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EXISTENCE AND REGULARITY OF WEAK SOLUTIONS FOR
SINGULAR ELLIPTIC PROBLEMS

BRAHIM BOUGHERARA, JACQUES GIACOMONI, JESUS HERNÁNDEZ

Abstract. In this article we study the semilinear singular elliptic problem

−∆u =
p(x)

uα
in Ω

u = 0 on ∂Ω, u > 0 in Ω,

where Ω is a regular bounded domain of RN , α ∈ R, p ∈ C(Ω) which behaves

as d(x)−β as x → ∂Ω with d the distance function up to the boundary and
0 ≤ β < 2. We discuss the existence, uniqueness and stability of the weak

solution. We also prove accurate estimates on the gradient of the solution
near the boundary. Consequently, we can prove that the solution belongs to

W 1,q
0 (Ω) for 1 < q < 1+α

α+β−1
which is optimal if α+ β > 1.

1. Introduction

In this article we study the quasilinear elliptic problem

−∆u =
p(x)
uα

in Ω

u = 0 on ∂Ω, u > 0 in Ω,
(1.1)

where Ω is an open bounded domain with smooth boundary in RN , 0 < α and p is
a nonnegative function.

Nonlinear elliptic singular boundary value problems have been studied during
the last forty years in what concerns existence, uniqueness (or multiplicity) and
regularity of positive solutions.

The first relevant existence results for a class of problems including the model
case (1.1) with p smooth and α > 0, were obtained in two important papers by
Crandall-Rabinowitz-Tartar [5] and Stuart [17]. Actually both papers deal with
much more general problems regarding the differential operator and the nonlinear
terms. They prove the existence of classical solutions in the space C2(Ω)∩C(Ω) by
using some kind of approximation process: in [5], the nonlinearity in (1.1) is replaced
by the regularizing term p(x)/(u+ε)α with ε > 0 and the authors then show that the
approximate problem has a unique solution uε and that {uε}ε>0 tends to a smooth

2010 Mathematics Subject Classification. 35B65.
Key words and phrases. Semilinear elliptic and singular problems; comparison principle;

regularity of the gradient of solutions; Hardy inequalities.
c©2015 Texas State University.

Published November 20, 2015.

19



20 B. BOUGHERARA, J. GIACOMONI, J. HERNÁNDEZ EJDE-2015/CONF/22

function u∗ ∈ C2(Ω) ∩ C(Ω) as ε → 0+ which satisfies (1.1) in the classical sense.
A different approximation process is used in [17]. These results were extended in
different ways by many authors, we can mention the papers by Hernandez-Mancebo-
Vega [13, 14], the surveys by Hernandez-Mancebo [12] and Radulescu[16], and the
book by Gerghu-Raduslescu [10] and the corresponding references. We point out
that the existence results in [13, 14] are obtained by applying the method of sub
and supersolutions without requiring some approximation argument.

The regularity of solutions was also studied in these papers and the main regu-
larity results were stated and proved by Gui-Hua Lin [11]. For Problem (1.1) with
p ≡ 1, the authors obtain that the solution u satisfies

(i) If 0 < α < 1, u ∈ C1,1−α(Ω).
(ii) If α > 1, u ∈ C

2
1+α (Ω).

(iiii) If α = 1, u ∈ Cβ(Ω) for any β ∈ (0, 1).
Concerning weak solutions in the usual Sobolev spaces, Lazer-McKenna[15] proved
that the classical solution belongs to H1

0 (Ω) if and only if 0 ≤ α < 3. This result
was generalized later for p(x) = d(x)β with d(x) := d(x, ∂Ω) with the restrictions
β > −2 by Zhang-Cheng [18] and with 0 < α − 2β < 3 by Diaz-Hernandez-
Rakotoson [8]. Very weak solutions in the sense given by Brezis-Cazenave-Martel-
Ramiandrosoa [4] using the results for linear equations by Diaz-Rakotoson [9] are
studied in [8]. In this article, we give direct and very simple proofs avoiding the
heavy and deep machinery of the classical linear theory (Schauder theory and Lp

theory used in [5, 17]) to prove existence results for solutions between ordered sub
and supersolutions. We do not use any approximation argument. Our main tools
are the Hardy-Sobolev inequality in its simplest form, Lax-Milgram Theorem and a
compactness argument in weighted spaces framework from Bertsch-Rostamian [3].

