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EXISTENCE, UNIQUENESS AND NUMERICAL
APPROXIMATION OF SOLUTIONS TO A NONLINEAR

INTEGRO-DIFFERENTIAL EQUATION WHICH ARISES IN
OPTION PRICING THEORY

CARSTEN ERDMANN

Abstract. This article studies the existence and uniqueness of solutions for

a fully nonlinear Black-Scholes equation which arises in option pricing theory
in connection with the jump and equilibrium model approach by using delta-

hedging arguments. We prove existence and uniqueness for this nonlinear

integro-differential equation by using a fixed point method. The convergence
of the numerical scheme, which is based on finite differences, is also proved.

1. Introduction

The article by Black and Scholes [5] represents the foundation of modern option
pricing theory. They were able to show that the option pricing problem is equivalent
to a second-order final-value problem. In the following years there have been a lot
of approaches to make the Black-Scholes model more realistic, in especially to relax
the restrictive assumptions which were made. First developments considered the
“smile effect” which was observed by using the Black-Scholes model in practice.
These developments have led to implied volatility models and later, by assuming
that the volatility is itself stochastic, to stochastic volatility models (cf. [2, 10, 14]).
Other developments considered transaction costs (cf. [3, 17]), the influence of large
traders (cf. [9, 11]) or studied the modeling of the underlying by Brownian motions
and generalized it to Lévy processes, which yields to jump models (cf. [6, 16, 20]),
or to fractional Brownian motions (cf. [18, 19]).

All these approaches lead to different types of partial differential equations. To
be more precise, we consider final value problems of the form

Vt(t, S) + BS (t, S, V, VS , VSS) = 0 (t, S) ∈ [0, T )× (0,∞)

V (T, S) = g(S) S ∈ (0,∞),
(1.1)
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where BS is the nonlinear Black-Scholes operator which is given by

BS (t, S, V, VS , VSS) def=
σ̃2 (t, S, VS , VSS)

2
S2VSS+(r(t)−q(t, S))SVS−r(t)V +I [V ] ,

where V : [0, T ] × (0,∞) → R is the pricing function, g : (0,∞) → R the payoff
function, r : [0, T ] → R the risk-free interest rate, q : [0, T ] × (0,∞) → R the
continuously paid dividend, I is a nonlocal integral term and σ̃ : [0, T ]× (0,∞)×
R × R → [0,∞) the modified volatility function which depends on the specific
model. Because the different models describe different points, a natural question
which arises in this context is: What happens if we combine these models with each
other and can we still expect that there exists a unique solution?

2. Derivation of the equation

To answer that question, we want to combine the jump model with the reaction-
function equilibrium model. The jump model approach criticizes the ansatz to
use Brownian motions to simulate the development of the underlying because the
increments of a Brownian motion are Gaussian and the observed stock price changes
are fat-tailed (cf. [18]). Hence, the idea is to use an other stochastic process than
a Brownian motion to simulate the stock price dynamics; i.e., instead of

dS(t) = µS(t) dt+ σS(t) dW (t),

we consider the following dynamics1

dS(t) = µS(t−) dt+ dX(t), (2.1)

where X(t) is a Lévy process (t ∈ [0, T ]). Lévy processes are more general than
Brownian motions, but they are also more difficult to handle. The main difficulty
lies in the fact that Lévy processes need not to be continuous which means that
the stock price dynamics can also be discontinuous. Normally, it is assumed that
dX(t) = σS(t−) dW (t) + an integral part (cf. [6, chapter 12]).

The reaction-function equilibrium model which we want to use, is the model of
Sircar&Papanicolaou (cf. [23]). This type of model assumes that the stock
prices in the economy are determined by the equilibrium condition of market clear-
ing which depends on a fundamental (exogenous) value. This value is simulated by
a second stochastic process Y with dY (t) = µ̃(t, Y )dt + η̃(t, Y )dW̃ (t). In this and
in other equilibrium models, it is often assumed that there are two different kinds
of traders:

• Reference traders or ordinary traders are investors who sell and buy in such
a way as they were the only agents in the economy. Their normalized stock
demand is modelled as a function D(t, Y (t), S(t)).

• Program traders or large traders are investors who have an influence to
the market equilibrium. Their normalized stock demand is written in the
form ρζ(t), where the parameter ρ measures the size of the trader’s posi-
tion relative to the total supply and ζ(t) represents the cumulative trading
strategy.

