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DIGITAL ELEVATION MODELING VIA CURVATURE
INTERPOLATION FOR LIDAR DATA
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Abstract. Digital elevation model (DEM) is a three-dimensional (3D) rep-

resentation of a terrain’s surface – for a planet (including Earth), moon, or

asteroid – created from point cloud data which measure terrain elevation. Its
modeling requires surface reconstruction for the scattered data, which is an

ill-posed problem and most computational algorithms become overly expen-

sive as the number of sample points increases. This article studies an effec-
tive partial differential equation (PDE)-based algorithm, called the curvature

interpolation method (CIM). The new method iteratively utilizes curvature

information, estimated from an intermediate surface, to construct a reliable
image surface that contains all of the data points. The CIM is applied for

DEM for point cloud data acquired by light detection and ranging (LiDAR)
technology. It converges to a piecewise smooth image, requiring O(N) opera-

tions independently of the number of sample points, where N is the number

of grid points.

1. Introduction

Point clouds are gained by scanning three-dimensional (3D) objects using var-
ious measuring techniques. The point cloud represents the set of points, each of
which is defined by (x, y, z) coordinates. Point clouds are used for many purposes,
including 3D computer-aided design (CAD) modeling for manufactured parts (re-
verse engineering), meteorology/quality inspection, visualization, animation, mass
customization applications, and geosciences [11, 24]. In applications, point clouds
are usually converted to polygon mesh or triangle mesh models, NURBS surface
models, or CAD models through a process commonly referred to as surface recon-
struction.

There are many techniques for surface reconstruction. Some approaches build
a network of triangles over the existing vertices of the point cloud (Delaunay tri-
angulation, marching triangles [12], and ball-pivoting [3]), while other approaches
convert the point cloud into a volumetric distance field and reconstruct the implicit
surface through a marching cubes algorithm [13]. However, in practice, the most
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cited are polynomial interpolation such as nearest-neighbor, linear, and cubic meth-
ods [16, 23] due to their simplicity; these methods are easy to implement, but offer
only low-quality results. Inverse-distance methods [21] are also used, although they
are computationally expensive and become impractical as the number of samples
increases. Another common interpolation model for point cloud data is the method
of thin-plate splines, which is based on radial basis functions [22]; the method is
hard to be practical due to a high computational complexity. See [7, 10] for efforts
for the reduction of computational complexity of the method. In light detection
and ranging (LiDAR) data processing, a frequently-used interpolation algorithm is
the inverse-distance weighting (IDW) method [21].

Surface (image) reconstruction from point cloud (arbitrarily sampled) data is a
challenging problem particularly when no constraint is imposed on their locations.
The problem is ill-posed, first of all, and numerical methods solving its optimization
formulation become overly expensive as the number of sample points increases [1, 2].
Furthermore, it is often the case that the constructed image is not an interpolator
but an approximator, i.e., the reconstructed surface may not include all the data
values.

In this article, the authors are interested in a novel PDE-based method called
the curvature interpolation method (CIM), for surface reconstruction of terrain
elevation data acquired by LiDAR technology. The new method utilizes a curvature
information which is estimated from an intermediate surface of the point cloud data
and plays a role of driving force for the construction of a reliable image surface. It
is often the case that the constructed image surface does not contain all of the data
values due to the estimated curvature. However, the misfit can be corrected by a
recursive application of the CIM. The CIM is first studied for image zooming by one
of the authors; see [5] and [15]. It has been verified that the CIM shows a minimum
oscillatory behavior, and yet it results in piecewise smooth images containing all
the data values.

The article is organized as follows. The next section briefly reviews the CIM and
its recursive application, as preliminaries. Section 3 presents our digital elevation
modeling strategies including an effective method for the reduction of Moiré effect
inheritent in LiDAR data. Section 4 gives a set of numerical experiments, showing
effectiveness of the suggested algorithm. At the end of this section, we summarize
and conclude our experiments.

2. Preliminaries

This section presents a brief review for the curvature interpolation method (CIM)
studied for image zooming [5, 15].