In sections 2 and 3, we deal with the problem with p(x) ≡ 1 and the cases
0 < α < 1 and 1 < α < 3 respectively. In the last section we consider the more
general problem with p(x) = d(x)−β and we prove that the solution belongs to
W 1,q

0 (Ω) for any 1 < q < q̄α,β := 1+α
α+β−1 . This is sharp if α + β > 1 (see Theorem

4.1). Let us emphasize that in the case α+β = 1, the regularity of the solution can
be obtained similarly as in the proof of Theorem 4.1, using the fact that u satisfies

c1d log1/2
(k
d

)
≤ u ≤ c2d log1/2

(k
d

)
with some constants c1, c2 > 0 and k > 0 large enough. So in this special case we
obtain that u ∈W 1,q(Ω) for any q > 1.

2. Existence for the case 0 < α < 1

We study the existence of positive weak solutions to the nonlinear singular prob-
lem

−∆u =
1
uα

in Ω

u = 0 on ∂Ω
(2.1)

where Ω is a smooth bounded domain in RN and 0 < α < 1.
The problem (2.1) is reduced to an equivalent fixed point problem which is stud-

ied by using a method of sub and supersolutions giving rise to monotone sequences
converging to fixed points which are actually minimal and maximal solutions (which
may coincide) in the interval between the ordered sub and supersolutions. In our
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case the choice of the functional space where to work is given by the boundary
behavior of the purported solutions we suspect.

Definition 2.1. We say that u0 (resp. u0) is a subsolution (resp. a supersolution)
of (2.1) if u0, u0 belong to H1

0 (Ω) ∩ L∞(Ω) and∫
Ω

∇u0∇v −
∫

Ω

(u−α0 )v ≤ 0 ≤
∫

Ω

∇u0∇v −
∫

Ω

(u0)−αv (2.2)

for all v ∈ H1
0 (Ω), v ≥ 0.

The main existence theorem we shall prove is the following.

Theorem 2.2. Assume that there exists a subsolution u0 (resp. a supersolution
u0) such that u0 ≤ u0 and that there exist constants c1, c2 satisfying:

0 < c1d(x) ≤ u0(x) ≤ u0(x) ≤ c2d(x) in Ω.

Then, there exists a minimal solution u (resp. a maximal solution u) such that

u0 ≤ u ≤ u ≤ u0.

To prove this theorem we define for the weight b(x) := 1
d1+α(x) the subset

K := [u0, u
0] =

{
u ∈ L2(Ω, b) : u0 ≤ u ≤ u0

}
where L2(Ω, b) is the usual weighted Lebesgue space with weight b(x). Notice that
K is convex, closed and bounded.

We reduce the original problem (2.1) to an equivalent problem for a nonlinear
operator associated to the solution operator of (2.1). A first auxiliary result is the
following.

Lemma 2.3. There exists a positive constant M > 0 such that the mapping F :
K → H−1(Ω) defined by F (w) = 1

wα + M w
d(x)1+α for M > 0 large enough is well-

defined, continuous and monotone.

Proof. Let z ∈ H1
0 (Ω). By using the Hardy-Sobolev inequality and the fact that

w ∈ K, we obtain for the first term of F (w) :

|〈 1
wα

, z〉| = |
∫

Ω

z

wα
dx| ≤ c

∫
Ω

| z
wα
|d1−α dx ≤ c‖z

d
‖L2(Ω) ≤ c‖z‖

where c denotes (as all along the paper) different positive constants which are
independent of the functions involved. In the same vein, we denote by ‖u‖ the
norm

( ∫
Ω
|∇u|2 dx

)1/2 in the Sobolev space H1
0 (Ω).

