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TRANSPARENT BOUNDARY CONDITIONS FOR THE WAVE
EQUATION IN ONE DIMENSION AND FOR A

DIRAC-LIKE EQUATION

M. PILAR VELASCO, DAVID USERO, SALVADOR JIMÉNEZ, LUIS VÁZQUEZ

Abstract. We present a method to achieve transparent boundary conditions
for the one-dimensional wave equation, and show its numerical implementation

using a finite-difference method. We also present an alternative method for

building the same transparent boundary conditions using a Dirac-like equation
and a Spinor-like formalism. Finally, we extend our method to the three-

dimensional wave equation with radial symmetry.

1. Introduction

Frequently in the study of the partial differential equations that model real phe-
nomena it is necessary to fix artificial boundary conditions for limiting the area of
study and obtaining unique and well-posed solutions. However these artificial con-
ditions can affect to the solutions of the equations and cause non-desired effects.
For example, in the particular case of the study of traveling waves by the wave
equation the presence of artificial boundary conditions produces the appearance of
reflected waves related to the transmitted wave and these reflected waves can spoil
the perception of the phenomenon.

For solving this problem and avoiding the reflection effect caused by the artificial
boundary conditions, in this work we propose transparent boundary conditions for
the wave equation in one dimension. The purpose of these transparent boundary
conditions is the disappearance of the reflected wave and to achieve that the whole
traveling wave is transmitted.

In Section 2 we analyze the wave equation and describe the movement of the
traveling wave by supposing that the whole traveling wave is transmitted without
reflection, at continuous and discrete level. Considering the data of the previous
section, in Section 3, we look for what conditions should verify the traveling wave in
the limit of the boundary conditions for a complete transmission, at continuous and
discrete level again, and we obtain numerical simulations that check the efficiency
of our study. An alternative theoretical support for the construction of transparent
boundary conditions by using Dirac-type equations and a spinor-like formalism is
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shown in Section 4. Finally, in Section 5, we extend the problem to a particular
case in three dimensions and we use the obtained results for achieving transparent
boundary conditions in the case of the three-dimensional wave equation with radial
symmetry.

Note that we use explicit schemes for the numerical implementations since they
are quite simple and it is possible with them to preserve at local level the dispersion
relations. Implicit schemes could be used as long as they also preserve this and all
the necessary values lay inside the appropriate region.

The following step in this area that will be analyzed in future works is to extend
these results for the cases of the wave equation in two and three dimensions.

2. Transparent boundary conditions for the wave equation in
one-dimension

The solutions to the wave equation possess the property of superposition of
traveling waves. We shall use this to build transparent boundary conditions.

Continuous level. We consider the classical initial value problem for the wave
equation in the whole (one-dimensional) space

utt − c2uxx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

u(0, x) = f(x) ,

ut(0, x) = g(x) ,

(2.1)

where f and g are suitable functions.
According to the D’Alembert formula, the solution to (2.1) is

u(t, x) =
1
2

[f(x− ct) + f(x+ ct)] +
1
2c

∫ x+ct

x−ct
g(s) ds . (2.2)

Let us suppose that G exists, a primitive function for g, and we have:

u(t, x) =
1
2

[f(x+ ct) + f(x− ct)] +
1
2c

[G(x+ ct)−G(x− ct)]

=
1
2
f(x+ ct) +

1
2c
G(x+ ct) +

1
2
f(x− ct)− 1

2c
G(x− ct) .

(2.3)

This corresponds to the superposition of two traveling waves v(t, x) and w(t, x)
given by:

v(t, x) =
1
2
f(x+ ct) +

1
2c
G(x+ ct) , (2.4)

w(t, x) =
1
2
f(x− ct)− 1

2c
G(x− ct) , (2.5)

such that
u(t, x) = v(t, x) + w(t, x) . (2.6)

Each one represents a given profile moving, undisturbed, in one specific direction,
v to the left and w to the right, with speed c. For instance:

v(t+ τ, x) =
1
2
f
(

(x+ c(t+ τ)
)

+
1
2c
G
(

(x+ c(t+ τ)
)

=
1
2
f
(

(x+ cτ) + ct
)

+
1
2c
G
(

(x+ cτ) + ct
)

= v(t, x+ cτ),

(2.7)
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which indicates that at a given time the profile is the same but shifted in position.
If we refer this to the initial profile, we have:

v(t, x) = v(0, x+ ct), (2.8)

w(t, x) = w(0, x− ct). (2.9)

Alternatively, we could have use Fourier techniques to split the initial data of
(2.1) into the components traveling to the left and to the right. Let be f̂(κ) and
ĝ(κ) the Fourier transform over the whole space of, respectively, f and g. We define:

v0(x) =
1√
2π

∫ ∞
0

f̂(−κ)e−iκxdκ ,

v′0(x) =
1√
2π

∫ ∞
0

ĝ(−κ)e−iκxdκ ,
(2.10)

and

w0(x) =
1√
2π

∫ ∞
0

f̂(κ)eiκxdκ ,

w′0(x) =
1√
2π

∫ ∞
0

ĝ(κ)eiκxdκ .
(2.11)

