the initial recursive refinement steps are
now further refined until all patches satisfy the balance criteria. Each of these
subdivided patches are once again fit with cubic Bezier approximations to the orig-
inal function using the Lagrange interpolation method described above. Since the
balance step consists only of patches being subdivided, the accuracy of the approx-
imation will most likely be improved. Thus, the ability of the patches to satisfy the
error tolerance criteria is not effected. In addition, the most refined patches will, by
definition, not have any adjacent neighbors which are more refined. Therefore, this
process will not create any patches below the lowest refinement level, preserving
the recursion limit if one has been specified. In other words, neither of our halting
criteria is violated by this step.

2.4. Hermite approximation. In addition to the Lagrange approximation tech-
nique, we also make use of a second technique for generating cubic Bezier surface
patches. We refer to this second method as the Hermite approximation. Rather
than attempting to fit the patch to 16 uniformly sampled values, the function and
its derivatives at the corner nodes are utilized. More specifically, this method uses
the value of the function (F ), its first derivatives with respect to each of the inde-
pendent variables (Fx, Fy), and the cross-derivative (Fxy), evaluated at each corner
node.

In our implementation, the values at the corner nodes are computed for each
patch from the Bezier patches that were generated from the Lagrange approxi-
mations during the initial refinement steps. That is, rather than use derivatives
derived from the original function (which may or may not be readily available), we
utilize the derivative information encoded within the existing Bezier interpolations.

2.5. Reconciliation. Since the derivative data is computed independently for each
patch, there may be a multiplicity of values at shared corner nodes. This node
information is then reconciled amongst the adjacent patches in a two-step process.
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Figure 4. Hermite approximation from the function value and its
derivatives provided at the corner nodes

Step 1: For any node which is solely a corner node (i.e. is not a hanging node for
any adjacent patch), we account for the following observations: (a) The function
values should all already agree since the corner nodes are among the sixteen original
sampled points in each patch. Therefore, they should all already be evaluating to
the exact value of the original function.

(b) To minimize the potential for the approximation to oscillate near rapidly
changing features (e.g. discontinuities or singularities), we prefer to use the deriv-
ative with the smallest magnitude. This typically has the net effect of smoothing
the approximated surface. (See figure 5)

Figure 5. Slope limiting to reduce oscillations

Step 2: For the remaining nodes, we note that each hanging node is a hanging
node for exactly one patch, and a corner node for the two neighboring patches. Since
we desire the entire edge be C1-continuous, we must insist that the two neighboring
patches are generated in such a way that the edge shared with their less refined
neighbor matches in the C1 sense. To accomplish this we specify that the value of
the function, and its three derivative values at the hanging node must be taken from
the less refined patch. In other words, we evaluate the value and the derivatives
of the less refined patch on the edge midpoint corresponding to the location of the
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hanging node. This information is then passed on to the two adjacent patches as
corner node data for their respective interpolations.

Figure 6. Hanging node dependency graph

Since it is likely that the shape of many of the patches will be necessarily altered
by this approach, there is a specific order in which the updates to the patch shapes
must be made. For this purpose, we form a data structure which records the data
dependencies between all patches and hanging nodes. The data is then topologically
sorted to obtain the proper ordering for the update operations.

After all of the patches have been regenerated using the technique described
above, the collective surface approximation should be C1-continuous at all points
within the specified domain.

2.6. Evaluation. Once we have established the piecewise C1-continuous Bezier
patch approximation to a given function, all that remains is to develop a fast
method for evaluating an arbitrary point on this surface. There are two steps to
the evaluation process: to search for the patch whose domain includes the point of
interest, and then to evaluate the patch at that point. To these ends, we employ a
kd-tree search algorithm, and the well-known deCasteljau evaluation algorithm.

For the kd-tree search, we take advantage of the fact that the patches are orga-
nized hierarchically. Every time we split the domain during the refinement phases
above, we also created a natural partitioning of the patches. This implies that for
any node at any level of the tree, the sub-domain spanned by patches beneath that
node is a contiguous rectangular region completely covered by the patches found in
the child nodes beneath the current node.

The kd-tree is generated by sorting the patches into a nested array based on
the current split-direction and value. There are four possibilities regarding the
distribution of child patches. If there is only one child cell, then it is considered a
leaf node. If there are two or more child nodes, then there exists at least one split
through the center of the sub-domain for which all child patches exist solely on
one side or the other. The patches can therefore be partitioned by an x-coordinate
split, a y-coordinate split, or both. If both directions are possible (i.e. no single
patch spans the width or height of the remaining sub-domain), then the patches are
sorted by splitting in the direction perpendicular to the orientation of the parent



EJDE-2013/CONF/20/ FAST EVALUATION 35

node in the tree. In other words, wherever possible, the orientation of the split will
alternate from one level of the tree to the next.