For the second term of F (w) we have for any z ∈ H1
0 (Ω),

|〈 w

d1+α
, z〉| =

∣∣ ∫
Ω

wz

d1+α
dx
∣∣ ≤ ∫

Ω

|z
d
| | w
dα
|dx ≤ c‖z‖

where the constant c > 0 is given by

‖ w
dα
‖L2(Ω) =

∣∣ ∫
Ω

w2

d2α
dx
∣∣1/2 =

(∫
Ω

w2

d1+α
d1−α dx

)1/2

≤ c‖w‖L2(Ω,b).

The existence of the constant M > 0 such that F is monotone increasing can be
obtained by reasoning as in [13]. Notice that we only work in the bounded interval
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[0,maxu0]. Next we prove the continuity of F . For the first term, if we assume
that wn → w in L2(Ω, b), we should prove that∥∥ 1

wαn
− 1
wα
∥∥
H−1(Ω)

→ 0 as n→∞.

We have∣∣ ∫
Ω

( 1
wαn
− 1
wα
)
z dx| =

∣∣ ∫
Ω

wα − wαn
wαnw

α

(z
d

)
ddx

∣∣ ≤ c′n‖zd‖L2(Ω) ≤ c′n‖z‖ .

Now using the mean value theorem and the definition of K we have

c′n = ‖d(wα − wαn)
wαnw

α
‖L2(Ω)

=
(∫

Ω

α2w(θ)2(α−1)|w − wn|2d2

|wn|2α|w|2α
dx
)1/2

≤ c
(∫

Ω

|wn − w|2d2(α−1)d2

d4α
dx
)1/2

≤ c
(∫

Ω

|w − wn|2

d2α
dx
)1/2

≤ c
(∫

Ω

|w − wn|2

d1+α
dx
)1/2

≤ c‖w − wn‖L2(Ω,b)

which converges to 0 as n → ∞ (here θ denotes the intermediate point in the
segment). For the second term in F , and any z ∈ H1

0 (Ω) we have

|〈w − wn
d1+α

, z〉| ≤
∫

Ω

|w − wn||z|
d1+α

dx =
∫

Ω

|w − wn|
dα

|z
d
|dx.

We have now∫
Ω

|w − wn|2

d2α
dx =

∫
Ω

|w − wn|2

d1+α
d1−α dx ≤ c‖w − wn‖2L2(Ω,b)

from where we obtain

|〈w − wn
d1+α

, z〉| ≤ c‖w − wn‖L2(Ω,b)‖z‖

giving the result. �

Problem (2.1) is obviously equivalent to the nonlinear problem

−∆u+
Mu

d(x)1+α
=

1
uα

+
Mu

d(x)1+α
in Ω,

u = 0 on ∂Ω.
(2.3)

Now we “factorize” conveniently the solution operator to (2.3). With this aim, we
prove first the following result.

Lemma 2.4. If 0 < α < 1, for any h ∈ H−1(Ω), there exists a unique solution
z ∈ H1

0 (Ω) to the linear problem

−∆z +
Mz

d(x)1+α
= h in Ω,

z = 0 on ∂Ω.
(2.4)

Moreover, if h ≥ 0 (in the sense that 〈h, z〉H−1,H1
0
≥ 0 for any z ∈ H1

0 (Ω) satisfying
z ≥ 0 a.e. in Ω), then z ≥ 0.
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Proof. We apply Lax-Milgram theorem. Indeed, the associated bilinear form

a(u, v) =
∫

Ω

∇u · ∇v dx+M

∫
Ω

uv

d(x)1+α
dx

is well-defined, continuous and coercive in H1
0 (Ω). Using again Hardy-Sobolev

inequality we obtain

|
∫

Ω

uv

d1+α
dx| ≤

∫
Ω

|u
d
| |v
d
|d1−α dx ≤ c‖u

d
‖L2(Ω)‖

v

d
‖L2(Ω) ≤ c‖u‖ ‖v‖

which proves the continuity. The rest of the proof follows immediately. �

Corollary 2.5. The linear operator P : H−1(Ω) → H1
0 (Ω) defined by z = Ph is

continuous.