Let us consider a special case for (2.1) where both functions f and G (and,
accordingly, g) have compact support, and that there exists a value L > 0 such
that

∀x, |x| > L→

{
f(x) = 0 ,
G(x) = 0 ,

(2.12)

which implies that

u(t,−L) = v(t,−L) , u(t, L) = w(t, L) ∀t ≥ 0 . (2.13)

This means that the region (−∞,−L) will only “see” a perturbation given by v,
while the region (L,∞) will only “see” a perturbation given by w, and that only
after a certain time. Besides, the central region (−L,L) will become undisturbed
(u and ut being zero for all its points) after some time, since both profiles will exit
by its left side or by its right side.

For this central region we can substitute (2.1) by an equivalent problem:

ϕtt − c2ϕxx = 0 , t ≥ 0, x ∈ [−L,L] ,

ϕ(0, x) = f(x) ,

ϕt(0, x) = g(x) ,

ϕ(t,−L) = v(0, ct− L) ,

ϕ(t, L) = w(0, L− ct) ,

(2.14)

since we have

u(t, x) = ϕ(t, x) , ∀t ≥ 0, ∀x ∈ [−L,L] . (2.15)

We may say that the boundary conditions on ϕ, both at L and at −L, are “trans-
parent”. Any other kind of boundary conditions would induce a solution ϕ different
from u at some location inside [−L,L] after some given time.
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Discrete level. In practice, we cannot simulate (2.1) by finite differences due to
the infinite range of x-values, but we can simulate a problem such as (2.14): we
build a discrete time-space mesh given by values tn = n∆t, xl = l∆x, with n ∈ N
and l ∈ Z, and compute the values ϕ(tn, xl), that we denote by ϕnl .

The standard discretized equation is given by the centered, second order expres-
sion or scheme:

ϕn+1
l − 2ϕnl + ϕn−1

l

∆t2
− c2

ϕnl+1 − 2ϕnl + ϕnl−1

∆x2
= 0 , (2.16)

that we may express as

ϕn+1
l = 2ϕnl − ϕn−1

l − γ2
(
ϕnl+1 − 2ϕnl + ϕnl−1

)
, (2.17)

with
γ =

c∆t
∆x

. (2.18)

The local truncation error for ϕn+1
l in (2.17) is:

− γ2

12
(1− γ2)∆x4 ϕxxxx(t̃, x̃) , (2.19)

for some intermediate values t̃, and x̃, that depend on n and l. This expression can
be obtained, for instance, expanding in Taylor series around ϕnl the different terms
involved and using the mean value theorem. We see that in order to compute a
given value ϕn+1

l we need some previous (in time) neighbouring values. We sketch
this dependence with the diagram represented in Figure 1.

n

l−1
n

n+1
l

l
l+1
n

l

ϕ
ϕ

ϕ

ϕ

n−1ϕ

Figure 1. Values needed to compute ϕn+1
l .

Two sets of values, for n = 0 and n = 1, must be known to start the computa-
tions. They are obtained from the initial conditions. In general this can be done
assuming that the solution satisfies the equation at the initial time (which is not
required in theory) and performing a Taylor series expansion: for all l,

ϕ0
l = f(xl) ,

ϕ1
l = ϕ0

l + ∆t g(xl) + c
∆t2

2
f ′′(xl) + c2

∆t3

2
g′′(xl) +O(∆t4) .

(2.20)

Truncating the O(∆t4) term, we obtain an approximation to the initial data of the
same order in ∆t as the truncation error of (2.17). On the other hand, in the case
where both v and w are known, we may choose the exact values: for all l,

ϕ0
l = f(xl) ,

ϕ1
l = u(∆t, xl) = v(0, xl + c∆t) + w(0, xl − c∆t) ,

(2.21)
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The boundary conditions are: for all n,

ϕn−` = v(0, ctn − L) ,

ϕn` = w(0, L− ctn) ,
(2.22)

where tn = n∆t and it is necessary to choose ∆x in such a way that ` ≡ L/∆x is
a natural number.

If we consider, for instance, the case l = −` + 1 (that is, the leftmost position
where the solution is to be computed) we see from Figure 1 that the boundary value
ϕn−` is necessary to compute ϕn+1

−`+1. It is clear that it is not possible to compute
these boundary values from the numerical scheme (2.17) and that we actually need
to provide them by an independent mechanism.

For stability reasons it is convenient to choose c∆t and ∆x fulfilling certain
relation, and the best choice corresponds to γ = 1 (or, equivalently, rescale the
equation to have c = 1 and choose ∆t = ∆x), since in this case the numerical
solution is exact, in the sense that ϕnl is computed with no local truncation error
(provided the initial conditions are exact), and the only possible errors arise from
the numerical round-off in the computations.