1Because the stock price dynamics are not longer continuous, we have to use the left limit of
S, in particular S(t−) = limτ↗t S(τ). This is well-defined because a Lévy process is RCLL.
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Consequently, the equilibrium price is determined by

G(t, Y, S) = D(t, Y, S) + ρζ(t) = 1. (2.2)

If we further assume that (2.2) admits a unique solution, we can express S(t) as a
function of Y (t) and ρζ(t), i.e. S(t) = ψ(Y (t), ρζ(t)). The function ψ is also called
reaction-function. Following the argumentation in [23, Sections 2.2-2.5], one can
show that the asset price dynamics are given by

dS(t) = µ̂(t, Y, S) dt+ σ̂(t, Y, S) dW (t), (2.3)

where µ̂ is given by [23, equation (11)] and

σ̂ = −GY
GS

η̃(t, Y ). (2.4)

To join the equilibrium and jump model approach into one model, we suggest
that the asset price dynamics are given by

dS(t) = µ̂(t, Y, S) dt+ σ̂(t, Y, S) dW (t) +
∫

R\{0}
S(t−) (ez − 1) m̃ (dt, dz) , (2.5)

where m̃ is a compensated Lévy measure. The additional integral term can be
considered as deviation from the market equilibrium.

Theorem 2.1. If the market is free of arbitrage, the stock price dynamics follow
(2.5) and the large traders follow a delta-hedging strategy, then the pricing func-
tion V satisfies the following nonlinear integro-differential equation (for sake of
readability, we write V and mean V = V (t, S) with (t, S) ∈ [0, T )× (0,∞))

Vt +
1
2
σ2(t, S)

( 1− ρVS
1− ρVS − ρSVSS

)2

S2VSS + (r(t)− q(t, S))SVS

−r(t)V +
∫

R\{0}
ν(dz) [V (t, Sez)− V (t, S)− S (ez − 1)VS(t, S)] = 0

V (T, S) = g(S),

(2.6)

where g is Lipschitz-continuous and ν is a compensated Lévy-measure which satisfies∫
|z|≥1

e2zν(dz) <∞.

Proof. We use no-arbitrage and delta-hedging arguments. Thus, let (γ(t), β(t))
be a self-financing strategy which replicates the portfolio, i.e. V (t, S) = γ(t)S(t) +
β(t)B(t). Using the extended Itô-formula (cf. [1, Theorem 4.4.10]), choosing γ(t) =
VS(t, S) to avoid arbitrage with respect to the diffusion term and using that the
volatility is given by (2.4), we obtain

0 = A(t)dt+ dM(t)

:=
(
Vt + (r(t)− q(t, S))SVS +

1
2
η̃2
(GY
GS

)2

S2VSS − r(t)V

+
∫

R\{0}
ν(dz)[V (t, Sez)− V (t, S)− S (ez − 1)VS(t, S)]

)
dt

+
∫

R\{0}
[V (t, Sez)− V (t, S)− S (ez − 1)VS(t, S)] m̃(dt, dz).
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Next, we use the fact that we can represent V also as

V (t, S) = e−
R T
t
r(τ) dτE

(
g
(
Se

R T
t
r(τ)dτ+X(T−t)

))
,

where X(t) is the non-drift part of the right hand side of the risk neutral version
of (2.5) (note that X is a Lévy process). Following the argumentation in [8, Proof
of Proposition 2], one can prove that the remaining stochastic term M, which is
a compensated Poisson integral, is a square-integrable martingale. Furthermore,
−M(t) =

∫ t
0

A(s) ds is also a continuous process with finite variation.2 It follows
that A(t) = 0 almost surely with respect to the equivalent martingale measure.3

Furthermore, using that GY
GS

= DY
DS+ρ ∂ζ∂S

and setting D(t, Y, S) = Y
σ
η̃

S = 1 − ρVS ,

η̃(t, Y ) = η̃ · Y , one can derive σ̃2 = σ2[ 1−ρVS
1−ρVS−ρSVSS ]2. �

3. Existence and uniqueness

In this section, we want to show that there exists a unique classical solution of
(2.6). To do this, we rewrite the diffusion term of (2.6) as

1− ρVS
1− ρVS − ρSVSS

=
1

1− ρΞ (t, S, VS , VSS)
,

where Ξ = SVSS
1−ρVS . Of course, the main difficulty is to control the behavior of

ρ(t, S)Ξ(t, S, VS , VSS) and to assure that there exists an ε > 0 such that 1 −
ρ(t, S)Ξ(t, S, VS , VSS) > ε for all (t, S) ∈ [0, T ]× (0,∞).