It is easy to see that solving (2.3) is equivalent to finding fixed points of the
nonlinear operator T = i ◦P ◦F : K → L2(Ω, b), where i : H1

0 (Ω)→ L2(Ω, b) is the
usual Sobolev imbedding. We need a final auxiliary result from [3].

Lemma 2.6 ([3]). The imbedding H1
0 (Ω)→ L2(Ω, c) where c(x) = 1

d(x)β
is compact

for β < 2.

Proof of Theorem 2.2. The method of sub and supersolutions can be applied since
it can be shown by the usual comparison arguments that T (K) ⊂ K with T compact
and monotone (in the sense that u ≤ v implies that Tu ≤ Tv) and the method (see
e.g., Amann [1]) gives the existence of a minimal (resp. maximal) solution u) (resp.
u) such that u0 ≤ u ≤ u ≤ u0.

Finally we exhibit ordered sub and super solutions satisfying the conditions in
Theorem 2.2. As a subsolution, we try u0 = cφ1 where −∆φ1 = λ1φ1 in Ω, φ = 0
on ∂Ω, φ1 > 0, c > 0. We have

−∆u0 −
1
uα0

= cλ1φ1 −
1

cαφα1
=
c1+αλ1φ

1+α
1 − 1

cαφα1
≤ 0

for c > 0 small. As a supersolution, we pick u0 = Cψ, where ψ > 0 is the unique
solution to

−∆ψ =
1

d(x)α
in Ω, ψ = 0 on ∂Ω.

Then, using that ψ ∼ d(x) we obtain

−∆u0 − 1
(u0)α

=
C

dα
− 1

(Cψ)α
=
Cα+1ψα − cψα

(Cψ)αdα
≥ 0

for C > 0 large. �

Remark 2.7. Since our main goal in this paper is to show how to get existence
proofs in this framework without using approximation arguments and avoiding clas-
sical linear theory, we limit ourselves to the model nonlinearity u−α; the interested
reader may check that the same arguments work, with slight changes, for more gen-
eral nonlinearities f(x, u) ”behaving like” u−α with 0 < α < 1, in particular, e.g.
f(x, u) = 1

uαd(x)β
with α+ β < 1 and for self-adjoint uniformly elliptic differential

operators.
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Uniqueness of the positive classical solution to (2.1) was proved in [5] by using
the maximum principle. A more general uniqueness theorem which is closely related
with linearized stability, was given in [14] (see also [10, 12, 13]). Here we provide a
very simple uniqueness proof for the solution obtained in Theorem 2.2.

Theorem 2.8. Under the assumptions in Theorem 2.2, if u, v are two solutions
to (2.1) such that u0 ≤ u, v ≤ u0, then u ≡ v.

Proof. First, we assume that u ≤ v in Ω. Multiplying (2.1) for u by v, (2.1) for v
by u and integrating by parts on Ω with Green’s formula we obtain∫

Ω

∇u · ∇v dx =
∫

Ω

v

uα
dx =

∫
Ω

u

vα
dx

and then ∫
Ω

( v

uα
− u

vα

)
dx =

∫
Ω

vα+1 − uα+1

uαvα
dx = 0.

Since v ≥ u, u ≡ v. Notice that all the above integrals are meaningful. Indeed,
since u, v ∈ K we have, e.g., that

∫
Ω

v
uα dx ≤ c

∫
Ω
d(x)1−α dx <∞.

If now u 6≤ v and v 6≤ u, we have u0 ≤ u, v ≤ u0. Then, u ≤ u, u ≤ v and it
follows from above that u = u = v. �

Since this unique solution is obtained by the method of sub and supersolutions
it seems natural to think that is (at least linearly) asymptotically stable. This was
proved in a much more general context in [13] for solutions u > 0 in Ω with ∂u

∂n < 0
on ∂Ω working in the space C1

0 (Ω). On the other side, the results in [3], proved
working in Sobolev spaces, are not applicable to the linearized problem we obtain
for the solution u above, which is actually

−∆w + α
w

u1+α
= µw in Ω,

w = 0 on ∂Ω.
(2.5)