3. A different way to build transparent conditions

3.1. Continuous level. From the previous analysis, we see that building exact
transparent boundary conditions amounts to determine the values of v and w. We
can also assume (we have seen it in the discrete case but it is clear that it should
also be the same in the continuous case) that the boundary conditions cannot be
deduced from the evolution equation, short to solving it.

But we may try a different approach. Instead of building v and w from the initial
data, we try to identify them as the solution to some specific equations. It is easy
to check that v and w satisfy the equations:

vt − cvx = 0 , (3.1)

wt + cwx = 0 , (3.2)

and thus problem (2.1) can be stated equivalently as

u(t, x) = v(t, x) + w(t, x), t ≥ 0, x ∈ (−∞,+∞) ,{
vt − cvx = 0 ,
v(0, x) = 1

2f(x) + 1
2cG(x) ,{

wt + cwx = 0 ,
w(0, x) = 1

2f(x)− 1
2cG(x) .

(3.3)

Since both (3.1) and (3.2) are first order partial differential equations, only an initial
condition is necessary, and in order to have full equivalence with (2.1) we have to
impose that both v and w are sufficiently regular and satisfy their corresponding
equation, either (3.1) or (3.2), at the initial time.

The interesting thing about (3.3) is that, if we build the corresponding problem
for initial data with compact support, in the same way as we did for (2.1) with
(2.14) we have:

ϕ(t, x) = φ(t, x) + ψ(t, x), t ≥ 0, x ∈ [−L,L] ,
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φt − cφx = 0 ,
φ(0, x) = 1

2f(x) + 1
2cG(x) ,

φ(t,−L) = φ(0, ct− L) ,
φ(t, L) = 0 ,
ψt + cψx = 0 ,
ψ(0, x) = 1

2f(x)− 1
2cG(x) ,

ψ(t, L) = ψ(0, L− ct) ,
ψ(t,−L) = 0 ,

(3.4)

with
φ(t, x) = v(t, x) , ψ(t, x) = w(t, x) ∀x ∈ [−L,L] . (3.5)

But, although we have two boundary conditions, in fact only one is necessary and
(3.4) is equivalent to

ϕ(t, x) = φ(t, x) + ψ(t, x), t ≥ 0, x ∈ [−L,L] ,
φt − cφx = 0 ,
φ(0, x) = 1

2f(x) + 1
2cG(x) ,

φ(t, L) = 0 ,
ψt + cψx = 0 ,
ψ(0, x) = 1

2f(x)− 1
2cG(x) ,

ψ(t,−L) = 0 ,

(3.6)

where both values φ(t,−L) and ψ(t, L) are provided for all times by the solutions.
Thus, we see that this formulation enables us to build the appropriate boundary
conditions to our original problem (2.1). Also, if the values of both v and w (or,
equivalently, φ and ψ) are known at the initial time, all references to both f or G
can be suppressed in this new problem.

3.2. Discrete level. At discrete level the new first order equations (3.1) and (3.2)
may be represented in different ways, either explicitly or implicitly, and some au-
thors have considered different approaches [1, 2]. If we want to have a scheme
that gives a similar accuracy as (2.17), we may choose a representation of the time
derivative given by the second order centered difference:

φn+1
l − φn−1

l

2∆t
. (3.7)

In the case of the spatial derivative, if we also use the centered second order repre-
sentation given by

φnl+1 − φnl−1

2∆x
, (3.8)

we end with the “leap-frog” numerical scheme, which is known to be unstable, a
property that rends it useless for our needs.

We start looking for a stable scheme. Let us consider the, so called, downwind
method:

φn+1
l − φnl

∆t
− c

φnl+1 − φnl
∆x

= 0 (3.9)

⇐⇒ φn+1
l = (1− γ)φnl + γφnl+1 . (3.10)
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It is stable provided 0 < γ ≤ 1. The inconvenient is that it is only first-order
accurate, instead of second-order as (2.17). But we see that only values at l and to
its right are needed. We represent the corresponding grid in Figure 2.

n+1
l

n
l

n
l+1

φ

φφ

Figure 2. Values needed to compute φn+1
l .

The standard second-order stable (for γ ≤ 1) numerical scheme is the Lax-
Wendroff method, given by

φn+1
l = φnl +

γ

2
(
φnl+1 − φnl−1

)
+
γ2

2
(
φnl+1 − 2φnl + φnl−1

)
, (3.11)

but it has the inconvenience of using values on the left side of l. In fact, most of
the good properties of this scheme (for instance, it is conservative) comes from the
fact that it has a symmetric disposition of the points it uses.