The look-up algorithm thus proceeds by simply comparing the coordinates of the
desired point with the current split value and direction until a leaf node is reached.
At that point, the local coordinates within the patch are computed, and then the
Bezier patch is evaluated. The mapping from global to local coordinates is given
by:

u =
x− xL

xR − xL
(2.3)

v =
y − yL

yR − yL
(2.4)

where (xL, yL) are the lower bounds of the patch, and (xR, yR) are the upper
bounds.

The deCasteljau algorithm proceeds by recursively evaluating linear combina-
tions of adjacent control points within the control net. In 2D, this evaluation has
the form:
for k from 2 to 0

for all (i, j) ∈ [0, k]× [0, k]

bk
i,j = (1− u)(1− v)bk+1

i,j + u(1− v)bk+1
i+1,j + (1− u)vbk+1

i,j+1 + uvbk+1
i+1,j+1

where b3
i,j are the sixteen original control points, and b0

0,0 is the evaluation of the
desired point on the surface.

3. Results

In high pressure environments – such as those occurring in rocket engines, deep
underground, or in certain industrial processes – complex non-linear equations of
state (EoS) are often required for the solver to make realistic predictions. Evalua-
tion of these relations often requires an expensive iterative solver. The formulation
of some EoS may also utilize expensive operations such as exponential and power
functions. As a result, most of the computation time required to obtain solutions
to these problems is spent evaluating the EoS.

Using the method described above, we have been able to replace these expensive
EoS evaluations with evaluations of our adaptive tabular surface approximations.
We are able to obtain independent approximations the density and internal energy
functions down to a specified error tolerance. Derived quantities, such as specific
heats (cp, cv) and sound speed, can also be computed from these values and their
derivatives obtained from the tabular fits. Since the evaluation of the cubic Bezier
patch is generally much cheaper than the evaluation of complex equations of state,
these surface approximations can dramatically improve the speed of computations
with only modest loss in accuracy.

To demonstrate the effectiveness of the proposed approach we compare the per-
formance of our tabular equation of state against the NIST standard properties
EoS known as REFPROP [6] described earlier. Surface approximation tables are
constructed for the super-critical region (with temperatures greater than the criti-
cal temperature) over the valid evaluation region for the REFPROP EoS of three
different materials: CO2, O2, H2O. The tables were refined to within about 0.1%
relative accuracy or better. Our method was able to achieve this goal with around
2, 000 patches for each of the species. An illustration of the tabular fit for CO2
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density is shown in figure 7. The highly enriched region near the bottom right
corner of this table is the region near the critical point of the fluid where density
changes rapidly.

Figure 7. Adapted table structure for density of super-critical CO2.

To compare the performance of our tabular EoS implementation to the REF-
PROP EoS, timing data was obtained for the evaluation of 200, 000 points sampled
along the diagonals of the fit space. The results of this performance comparison are
shown in table 1. For these tests, our adapted tabular EoS implementation achieves
a performance speedup over the REFPROP EoS by approximately two orders of
magnitude.

Table 1. Comparison between NIST REFPROP and Tabular EoS

Model Table Error REFPROP Tabular Speedup
Size Time Time

CO2 1968 0.011% 16.23s 0.0786s 206
O2 2082 0.046% 7.10s 0.0793s 89
H2O 1949 0.110% 14.32s 0.0783s 183

It is important to note that the errors of the NIST REFPROP EoS are generally
on the order of 0.1% when compared to experimentally measured data. This highly
efficient tabular implementation can achieve a significant performance increase with
hardly any significant losses of accuracy.

We also note that the isotropic tabular formulation of Xia et al. [5] required
225, 121 patches to fit the super-critical region of CO2 from the REFPROP database
to an accuracy of only 0.1%. Our table was able to achieve a lower error bound with
just 1, 968 patches. The improved efficiency of the tabular representation can be
attributed to the anisotropic refinement afforded by our tabular fitting technique.
Xia et al. reported performance improvements over REFPROP for their method
that were similar to our observed speedups.

Conclusion. In this report, we have outlined an approach to generate interpolated
look-up tables for functions of two independent variables. This technique may be
deployed whenever the evaluation of one or more sufficiently complex functions
begin to consume a significant fraction of the computational resources for a given
simulation.

By selecting a simple representation for the underlying surface approximation,
the evaluation of complex functions and their first derivatives can be accelerated.
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In practice, we have observed that our technique can deliver a factor of two to
three speed up in the context of multi-species chemically reacting flow simulations
involving detonations and blast wave physics.

As an additional benefit, this technique now provides a common interface for the
flow solver to evaluate complex equations of state, regardless of their original source.
We are now able to run simulations with EoS that were previously prohibitively
expensive to evaluate or were in a form that would be difficult to incorporate into
our solver in an effective manner.

The extension of this technique to functions involving more independent vari-
ables is, at first glance, fairly straight-forward. However, the complexity of the
refinement, the search algorithms for finding the desired patch, and the evaluation
of the resulting n-dimensional hyper-surface may be rather more computationally
challenging to implement efficiently. We are investigating application areas where
such an approach may be warranted.
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