But it is easy to give a direct proof. For this, it is clear that if such a first eigenvalue
exists in some sense, then µ1 > 0. It is not difficult to show the existence of an
infinite sequence of eigenvalues to (2.5) working in L2(Ω). Indeed, for any z ∈
L2(Ω), it follows from Lemma 2.4 the existence of a unique solution to the equation
(2.4) and it turns out that T = i ◦ P is a self-adjoint compact linear operator in
L2(Ω) and the classical theory gives the existence of our sequence of eigenvalues with
the usual variational characterization. That µ1 is simple and has an eigenfunction
φ1 > 0 in Ω is obtained using that, by the weak (or Stampacchia’s maximum
principle), P is irreductible and if z ≥ 0, Pz > 0 and it is possible to apply the
version of Krein-Rutman Theorem in the form given by Daners-Koch-Medina [6]
weakening the strong positivity condition for T by this one (much more general
results in this direction can be found in Diaz-Hernandez-Maagli [7] extending most
of the work in [3]). We have then proved.

Theorem 2.9. Problem (2.1) has a unique positive solution u0 ≤ u ≤ u0 which is
linearly asymptotically stable.

Remark 2.10. Linearized stability in the framework of classical solutions for much
more general problems was proved in [13] working in the space C1

0 (Ω). The results in
[3], obtained working in weighted Sobolev spaces are not applicable here. Moreover,
it is proved in [13] that linearized stability implies asymptotic stability in the sense
of Lyapunov.
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3. Existence in the case 1 < α < 3

We study now the same problem (2.1) but for 1 < α < 3. If we try to apply the
arguments in the preceding section, we will find some difficulties due to the fact
that the embedding in Lemma 2.6 is not compact any more for β = 2, which is
precisely the critical exponent arising for α > 1.

Now we replace the assumption on the sub and supersolutions in Theorem 2.2
by the following:

0 < c1d(x)
2

1+α ≤ u0 ≤ u0 ≤ c2d(x)
2

1+α (3.1)
and we define, this time for b(x) = 1/d(x)2 the set

K := [u0, u
0] = {u ∈ L2(Ω, b) : u0 ≤ u ≤ u0}.

Lemma 3.1. There exists a constant M > 0 such that the mapping G : K →
H−1(Ω) defined by G(w) = 1

wα + Mw
d(x)2 is well-defined, continuous and monotone.

Proof. For the first term in G, we have for any z ∈ H1
0 (Ω) by using Hardy-Sobolev

inequality

|〈 1
wα

, z〉| =
∣∣ ∫

Ω

z

wα
dx
∣∣ =

∫
Ω

|z
d
| d
wα

dx ≤ c‖z
d
‖L2(Ω)

∫
Ω

d1− 2α
1+α dx ≤ C‖z‖

since
‖d1− 2α

1+α ‖L2(Ω) =
∫

Ω

d
2(1−α)
1+α dx < +∞

(we have in fact 2(1−α)
1+α + 1 = 3−α

1+α > 0).
For the second term of G, for any z ∈ H1

0 (Ω) we obtain

|〈 w
d2
, z〉| = |

∫
Ω

wz

d2
dx| = |

∫
Ω

w

d

z

d
dx| ≤ c‖z‖,

again by Hardy’s inequality and noticing that

‖w
d
‖L2(Ω) =

∫
Ω

w2

d2
dx = ‖w‖2L2(Ω,b).

We prove the continuity. For the first term we have, reasoning as above∣∣ ∫
Ω

( 1
wαn
− 1
wα
)
z dx

∣∣ =
∣∣ ∫

Ω

wα − wαn
wαnw

α

(z
d

)
ddx

∣∣ ≤ c′n‖zd‖L2(Ω) ≤ c′n‖z‖

and using as above the mean value theorem and (3.1) we obtain

c′n = ‖d(wα − wαn)
wαnw

α
‖L2(Ω)