We may try to build a second-order scheme that only uses points to the right.
We have, for instance

φn+1
l =

2− 3γ + γ2

2
φnl + γ(2− γ)φnl+1 +

γ

2
(1− γ)φnl+2 , (3.12)

that has a truncation error

− γ 2− 3γ + γ2

6
∆x3 φxxx(t̃, x̃) . (3.13)

Although this looks fine, we have to understand that (2.17) being of second-order
implies that the truncation error in ϕn+1

l is O(∆x4), while it is only O(∆x3) for
φn+1
l . This is due to the fact of the continuous equation being of first order, and it

means that we need not a second-order scheme but a third-order one to obtain the
same kind of precision. For instance:

φn+1
l =

6− 11γ + 6γ2 − γ3

6
φnl +

6γ − 5γ2 + γ3

2
φnl+1

+
4γ2 − 3γ − γ3

2
φnl+2 +

2γ − 3γ2 + γ3

6
φnl+3 ,

(3.14)

with truncation error

− γ

24
(144− 264γ + 144γ2 − γ3) ∆x4 φxxxx(t̃, x̃) . (3.15)

This scheme is stable provided

0 < γ ,
6− 11γ + 6γ2 − γ3

6
≤ 1 , (3.16)

which is achieved if 0 < γ ≤ 1 (although there are other possibilities). We represent
the new grid in Figure 3.
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n+1
l

n
l

φ

φ φn φ φn n
l+1 l+2 l+3

Figure 3. Values needed to compute φn+1
l with the third-order

scheme (left side).

With such a numerical scheme, we may compute terms with no reference to any
left hand-side boundary condition. We may combine it with the usual (and much
simpler) method (2.17): we compute the values at time n+ 1 with (2.17) and then,
using (3.14) with l = `, the value on the left boundary at time step n+ 1.

In this way we have transparent boundary conditions at discrete level. A similar
approach can be used on the right boundary. Changing the sign of c (that is,
changing the sign of γ), φ by ψ and inverting the relative positions with respect to
l (which induces some changes in the underlying Taylor expansions), we end with:

ψn+1
l =

6− 11γ + 6γ2 − γ3

6
ψnl +

6γ − 5γ2 + γ3

2
ψnl−1

+
4γ2 − 3γ − γ3

2
ψnl−2 +

2γ − 3γ2 + γ3

6
ψnl−3 .

(3.17)

The corresponding grid is represented in Figure 4.

n n n
l

n+1
l

l−1l−2
n
l−3

ψ ψ ψ

ψ

ψ

Figure 4. Values needed to compute ψn+1
l with the third-order

scheme (right side).

In both cases, we have to assume that the only signal that is near each one of
these boundaries travels in the appropriate direction. We can ensure this choosing
L (and, thus, `) sufficiently far away from the initial support. If we rescale the
equations in order to have c = 1, the support is enlarged by one step in both space
directions for every step in time. Thus, we only use the auxiliary schemes when
ϕn−`+1 or ϕn`−1 are no longer zero.

By the way: if γ = 1 (3.14) and (3.17) become, respectively

φn+1
l = φnl+1 , ψ

n+1
l = ψnl−1 , (3.18)

and the solution is, again, exact up to round-off errors, as was the case of the
numerical method for the second order equation (see Section 2).
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3.3. Numerical simulations. The idea now is to simulate the solution to (2.1)
computing (2.17) and starting, for instance, with the exact initial data, and using
both (3.14) and (3.17) to compute the boundary values. For this, we choose a region
[−L,L] wide enough, such that when the perturbation reaches any of its two ends,
it is only the appropriate traveling wave that is seen there and, thus: ϕn−` = φn−`,
ϕn` = ψn` .

In the practical implementation, we may keep the values at both boundaries to
zero until the wave has arrived and compute from that moment the corresponding
values. Besides, only two data (those on the boundary) have to be computed, one
with (3.14) and one with (3.17), and, thus, the additional computational effort is
minimal: it is not necessary to keep extra variables nor to simulate new equations
in the whole spatial region.

Figure 5. Simulation of transparent boundary conditions for the
wave equation, c = 1, γ = 1

In Figure 5 we represent the simulation with c = 1, γ = 1 of the evolution of an
initial profile given by

u(t, x) =

{
1−cos(π(x−ct)/2)

4 + 1−cos(π(x+ct)/2)
4 , if 0 < |x− t| ≤ 1,

0 otherwise.
(3.19)

It corresponds to two similar traveling waves, one moving to the left, one to the
right. We see that there is no disturbance due to the boundary conditions and
the signal vanishes as it passes through the border. To check the influence of the
numerical errors, in Figure 6 we represent the evolution of the same profile but
simulated with c = 1/2, γ = 0.5 .

We see no difference in behaviour, although the number of iterations has doubled
(since the new step-time has been halved), and the signal leaves the central zone
with no effect caused by the border.

4. Spinor-like formalism

One-way wave equations are partial differential equation that permits wave prop-
agation only in certain directions. Engquist and Majda [4] derived a theory to
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Figure 6. Simulation of transparent boundary conditions for the
wave equation, c = 1/2, γ = 0.5

construct absorbing boundary conditions by factoring the wave equation

utt − c2uxx = 0 (4.1)

into two different one-way differential equations (for a detailed factorization see
[3, 1, 4, 5])

ut ± c
√
uxx = 0 , (4.2)

where
√
uxx represents a pseudo-differential operator that is not local in the space

variable. Due to this fact, this operator, in one and higher dimensions, must be
approximated using a wide variety of equations involving higher order derivatives
[5, 1, 6] and in some cases this give rise to an ill-posed boundary problem [7, 8].
More recently Ionescu and Igel [2] proposed a different factorization of the wave
equation valid only for spherical coordinates.