Theorem 3.1 (Existence and uniqueness). Assume that
(1) x 7→ g(ex) is in C2+α (R);
(2) r ∈ C α

2 ([0, T ]), (τ, x) 7→ σ2 (τ, ex) , q (τ, ex) are in C
α
2 ,α ([0, T ]× R);

(3) ν is a compensated Lévy measure with
∫
|z|≥1

e2zν(dz) <∞.

Then there exists a positive constant ε0 > 0 such that for any

ρ̂ (τ, ex) = e−xρ (T − τ, ex) ∈ C α
2 ,α ([0, T ]× R)

with
‖ρ̂‖

C
α
2 ,α([0,T ]×R)

≤ ε0, (3.1)

problem (2.6) possesses a unique classical solution.

Proof. The core of the proof is a fixed point procedure which is based on the fixed
point theorem of Banach and on [12, Theorem 3.1]. At first, we perform the Euler
(x = ln(S)) together with the backward time transformation (τ = T − t). Doing
that, we obtain

uτ −Auuxx −Buux − Cuu− Iu = 0

u(0, x) = ĝ(x),
(3.2)

where we have used the abbreviations

Au =
σ̂2

2(1− ρ̂Ξ̂)2
, Bu =

(
− σ̂2

2(1− ρ̂Ξ̂)2
+ (r̂ − q̂)−

∫
R\{0}

(ez − 1) ν(dz)
)
,

Cu = −r̂, Iu =
∫

R\{0}
[u(τ, x+ z)− u(τ, x)] ν(dz), Ξ̂ =

(uxx − ux)
1− ρ̂ux

,

2Here, we have used that every continuous differentiable function has bounded variation.
3Here, we have used the result that every square-integrable martingale with paths of finite

variation is constant with probability one. This result can be found in [15, Proposition I.4.50].
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ρ̂ = e−xρ(T − τ, ex), q̂ = q (T − τ, ex) , σ̂ = σ (T − τ, ex) .

Next, we estimate Ξ̂ as follows

‖Ξ̂‖
C
α
2 ,α
≤ ‖u‖

C1+α2 ,2+α
‖ 1

1− ρ̂ux
‖
C
α
2 ,α

≤,
‖u‖

C1+α2 ,2+α
+ ‖ρ̂‖

C
α
2 ,α
‖u‖2

C1+α2 ,2+α(
1− ‖ρ̂‖

C
α
2 ,α
‖u‖

C1+α2 ,2+α

)2 =: Θ .

(3.3)

Here, we have used the inequality

‖ 1
f
‖
C
α
2 ,α
≤

‖f‖
C
α
2 ,α

min(τ,x)∈[0,T ]×R(f)2
.

Moreover, we have

‖Au‖C α
2 ,α

(3.3)

≤ 1
2
‖σ̂2‖

C
α
2 ,α

(
1 + ‖ρ̂‖

C
α
2 ,α

Θ
)2(

1− ‖ρ̂‖
C
α
2 ,α

Θ
)4 . (3.4)

Because the C
α
2 ,α-norms of r̂ and q̂ are also bounded, we can estimate the other

two coefficients Bu and Cu in an analogous way. Furthermore, a lower bound is
given by

σ̂2

2
(
1− ρ̂Ξ̂

)2 ≥ σ̂2

2
(
1 + ‖ρ̂‖

C
α
2 ,α

Θ
)2 . (3.5)

The next step is to consider only such u ∈ C1+α
2 ,2+α([0, T ]× R) which satisfies

‖ρ̂‖
C
α
2 ,α
‖u‖

C1+α2 ,2+α
≤ ξ, (3.6)

with a positive constant ξ ∈ (0, 1/3). Hence, by using (3.4) and (3.5), we conclude
that (3.2) is uniformly parabolic as long as (3.6) holds. Now, we have proven all
requirements of [12, Theorem 3.1] and thus there exists a solution ŭ of the linearized
problem

ŭτ −Auŭxx −Buŭx − Cuŭ− Iŭ = 0

ŭ(0, x) = ĝ(x).