2.1. Curvature interpolation method (CIM). Image zooming is a processing
task to enlarge images by applying interpolation methods. The CIM was a PDE-
based model; it begins with a selection of a curvature-related term which is to be
estimated from the low resolution (LR) image, interpolated to the high resolution
(HR) image grid, and incorporated as a driving force for the construction of HR
image. PDE-based models that employ the (mean) curvature itself as the smoothing
operator (e.g., the total variation (TV) model [20]) are known to have a tendency
to converge to a piecewise constant image [6, 17]. Such a phenomenon is called
staircasing. Thus the curvature would better be replaced by a more effective and
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convenient operator K. In [15], the authors adopted the following gradient-weighted
(GW) curvature

K(u) = −|∇u|∇ ·
( ∇u
|∇u|

)
. (2.1)

Let Ω and Ω̃ be the original LR image domain and its α-times magnified HR
image domain, α > 1, respectively. Let Ω̂0 denote the set of pixel points in Ω̃ which
can be expressed as αp, where p is a pixel point in Ω. Then the CIM [15] can be
outlined as follows.

(I) Compute the GW curvature of the given LR image v0:

K = K(v0) on Ω. (2.2)

(II) Interpolate K to obtain K̂ on Ω̃.
(III) Solve, for u on Ω̃, the following constrained problem

K(u) =
1
α2
K̂ u|bΩ0 = v0. (2.3)

In the above algorithm, the GW curvature measured from the LR image is inter-
polated and incorporated as an explicit driving force for the same GW curvature
model on Ω̃. The driving force would help the model construct the HR image more
effectively, enforcing the resulting image to satisfy the given curvature profile.

However, because the involved interpolation operations, the constructed surface
(the solution of (2.3)) may have image values different from those in the corre-
sponding LR grid points. A natural remedy for this drawback is to update image
values iteratively by utilizing the difference between the LR image and the last
updated image in the LR grid (misfit).

2.2. CIM with iterative refinement. When the CIM is applied for image zoom-
ing as in §2.1, the curvature of the LR image is first computed and then interpolated
for an approximation of the curvature of the HR image. Such an approximated cur-
vature shows a reasonable accuracy so that the CIM in each iteration can produce
a reliable correction term to update the image surface. In image zooming, the given
image may be viewed as an LR approximation of the target HR image. However,
the case is quite different for the surface reconstruction for point cloud data, be-
cause the data loci are nonuniform and it is hard to estimate the curvature. Thus
we first have to introduce an efficient scheme to estimate the surface and its cur-
vature. As a strategy, we will construct an intermediate surface, from which useful
curvature information would be obtained.

Let Ω be the image domain and Ω0 the set of data pixels where image values
are initialized as v0. Our new surface reconstruction algorithm to be presented
below involves three major steps: the construction of an intermediate surface, the
curvature evaluation and smoothing, and surface reconstruction. When the re-
constructed surface does not contain all of the prescribed image values (v0), the
difference can be corrected by applying the procedure iteratively. The following
outlines our reconstruction algorithm.

Initialize u0 = 0, on the image domain Ω
Select the tolerance τ > 0
For k = 1, 2, · · ·
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(i) Compute the misfit on Ω0:

rk−1 = v0 − uk−1

(ii) If ‖rk−1‖ < τ , stop
(iii) Construct an intermediate surface φk:

−∆φk = 0, x ∈ Ω \ Ω0

φk = rk−1, x ∈ Ω0

∇φk · n = 0, x ∈ ∂Ω

(2.4)

(iv) Evaluate Ak and Kk from φk:

Kk = Akφk ≈ K(φk)

(v) Smoothen Kk to get K̃k

(vi) Construct the correction surface wk:

Akwk = K̃k

(vii) Update:
uk = uk−1 + wk

Here v0 is the vector representation of the sampled data v0, rk−1 denotes the
misfit defined on the sample points Ω0, φk is an intermediate surface, a solution
of an interior point value problem of the Laplace equation, n denotes the unit
outward normal defined on the image boundary ∂Ω, and ‖ · ‖ is either L2 norm
or the maximum norm. The equation ∇φk · n = 0 is called the no-flux boundary
condition. The interior point value problem in (2.4)(iii) is incorporated for the
construction of an intermediate surface, due to its simplicity. See [9] for effective
computational methods including finite difference schemes, a smoothing strategy,
and algebraic solvers.