In 1928, in a completely different context, in order to avoid this complex formu-
lation, and in his search for a covariant expression of the Schrödinger equation [9],
Dirac proposed a matrix and vector (or spinor) formalism. In two dimensions it
amounts to look for matrices 2× 2, A and D, such that:

∂2

∂x2
− 1
c2
∂2

∂t2
=
(
A∂x +

i

c
D∂t

)2

= A2∂xx +
i

c
(AD +DA)∂tx −

1
c
D2∂tt.

(4.3)

To recover the wave equation from the previous expression, A and D must satisfy
the following algebra:

A2 = I,

D2 = I,

AD +DA = O.

(4.4)

Solutions are obtained taking A and D among the three Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (4.5)
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for instance:

A =
(

0 −i
i 0

)
, D =

(
1 0
0 −1

)
. (4.6)

This kind of ideas has been used in different contexts, resulting in interesting for-
mulations for differential models (see, for instance, [10, 11, 12]).

The method is very general and in principle it could be extended to decompose
differential operators of a least second order and it also could be applied to the
hyperbolic and parabolic problems in the spirit of computing general roots of an
operator indicated in [10]. A priori the main problem could be an algebraic one
associated to the implementation of a certain algebra as it is indicated in [10] with
the Silvester algebra. In this process a new differential equation is generated where
the unknown function now is multicomponent.

The decomposition of the differential operators can be used for nonlinear prob-
lems but in that case the boundary includes some border effects that cannot be
addressed directly by this linear approach.

We shall apply similar ideas in what follows to transform the wave equation
into a set of one-way differential equations. Choosing the representation for the
matrices, it is possible to decompose the problem into waves traveling in opposite
directions as is done with the other implementations.

We start by splitting the initial data of (2.1) into the components traveling to
the left and to the right, as given in the previous section, and define

U0(x) =
(
v0(x)
w0(x)

)
, U ′0(x) =

(
v′0(x)
w′0(x)

)
. (4.7)

We also define U , a two-component vector,

U(t, x) =
(
v(t, x)
w(t, x)

)
, (4.8)

with v and w two real functions. We shall show that they correspond to the left
and right traveling components of the solution of (2.1), when the following problem
is considered

Ut ± cMUx = O , t ≥ 0, x ∈ (−∞,+∞) ,

U(0, x) = U0(x) ,

Ut(0, x) = U ′0(x) ,
(4.9)

where O stands for the null vector and M is an involutory matrix, i.e., such that
M2 = I. We have that

u(t, x) = v(t, x) + w(t, x) , ∀t ≥ 0, ∀x ∈ (−∞,∞), (4.10)

with u(t, x) the solution of (2.1). Indeed, assuming U to be regular enough, on the
one hand we have

Ut ± cMUx = O → Utt ± cMUxt = O
⇐⇒ Utt ± cMUtx = O
⇐⇒ Utt − c2M2Uxx = O

⇐⇒
{
vtt − c2vxx = 0 ,
wtt − c2wxx = 0 ,

} (4.11)
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and on the other hand,{
v0(x) + w0(x) = f(x) ,
v′0(x) + w′0(x) = g(x) ,

}
⇐⇒

{
v(0, x) + w(0, x) = u(0, x) ,

vt(0, x) + wt(0, x) = ut(0, x) .

}
(4.12)

We see that equation (4.2) can be expressed using the Dirac-like equation of
the initial value and boundary problem (4.9),considering a two-dimensional real
quantity U(t, x) as the variable. Due to its transformation properties, and following
with the Dirac analogy, we may call it a spinor. We may now transform our original
problem (2.1) into (4.9). Since the sign that appears in the equation is irrelevant,
we have chosen a positive sign, and our “Dirac equation” for this case is, finally,

Ut + cMUx = O. (4.13)

Although our procedure looks different from (4.3) and (4.4), it can be shown to be
similar, just considering an appropriate M . For instance, if we chose A and D as
in (4.6), we have M = −iAD−1, a real involutory matrix.

Involutory matrices of dimensions 2× 2 are of two kinds: M = ±I or

M = ±
(
a β
δ −a

)
(4.14)

with βδ = 1 − a2. Choosing a specific matrix M is equivalent to fixing the Dirac
gauge. We shall consider in what follows only symmetric matrices, for sake of
simplicity. This supposes that, besides the somewhat trivial choices ±I, matrix M
is of the form

M =
(

sinα cosα
cosα − sinα

)
(4.15)

with α is some angle to be fixed if necessary. An involutory, symmetric, matrix is
orthogonal and we see that our choice of M corresponds to the matrix of a reflection.