Furthermore, [12, Theorem 3.1] yields that there exists a positive constant K1 =
K1 (A,B,C) such that

‖ŭ‖
C1+α2 ,2+α

≤ K1‖ĝ(x)‖C2+α = K1‖g(ex)‖C2+α <∞. (3.7)

Hence, there exists a map M : u 7→ M(u) = ŭ from C1+α
2 ,2+α ([0, T ]× R) into

itself.
The final step is to prove that M admits a unique fixed point. To establish

that result, we consider two functions v, w ∈ C1+α
2 ,2+α ([0, T ]× R) which satisfy

assumption (3.6). In analogy to the foregoing, we define

v̆ = M(v), w̆ = M(w), δ̆ = (v̆ − w̆) , δ = (v − w), Υ̂ = Ξ̂(τ, x, wx, wxx).

From these definitions, it follows immediately that δ̆ is a solution of

δ̆τ = Av δ̆xx +Bv δ̆x + Cv δ̆ + I δ̆ + [Av −Aw][w̆xx − w̆x]

δ̆(0, x) = 0.
(3.8)
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We can estimate ‖Av −Aw‖C α
2 ,α

by

C (σ̂)
‖2− ρ̂(Ξ̂ + Υ̂)‖

C
α
2 ,α
‖ρ̂(Υ̂− Ξ̂)‖

C
α
2 ,α
‖(1− ρ̂Υ̂)2(1− ρ̂Ξ̂)2‖

C
α
2 ,α

(1− ‖ρ̂Ξ̂‖
C
α
2 ,α

)4(1− ‖ρ̂Υ̂‖
C
α
2 ,α

)4
.

Next, we estimate the enumerator from above by C1(ξ)‖ρ̂‖
C
α
2 ,α
‖v−w‖

C1+α2 ,2+α

and the denominator from below by C2(ξ), where Ci(ξ) are suitable constants which
depend on ξ ∈ (0, 1/3) (i = 1, 2). Plugging these estimates together yields

‖Av −Aw‖C α
2 ,α
≤ C(ξ)‖σ̂2‖

C
α
2 ,α
‖ρ̂‖

C
α
2 ,α
‖δ‖

C1+α2 ,2+α
.

Next, we apply [12, Theorem 3.1] to the solution δ̆ of (3.8) which yields that
there exist positive constants Ci <∞ (i = 3, . . . , 6) such that

‖δ̆‖
C1+α2 ,2+α

≤ C3‖ [Av −Aw] [w̆xx − w̆x] ‖
C
α
2 ,α

≤ C4‖w̆‖C1+α2 ,2+α
‖ρ̂‖

C
α
2 ,α
‖δ‖

C1+α2 ,2+α

≤ C5‖g(ex)‖C2+α‖ρ̂‖
C
α
2 ,α
‖δ‖

C1+α2 ,2+α

≤ C6 ‖ρ̂‖C α
2 ,α
‖δ‖

C1+α2 ,2+α
,

where we have used (3.7) in the third step. Finally, using (3.1), we can choose
ε0 = 1

2(C6+1) and obtain

‖M(v)−M(w)‖
C1+α2 ,2+α

≤ 1
2
‖v − w‖

C1+α2 ,2+α
.

Therefore, M admits a unique fixed point in the set of all functions u which
satisfy (3.6). Furthermore, one can see that ‖uτ‖C α

2 ,α
<∞. �

Remark 3.2. The fixed point method, which we have used above, can be used
to obtain further regularity results. This can be seen by differentiating (3.2) again
and repeating the fixed point procedure of Theorem 3.1. However, by doing that,
condition (3.6) has to be strengthened such that ε0 has to be chosen smaller. Hence,
to prove C∞-regularity with this method, ε0 would converge to 0 and we would be
back in the linear case.

Remark 3.3. The condition with respect to ρ and the initial condition can be re-
laxed in the nonintegral case by considering the problem in a weighted Hölder-space
(for example by taking the weight function e−κ

√
1+x2 with κ > 1). Unfortunately,

considering the integro case in a weighted Hölder-space is not straightforward since
the integral is nonlocal.