=
(∫

Ω

αw(θ)2(α−1)|w − wn|2d2

|wn|2α|w|2α
)1/2

≤ c
(∫

Ω

|w − wn|2

d4
d2 dx

)1/2

≤ c‖w − wn‖L2(Ω,b)

giving the result. For the second term, we write

|〈w − wn
d2

, z〉| =
∣∣ ∫

Ω

w − wn
d

z

d
dx
∣∣ ≤ c‖w − wn

d
‖L2(Ω)‖z‖

≤ c‖w − wn‖L2(Ω,b)‖z‖
giving again the results. On the other side, the existence of a constant M is proved
in the same way. �
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Lemma 3.2. If 1 < α < 3, for any h ∈ H−1(Ω), there exists a unique solution
z ∈ H1

0 (Ω) to the linear problem

−∆u+M
u

d(x)2
= h

u = 0 on ∂Ω.
(3.2)

Proof. It is very similar to the case in Lemma 2.4, using again Hardy inequality.
However, we cannot argue as in the proof of Theorem 2.2, the reason is that the
embedding in Lemma 2.6 is not compact any more if β = 2. This fact also raises
problems when studying linear singular eigenvalue problems in [3], see also [7].
This difficulty may be circumvented as follows. From Lemmas 3.1 and 3.2, we can
construct the following iterative scheme starting from the surpersolution u0:

−∆un +
Mun

d2(x)
=

1
(un−1)α

+
Mun−1

d2(x)
in Ω,

u = 0 on ∂Ω,

and a similar one starting this time from the subsolution u0. By using the usual
comparison principle arguments we obtain two monotone sequences satisfying:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0 .

It follows that there are subsequences un and un such that un → u and un →
u pointwise. By exploiting the regularity for the above linear problem and the
estimates in Lemma 3.1 we obtain the uniform estimate

‖un‖H1
0 (Ω) ≤ c‖

1
(un−1)α

+
Mun−1

d2(x)
‖H−1(Ω) ≤ c

where c is a constant independent of n. Thus there exists again subsequences un
and un such that un → u∗ and un → u∗ weakly in H1

0 (Ω) and then strongly in
L2(Ω). Obviously, u∗ = u and u∗ = u.

Next we should pass to the limit in equation (3.2). The weak formulation is∫
Ω

∇un∇φ dx+M

∫
Ω

un

d2(x)
φdx =

∫
Ω

φ

(un−1)α
dx+M

∫
Ω

un−1

d2(x)
φ dx

for any φ ∈ H1
0 (Ω). The first term on the left-hand side of the above expres-

sion converges clearly to
∫

Ω
∇u∇φ. Concerning the first term on the right-hand

side we have, by using the dominate convergence theorem, that there is pointwise
convergence to φ

(u)α . Moreover,∣∣ ∫
Ω

φ

(un−1)α
dx
∣∣ =

∣∣ ∫
Ω

φ

d

d

(un−1)α
dx
∣∣ ≤ c‖φ

d
‖L2(Ω)‖

d

(un−1)α
‖L2(Ω)

where c does not depend on n. We have∥∥ d

(un−1)α
∥∥2

L2(Ω)
=
∫

Ω

d2

(un−1)2α
dx ≤ c

∫
Ω

d2− 4α
1+α < +∞

since 1 + 2(1−α)
1+α = 3−α

1+α > 0. For the second terms on both sides we have∣∣ ∫
Ω

unφ

d2
dx
∣∣ =

∫
Ω

|φ
d
||u

n

d
|dx ≤ ‖φ

d
‖L2(Ω)‖

un

d
‖L2(Ω),

‖u
n

d
‖2L2(Ω) =

∫
Ω

(un
d

)2 dx ≤ c
∫

Ω

d
2(1−α)
1+α dx <∞
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as above.
It only remains to find ordered sub and supersolutions for the problem. It seems

natural to look for functions of the form cφt1 with t = 2
1+α < 1. For the subsolution

u0, we obtain

−∆(φt1) = φt−2
1

(
t(1− t)|∇φ1|2 + λ1tφ

2
1

)
= λ1tφ

t
1 + t(1− t)φt−2

1 |∇φ1|2.