Incident wave at x = −L. An incident wave at x = −L with negative wave
number is represented in this case by

UI =
(
a
b

)
ei(ωt+kx), k > 0. (4.16)

Such a wave induces, due to reflection at the boundary x = −L, a reflected plane
wave traveling backwards of the form

UR = T

(
a
b

)
ei(ωt+kx) +R

(
a
b

)
ei(ωt−kx), (4.17)

where T and R are, respectively, the transmission and the reflection coefficients.
It can be checked that at the boundary x = −L we have

∂xUR = ik(Te−ikL −ReikL)
(
a
b

)
eiωt,

∂tUR = iω(Te−ikL +ReikL)
(
a
b

)
eiωt.

(4.18)

Introducing (4.17) and (4.18) into (4.13) and setting x = −L, we obtain the linear
algebraic system

[ω(Te−ikL +ReikL)I − ck(Te−ikL −ReikL)M ]
(
a
b

)
= 0 . (4.19)
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This equation results from considering that the superposition of transmitted and
reflected waves coincides at the boundary and that the Dirac equation (4.13) holds.

Different representations of matrix M result in different equations. Trivial cases
are M = I, that gives the condition R = 0, and M = −I, that gives the condition
T = 0. These two cases are trivial since they correspond to the Dirac form of the
scalar square root of the wave equation and represent waves traveling in one single
direction. These cases are trivial but useless since what we want is to decompose
the wave packet into its left and right-traveling parts.

A nontrivial case arises when other possible forms of matrix M are used, and
the necessary condition for system (4.19) to have a nontrivial solution corresponds
to annihilate the determinant of its matrix,∣∣ω(Te−ikL +ReikL)I − ck(Te−ikL −ReikL)M

∣∣ = 0

⇐⇒ (ω2 − c2k2)(T 2e−2ikL +R2e2ikL) + 2RT (w2 + c2k2) = 0 .
(4.20)

Given the dispersion relation for the plane-waves,

ω2 = c2k2; (4.21)

this equation has two solutions, R = 0, T ∈ R, and T = 0, R ∈ R.
In the two trivial cases M = ±I, since the system has a diagonal matrix, all the

spinors are solutions of (4.19).
In other representations of matrix M , special spinors solutions can be found for

null values of T and R. These spinors are the “special directions” for the operators
“transmission” and “reflection”. If we look for spinors associated to every value of
the reflection coefficient obtained with the others realizations of matrix M , we have
for R = 0,

ΨT =
(
a
b

)
=
(

1
1−sinα

cosα

)
a , (4.22)

and for R = 1,

ΨR =
(
a
b

)
=
(

1
−1−sinα

cosα

)
a . (4.23)

Then matrix M can be diagonalized in the basis of vectors

B = {U1, U2}, U1 =
(
− cosα

sinα− 1

)
, U2 =

(
− cosα

sinα+ 1

)
, (4.24)

with canonical form

D =
(

1 0
0 −1

)
. (4.25)

It is possible to see that at x = −L, the component along vector U2 is not transmit-
ted to the left, while the component along U1 passes without distortion. We may,
in this way, obtain transparent boundary conditions at x = −L. Let us consider
our solution to (4.9). We decompose the vector in the basis B:

U = a1U1 + a2U2 ⇐⇒
(
a1

a2

)
= NU , N =

1
2 cosα

(
− sinα− 1 − cosα
sinα− 1 cosα

)
,
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and we can establish the dynamics for each component:

(a1)tt − c2(a1)xx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

a1(0, x) = − sinα+ 1
2 cosα

v0(x)− 1
2
w0(x) ,

(a1)t(0, x) = − sinα+ 1
2 cosα

v′0(x)− 1
2
w′0(x) ,

(4.26)

and
(a2)tt − c2(a2)xx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

a2(0, x) =
sinα− 1
2 cosα

v0(x) +
1
2
w0(x) ,

(a2)t(0, x) =
sinα− 1
2 cosα

v′0(x) +
1
2
w′0(x) ,

(4.27)

or, in spinor form, if we define V = NU :

Vt + cDVx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

V (0, x) = NU0(x) ,

Vt(0, x) = NU ′0(x) ,
(4.28)

where

N−1 =
(
− cosα − cosα

sinα− 1 sinα+ 1

)
, (4.29)

and D = NMN−1 is the canonical form (4.25).
Finally we have

u(t, x) =
(
1 1

)(v
w

)
=
(
1 1

)
N−1

(
a1

a2

)
= −(1− sinα+ cosα)a1(t, x) + (1 + sinα− cosα) a2(t, x).

(4.30)

The special spinor problem (4.28) represents a pair of independent waves, a1(x, t) =
a1(x + ct) traveling to the left, and another a2(x, t) = a2(x − ct) traveling to the
right.