4. Numerical implementation

To obtain an initial value problem and for sake of readability, we perform the
transformation x = ln(S), τ = T − t, u(τ, x) = V (t, S) and obtain

uτ (τ, x) =
1
2

ˆ̃σ2(τ, x, ux,X)X +
(
r̂(τ)− q̂(τ, x)−

∫
R\{0}

(ey − 1)ν(dy)
)
ux(τ, x)

− r̂(τ)u(τ, x) +
∫

R\{0}
[u(τ, x+ y)− u(τ, x)]ν(dy)

u(0, x) = ĝ(x),
(4.1)
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where (τ, x) ∈ [0, T ]×[a, b] and X := uxx−ux. To solve the problem numerically, we
have to introduce boundary conditions, although the problem is unbounded. Here,
one goes back to the financial setup and considers the observed option prices. The
choice of the individual boundary conditions depends on the option type (cf. [22]).
To keep the analysis uniform, we use respectively uleftbeh and urightbeh for the behaviors
at the boundaries. Next, we introduce a uniform grid on [0, T ]× [a, b] by setting

τn = n∆τ, n = 0, . . . ,mτ , xi = a+ i∆x, i = 0, . . . ,mx,

where (mx + 1), (mτ + 1) denote the respective number of grid points in space and
time dimension and ∆τ = T

mτ
, ∆x = b−a

mx
. We denote the values of u on this grid

by uni . We approximate the derivatives by the following finite differences

∂2u

∂x2
(τn, xi) ≈

uni+1 − 2uni + uni−1

(∆x)2 = ∂xxu
n
i ,

∂u

∂x
(τn, xi) ≈

uni+1 − uni−1

2∆x
= ∂xu

n
i ,

∂u

∂τ
(τn, xi) ≈

un+1
i − uni

∆τ
= ∂τu

n
i .

(4.2)

It remains to discretize the integral. Because the integral is nonlocal, we have to
determine constants aI < bI , where we want to evaluate it

∫∞
−∞ ν(dy) ≈

∫ bI
aI
ν(dy).

Remark 4.1. If the conditions of Theorem 2.1 are satisfied, one can show that
the error, which is implied by this truncation, is of exponential decay. For more
information, we refer the reader to [7, Proposition 6].

The next step is to approximate the integral terms. Because we only have the
values of u at the points xi, it is appropriate to choose a quadrature rule which
uses only these points. We set∫ bI

aI

[u (τ, xi + y)− u(τ, xi)] ν(dy) ≈
bdI∑

j=adI

νj (ui+j − ui) , νj =
∫ (j+ 1

2 )∆x

(j− 1
2 )∆x

ν(dy),

where adI and bdI are integers such that [aI , bI ] ⊂
[(
adI − 1

2

)
∆x,

(
bdI + 1

2

)
∆x
]
. If we

cannot evaluate the integral term νj directly, we have to use a quadrature rule. By
using all these considerations, we can construct a difference scheme to solve the
problem. Hence, for λ ∈ [0, 1] we obtain

BS (τn, xi, u,Dxu,Dxxu) ≈ (1−λ)
(
Dn+1

∆ + I∆
)
u(τn+1, xi)+λ (Dn

∆ + I∆)u(τn, xi),

where

Dñ
∆u(τn, xi) =

1
2

ˆ̃σ2
(
τñ, xi, ∂xu

ñ
i ,X

ñ
i

)
Xni

+
(
r̂(τñ)− q̂(τñ, xi)−

bdI∑
j=adI

νj(ej∆x − 1)
)
∂xu

n
i − r̂(τñ)uni

I∆u (τn, xi) =
bdI∑

j=adI

νj
(
uni+j − uni

)
.

Considering the integral approximation I∆uni+j in more detail, we see that in the
nonexplicit case, this term would change (bdI − adI) entries in the evaluation matrix.
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This would not only destroy the tridiagonal property of the matrix, but even much
worse, it would destroy the sparse property. Unfortunately, the complexity of the
numerical algorithms, which solve the system of equations, depends on the fact that
the matrices are sparse. That is why we only consider the integral approximation
for the explicit case. Moreover, we observe that the index (i + j) can be negative
or can exceed the given indices. Therefore, we must define values of u outside the
given range. Here, we use the values of the boundary conditions. To sum it up, we
obtain the following explicit-implicit scheme

Initialization: u0
i = ĝ(xi)

For n=0,. . . ,mτ -1:

un+1
i ← Fi

(
un+1
i , un+1

i−1 , u
n+1
i+1 , u

n
i , u

n
i−1, u

n
i+1

)
= 0, if i ∈ {0, . . . ,mx}

un+1
i ← uleftbeh (τn+1, xi) · 1{i<0} + urightbeh (τn+1, xi) · 1{i>mx}, if i /∈ {0, . . . ,mx},