Hence we obtain

−∆u0 − 1
(u0)α

= ct(t− 1)φt−2
1 |φ1|2 + cλ1tφ

t
1 −

1
cαφαt1

=
ct(t− 1)|∇φ1|2

φ
2α

1+α
1

+ λ1ctφ
t
1 −

1

cαφ
2α

1+α
1

≤ 0

using that t− 2 = − 2α
1+α , and this is equivalent to

t(1− t)|∇φ1|2 + λ1tφ
t+ 2α

1+α
1 ≤ 1

cα+1
.

Hence it is sufficient to have

t(1− t)|∇φ1|2 + λ1t ≤
1

cα+1

which is satisfied for c > 0 small.
Reasoning in a similar way for the supersolution u0 = Cφt1, we infer that

t(1− t)|∇φ1|2 + λ1tφ
t+ 2α

1+α
1 ≥ 1

C1+α
.

We know that |∇φ1| ≥ δ1 > 0 in Ωε := {x ∈ Ω|d(x) ≤ ε} for some ε > 0. Then,

t(1− t)|∇φ1|2 ≥ t(1− t)δ2
1 ≥

1
C1+α

on Ωε for C > C1 > 0 large enough. On Ω\Ωε, we have that φ1 ≥ δ2 for some
δ2 > 0 and it is enough to have

λ1tδ
t+ 2α

1+α
2 ≥ 1

C1+α

which is satisfied for C > C2 for some C2 > 0 large enough. Finally we pick
C > max(C1, C2). �

We have then proved the following statement.

Theorem 3.3. Assume that there exists a subsolution u0 (resp. a supersolution u0)
satisfying (3.1). Then there exists a minimal solution u (resp. a maximal solution
u) such that

u0 ≤ u ≤ u ≤ u0.

The uniqueness and linearized stability are obtained in this case as well. Since
proofs are very similar, we only point out the differences.

Theorem 3.4. Under the assumptions of Theorem 3.3, there is a unique solution
in the interval [u0, u

0] which is linearly asymptotically stable.
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Proof. For uniqueness the same arguments in Theorem 2.8 work here as well. We
only show that all integrals are meaningful. We have, e.g., that∫

Ω

v

uα
dx ≤ c

∫
Ω

d(x)1−α dx ≤ c
∫

Ω

d(x)
2(1−α)
1+α dx <∞

since 2(1−α)
1+α + 1 = 3−α

1+α > 0. �

For linearized stability it is enough to check that all the arguments at the end of
Section 2 still work taking into account that u1+α “behaves like” d(x)2 and using
again Hardy’s inequality.

4. Regularity of weak solutions

We deal now with the elliptic problem

−∆u =
1

dβuα
in Ω

u = 0 on ∂Ω, u > 0 in Ω,
(4.1)

where Ω is an open bounded domain with smooth boundary in RN , α ∈ R, 0 ≤
β < 2. We prove the following regularity result for solutions to (4.1).

Theorem 4.1. Let α+β > 1. Then the unique positive solution u ∈ C2(Ω)∩C0(Ω)
to Problem (4.1) satisfies

u ∈W 1,q
0 (Ω) for 1 < q < q̄α,β =

1 + α

α+ β − 1
. (4.2)

Furthermore, the restriction given by q̄α,β is sharp.

Remark 4.2. (i) The uniqueness of the positive solution to (4.1) follows from the
classical strong maximum principle.

(ii) The existence of u can be obtained by the same approximation procedure as
in [5] and u ∈ C+

φα,β
(Ω) where

C+
φα,β

(Ω) = {v ∈ C(Ω) : ∃ c1, c2 > 0; c1φα,β ≤ v ≤ c2φα,β a.e. in Ω} (4.3)

with φα,β := φ
2−β
1+α
1 when α + β > 1. Existence of very weak solutions was proved

also in [8].
(iii) Theorem 4.1 still holds when 1

d(x)β
is replaced by a more general weight

K0(x) behaving like 1/d(x)β near ∂Ω.
(iv) If α + β < 1, we know that u ∈ C1,µ(Ω) for some µ ∈ (0, 1) (see [11]).

Theorem 4.1 complements to some extent results in [11].