When the signal reaches the left boundary, the a1 component vanishes and if we
want the whole signal also to vanish to the left of −L, we may choose α = 2kπ or
α = 3π

2 + 2kπ, k = 1, 2, 3, . . .
The first choice (α = 2kπ, k = 1, 2, 3, . . .) corresponds to

M =
(

0 1
1 0

)
, (4.31)

which is equivalent to the coupled formulation of the wave equation

vt + cwx = 0
wt + cvx = 0.

(4.32)

In this case the basis of spinors is:

ΨT =
(

1
1

)
, ΨR =

(
1
−1

)
. (4.33)

For the second choice (α = 3π
2 + 2kπ, k = 1, 2, 3, . . . ), we particularize the

calculus for the case in which the waves are decomposed. By reformulating from
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the beginning we obtain the spinors:

ΨT =
(

1
0

)
a , (4.34)

and for R = 1,

ΨR =
(

0
1

)
a . (4.35)

Expressing now the spinor formalism for these new values, we obtain as matrix

M =
(
−1 0
0 1

)
. (4.36)

This uncouples the equations into two one-dimensional wave equations, that are
just the ones treated in Section 3.1. We thus see that the spinor formalism is a
natural way to decompose the original problem into its components and to obtain
the first-order differential equations we have used before. Numerical simulations
can then be performed using the Lax-Wendroff scheme with the third-order scheme
at the corresponding boundary end. In Figures 7 and 8, we have represented the
numerical solution for the left and right-traveling components (same initial values
as before): there are no reflections at the boundaries when the waves reach them.

Figure 7. Simulation of transparent boundary conditions for the
Dirac Equation, c = 1, γ = 1, left-traveling wave.

4.1. Incident wave at x = L. We treat now the case of the incident wave at the
opposite boundary. All the computations are similar to what is done Section 4, but
they involve an incident wave at x = L with positive wave number, represented by

UI =
(
a
b

)
ei(ωt−kx), k > 0. (4.37)

The reflected wave at the other boundary is now:

UR = T

(
a
b

)
ei(ωt−kx) +R

(
a
b

)
ei(ωt+kx), (4.38)
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Figure 8. Simulation of transparent boundary conditions for the
Dirac Equation, c = 1, γ = 1, right-traveling wave.

and at the boundary x = L we have

∂xUR = ik(−Te−ikL +ReikL)
(
a
b

)
eiωt,

∂tUR = iω(Te−ikL +ReikL)
(
a
b

)
eiωt.

(4.39)

We follow what was done in 4, and obtain at x = L the linear algebraic system

[ω(Te−ikL +ReikL)I − ck(−Te−ikL +ReikL)M ]
(
a
b

)
= 0 . (4.40)

Here again, different choices for the matrix M will result in different equations.
The trivial case M = I gives the condition T = 0 while the second trivial case,
with M = −I, gives the condition R = 0.

With some other form for matrix M we obtain non trivial cases. We annihilate
the determinant of system (4.40) to obtain a necessary condition for a nontrivial
solution:∣∣ω(Te−ikL +ReikL)I − ck(−Te−ikL +ReikL)M

∣∣ = 0

⇐⇒ (ω2 − c2k2)(T 2e−2ikL +R2e2ikL) + 2RT (w2 + c2k2) = 0 .
(4.41)

The two solutions are, as in the other boundary, R = 0 and T = 0.
In the two trivial cases mentioned above, M = ±I, all the spinors are solutions

of (4.40). In the nontrivial case, we have for R = 0:

ΨT =
(
a
b

)
=
(

1
−1−sinα

cosα

)
a , (4.42)

and for R = 1:

ΨR =
(
a
b

)
=
(

1
1−sinα

cosα

)
a . (4.43)

The basis of spinors in which M is diagonal is now

B = {U1, U2}, U1 =
(
− cosα

1 + sinα

)
, U2 =

(
− cosα

sinα− 1

)
, (4.44)
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and the canonical form is

D =
(
−1 0
0 1

)
. (4.45)

At x = L, the component along vector U2 is not transmitted to the right, while the
component along U1 passes without distortion, which correspond to the transparent
boundary conditions at x = L. Decomposing the solution to (4.9) in this new basis,
we have

U = a1U1 + a2U2 ⇐⇒
(
a1

a2

)
= NU , N =

1
2 cosα

(
sinα− 1 cosα
−(1 + sinα) − cosα

)
.

The dynamics for each component corresponds to

(a1)tt − c2(a1)xx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

a1(0, x) =
sinα− 1
2 cosα

v0(x) +
1
2
w0(x) ,

(a1)t(0, x) =
sinα− 1
2 cosα

v′0(x) +
1
2
w′0(x) ,

(4.46)

and to
(a2)tt − c2(a2)xx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

a2(0, x) = −1 + sinα
2 cosα

v0(x)− 1
2
w0(x) ,

(a2)t(0, x) = −1 + sinα
2 cosα

v′0(x)− 1
2
w′0(x) .