(4.3)
where

Fi
(
un+1
i , un+1

i−1 , u
n+1
i+1 , u

n
i , u

n
i−1, u

n
i+1

)
= −un+1

i + (1− λ)∆τDn+1
∆ un+1

i + uni + λ∆τDn
∆u

n
i + ∆τI∆uni

If we consider the explicit-implicit scheme in more detail, we observe that we
have to solve a nonlinear system of equations in each time step. In this case it
makes sense to compute the generalized Jacobian

DF(un+1) =
( ∂Fi

∂un+1
k

)
0≤i,k≤mx

and use the Newton’s method. (Although the equations are nonlinear, the gen-
eralized Jacobian can be specified explicitly, see for example [24].) To avoid this
problem one could consider from the start the discretization of the space derivative
in more detail. So we have distinguished between the discretization of the linear
part and the nonlinear part. If we simplify the nonlinear part by using the result
from the time step before, we obtain a linear system of equations, which shortens
the computations significantly. Next, we have to check that the scheme converges
to the desired solution. Following Barles [4], every monotone, stable and consistent
scheme converges to the unique (viscosity) solution.

Theorem 4.2. Let ˆ̃σ2(τ, x, ux,X)X be continuous and monotonously nondecreasing
in X. Furthermore, we assume for the fully implicit case (λ = 0) that

(1) there exist nonnegative constants ci < ∞ (i = 1, 2) such that for every
X ∈ R and ε > 0,

ˆ̃σ2 (τ, x, ux ± ξ,X + ε) (X + ε) ≥ ˆ̃σ2 (τ, x, ux,X) X + c1ε− c2ξ,(
c1(2∓∆x)− c2∆x±∆x

(
r̂(τ)− q̂(τ, x)−

bdI∑
j=adI

νj(ej∆x − 1)
))
≥ 0;

(2) I∆ is monotonously nondecreasing in u, i.e. for every ε > 0

I∆(u+ ε) ≥ I∆u;

and for the nonimplicit case (λ ∈ (0, 1]), we assume additionally that
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(3) there exist positive constants ci < ∞ (i = 1, 2) such that for every X ∈ R
and ε > 0

ˆ̃σ2 (τ, x, ux ± ξ,X− ε) (X− ε) ≥ ˆ̃σ2 (τ, x, ux,X) X− c1ε− c2ξ,(
1− c1

2λ∆τ
(∆x)2

)
≥ 0.

Then, the explicit-implicit scheme (4.3) converges to the unique (viscosity) solution
of (4.1).

Proof. To use the result of Barles, we have to prove monotonicity, stability and
consistency.

(1) Monotonicity: The proof of the monotonicity can be proven in analogy
to the proof of [13, Theorems 3.3 and 3.4] with the only difference, that
one has to use additionally the assumption about the integral term.

(2) Stability: To prove stability, we use Theorem 3.1 which already says that
the problem stays parabolic as long as ρ is small enough. Using that,
stability can be proven in analogy to [21, Lemma 2].

(3) Consistency: The consistency of the differential part of the equation fol-
lows from the respective Taylor expansions of the individual finite differ-
ences (4.2). The consistency of the integral part follows from the used
quadrature rule, which is the trapezoid rule, and Remark 4.1. A more de-
tailed investigation of consistency can be found in [7, chapter 4], where the
respective Taylor expansions and quadrature rules have been written down.

�

Remark 4.3. Using the result of Theorem 3.1, one can show that, for ρ sufficiently
small, (2.6) satisfies Theorem 4.2 for the implicit case.
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[1] David Applebaum; Lévy processes and stochastic calculus, Cambridge University Press, Cam-

bridge, 2004.

[2] C. Ball and A. Roma; Stochastic volatility option pricing, J. Financial and Quantitaive Anal-
ysis 29(4), 589-607.

[3] G. Barles, H. M. Soner; Option pricing with transaction costs and a nonlinear Black-Scholes
equation, Finance Stoch., 2, 369-397, 1998.

[4] G. Barles, Ch. Daher, M. Romano; Convergence of Numerical Schemes for parabolic equa-

tions arising in finance theory, Mathematical Models and Methods in Applied Sciences, 5,
No.1 , 125-143, 1995.

[5] F. Black, M. Scholes; The pricing of options and corporate liabilities, J. Political Economy

(81), 637-659, 1973.
[6] Rama Cont, Peter Tankov; Financial Modelling with Jump Processes, Chapman & Hall/CRC,

London, 2004.

[7] Rama Cont, Ekaterina Voltchkova; A finite difference scheme for option pricing in jump
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