To prove Theorem 4.1, we use the following result concerning interior regularity
for linear elliptic problems (see Bers-John-Schechter [2, Theorem 4, Chapter 5] or
[5, Lemma 1.5]).

Lemma 4.3. Let D0 and D be open bounded domains in RN with D0 ⊂ D. Assume
that L is a second order uniformly elliptic operator with coefficients in C(D) and
let q > N . Then there exists a positive constant K = K(N, q, δ(D), d(D0, ∂D), L)
such that for any w ∈W 2,q

0 (D)

‖w‖W 2,q(D0) ≤ K
(
‖Lw‖Lq(D) + ‖w‖Lq(D)

)
. (4.4)
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In particular we have the estimate

‖w‖W 2,q(D0) ≤ K
(
‖Lw‖L∞(D) + ‖w‖L∞(D)

)
. (4.5)

Also we have the following result.

Lemma 4.4. There exists a constant K1 > 0 such that if r ∈ (0, 1], x0 ∈ Ω,
B2r(x0) = {x ∈ RN ||x− x0| < 2r} ⊂ Ω and v ∈W 2,q(B2r(x0)) where q > N , then

|∇v(x)| ≤ K1

(
r‖∆v‖L∞(B2r(x0)) +

1
r
‖v‖L∞(B2r(x0))

)
(4.6)

for all x ∈ Br(x0). (Here ‖∆v‖L∞(B2r(x0)) =∞ is included).

Proof. Let x0 ∈ Ω, and let r : 0 < 2r < d(x0) (then B2r(x0) ⊂ Ω). We make the
change of variable x0 + ry = x and define w(y) = v(x), for y ∈ B2(0). Then we
have

∇w(y) = r∇v(x), ∆w(y) = r2∆v(x) for |y| ≤ 2 (4.7)
and by using (4.5), we obtain

|∇w(y)| ≤ K1

(
‖∆w‖L∞(B2(0)) + ‖w‖L∞(B2(0))

)
, for all y ∈ B1(0) (4.8)

for some constant K1 > 0 independent of r and x0. Hence, the local estimate (4.6)
follows from (4.7) and (4.8). �

Lemma 4.5. Assume the hypothesis in Theorem 4.1. Then, any weak solution u
to (4.1) in C+

φα,β
(Ω) satisfies

|∇u(x)| ≤ cd(x)
1−α−β

1+α for all x ∈ Ω. (4.9)

Proof. Let x ∈ Ω and set r = d(x)
3 , v = u, (so ∆v = ∆u = d−βu−α) and we take

x0 = x. Let us note that

B2r(x) ⊂ A = {z ∈ Ω :
d(x)

3
≤ d(z) ≤ 5

3
d(x)} ⊂ Ω.

Using (4.6), we obtain

|∇u(x)| ≤ K2

(
d(x)‖d−βu−α‖L∞(A) +

1
d(x)
‖u‖L∞(A)

)
(4.10)

where K2 = 3K1. Since u ∈ C+
φα,β

(Ω), we have that

ad(x)
2−β
1+α ≤ u(x) ≤ bd(x)

2−β
1+α

for some a, b > 0. Then,

d(x)‖d−βu−α‖L∞(A) ≤ ad(x)‖d−βd
−(2−β)α

1+α ‖L∞(A) = a′d(x)
1−α−β

1+α , (4.11)
1

d(x)
‖u‖L∞(A) ≤ bd(x)‖d

2−β
1+α ‖L∞(A) = b′d(x)

1−α−β
1+α . (4.12)

Then estimate (4.9) follows from (4.10), (4.11) and (4.12). �

Proof of Theorem 4.1. Indeed, reasoning as in Lazer-Mc Kenna [15] by rectifying
the boundary using the smoothness of ∂Ω and a partition of the unity, the problem
of finding q > 1 such that ∇u ∈ Lq(Ω) is reduced from Lemma 4.5 to∫

Ω

d(x)
q(1−α−β)

1+α <∞,

that is q(1−α−β)
1+α + 1 > 0, which gives the result. �
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