(4.47)

Represented in spinor form, with V = NU , this gives

Vt + cDVx = 0 , t ≥ 0, x ∈ (−∞,+∞) ,

V (0, x) = NU0(x) ,

Vt(0, x) = NU ′0(x) ,
(4.48)

where

N−1 =
(
− cosα − cosα

1 + sinα sinα− 1

)
, (4.49)

and D = NMN−1 is the canonical form (4.45).
Although this looks exactly the same as (4.28), it is necessary to point out that,

here, the diagonal matrix D is the opposite to (4.25). Also, the matrix N and its
inverse N−1 have changed. This is clearly seen in our final representation of the
solution

u(t, x) =
(
1 1

)(v
w

)
=
(
1 1

)
N−1

(
a1

a2

)
= (1 + sinα− cosα) a1(t, x)− (1− sinα+ cosα) a2(t, x).

(4.50)

The interpretation is now that problem (4.48), in spinor form, represents a pair
of independent waves, a1(x, t) = a1(x + ct) traveling to the right, and another
a2 = a2(x − ct) traveling to the left. Such that when the signal reaches the right
boundary, the a1 component is lost. If we want the whole signal to vanish to the
right of L, we may choose α = π

2 + 2nπ or α = π + 2nπ, n = 1, 2, 3, . . .
As before, if we choose α = π

2 +2nπ, n = 1, 2, 3, . . . , it is necessary to reformulate
the spinors:

ΨT =
(

0
1

)
)a , (4.51)
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and for R = 1,

ΨR =
(

1
0

)
a . (4.52)

With the new spinors, matrix M is now

M =
(

1 0
0 −1

)
. (4.53)

Once again, this uncouples the equations into two one-dimensional wave equations,
that are just the ones treated in Section 3.1.

The other values of α = π+2nπ, n = 1, 2, 3, . . . , give raise, again, to the coupled
formulation for the wave equation

vt − cwx = 0
wt − cvx = 0,

(4.54)

with the same spinors ΨT and ΨR written in (4.33).

5. Wave equation in three dimensions with radial symmetry

Figure 9. Computation of U(t, r) with a transparent boundary
condition at r = 10.

Let us consider the wave equation in three dimensions with radial symmetry.
We have

utt − c2∆u = 0 ⇐⇒ utt − c2
1
r2

∂

∂r

(
r2ur

)
= 0

⇐⇒ utt − c2
(
urr +

2
r
ur
)

= 0 .
(5.1)
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Figure 10. Computation of u(t, r) with a transparent boundary
condition at r = 10.

Performing the change: U = ru, we have

Utt − c2Urr = 0 , (5.2)

and we may use the previous results in one spatial dimension to create the corre-
sponding transparent boundary conditions. If we consider an initial value problem
with radial symmetry, we can express it in terms of the new function as:

utt − c2
(
urr + 2

r ur
)

= 0 ,
t ≥ 0, r ∈ [0,+∞) ,
u(0, r) = f(r) ,
ut(0, r) = g(r) ,

 ⇐⇒

Utt − c2Urr = 0 ,
t ≥ 0, r ∈ [0,+∞) ,
U(0, r) = rf(r) ,
Ut(0, r) = rg(r) ,

 (5.3)

In this case, if we suppose that the initial data is regular at he origin, and thus
that ∀t, ur(t, 0) = 0 due to the radial symmetry, we have a left boundary condition
given by

U(t, 0) = lim
r→0

ru(t, r) = 0, ∀t . (5.4)

On the other hand, since

Ur(t, r) = u(t, r) + rur(t, r), (5.5)

we have, also by the regularity of the functions,

Ur(t, 0) = lim
r→0

(
u(t, r) + rur(t, r)

)
= u(t, 0), ∀t . (5.6)

This may be used to reconstruct u(t, r) from U(t, r) at r = 0, since this value cannot
be obtained directly inverting the change. Some other conditions can be derived
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for the derivatives of U at r = 0. For instance,

Ut(t, 0) = 0 , Urr(t, 0) = 0 , Utt(t, 0) = 0 ∀t .

In this radial symmetry case, the waves can only travel towards the right from the
origin r = 0, but this does not exclude the possibility of the initial data having
some traveling component moving leftwards, towards the origin. Nevertheless, if
the initial data is of compact support, after some time all the signal will be traveling
to the right of the origin. We may thus establish a transparent boundary condition
at some suitable distance.

As for the numerical simulations, we may use the previous schemes, (2.17) for
the general case with a left boundary condition at the origin, and (3.17) at the right
boundary.

In Figures 9 and 10 we represent, respectively, the profiles of U and u for the
initial data,

u(t, r) =

{
1−cos(π(r−ct)/2)

4 − 1−cos(π(r+ct)/2)
8 , if 0 < |r − t| ≤ 1,

0 otherwise.
(5.7)

computed with c = 1 and γ = 1. This last figure shows the decay in the amplitude
of the solution as the signal travels away from the origin.

It is clear that we may also apply the spinor formalism of Section 4 to equation
(5.2) and achieve the same results but under the alternative formulation.
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