In this article, we apply (2.4) for digital elevation modeling for LiDAR point
cloud data; we call the algorithm the CIM with iterative refinement (IR-CIM).

3. Digital Elevation Modeling

3.1. LiDAR data acquisition. For the previous decade or so, the light detection
and ranging (LiDAR) technology has grown in popularity, meeting the need and
replacing conventional surveying techniques which are time-consuming and labor-
intensive [8, 14, 18, 19]. LiDAR data are acquired in a form of point cloud; heli-
copter or fixed-wing LiDAR systems scan the surface below the aircraft, collecting
reflected light signals in a scan rate of 50,000 to 100,000 pulses per second, achiev-
ing high accuracies up to 5cm, for most cases. Due to their high resolution and rich
information content, LiDAR data are utilized for a wide range of applications with
different requirements in terms of resolution, accuracy, and surface representation.
Applications include digital elevation model (DEM) topography, flood risk map-
ping, watershed analysis, coastal erosion analysis, landslides, tree canopy analysis,
transmission line mapping, and urban applications [4]. LiDAR is an active remote
sensing technique, analogous to radar, but using laser light.

See Figure 1, which depicts a schematic illustration of LiDAR data acquisition,
along with the aircraft trajectory and the LiDAR scan coverage for a field survey
over Mississippi farms near Mississippi State University (MSU), May 12, 2011.
LiDAR instruments built on an aircraft measure the round-trip time for a pulse
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(a) (b) (c)

Figure 1. LiDAR data acquisition: (a) a schematic illustration
of data collection, (b) the aircraft trajectory for a field survey over
Mississippi farms near Mississippi State University, May 12, 2011,
and (c) one of the LiDAR scan coverages.

of laser energy to travel between the sensor and a target. This incident pulse of
energy (usually with a near-infrared wavelength for vegetation studies) reflects off
of canopy (branches, leaves) and ground surfaces and back to the instrument where
it is collected by a telescope. The travel time of the pulse, from initiation until
it returns to the sensor, provides a distance or range from the instrument to the
object. The acquired information is then transformed, with the aid of a minimum
of four GPS satellites, to obtain a 3D position fix. The individual data points are
collected to form a set of point cloud data. As one can see from Figure 1(c), the
data are collected with the scan strips overlapped, in order to densely cover the
scan area by cloud points.

(a) (b)

Figure 2. LiDAR soil survey over Mississippi farms near MSU:
(a) a missing gap in the point cloud data and (b) the elevation
surface processed by the IDW built in ArcMap.

3.2. Moiré patterns. DEMs derived from LiDAR techniques are growing in pop-
ularity as a tool for use in soil survey, in particular. This form of remotely sensed
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elevation data can serve multiple purposes, not the least of which is the visual
interpretation of landforms and soil parent materials.

However, as one can see from Figure 2(a), the data may involve missing gaps;
for which it is necessary to either perform extra rounds of data acquisition or in-
corporate a very effective interpolation algorithm for the reconstruction of reliable
elevation surfaces. Figure 2(b) depicts a elevation surface processed by the inverse-
distance weighting (IDW) method built in ArcMap. (ArcMap is one of state-of-the-
art geospatial processing programs.) In the figure, white regions are related to trees
and buildings and the ground elevation decreases in the SE direction. The parallel
features running in the SSW-NNE direction are processing artifacts involved dur-
ing the surface reconstruction of the data which have been acquired through scan
lines in the same direction with multiple overlapped scan strips. Thus the parallel
features are kinds of Moiré interference patterns. Contours and topographic pa-
rameters (gradients, curvatures) derived from such elevation surfaces must include
a noisy pattern; for most applications, they have been further processed (filtered,
smoothed), often manually, to make them suitable [19].

3.3. Correction strategy for Moiré effect. As aforementioned, it is a common
practice in LiDAR data acquisition that the data are collected with the scan strips
overlapped. However, due to various technical reasons, data sets obtained from
different scans covering the same overlapped area may have misfits in elevation
values. When these data sets are used without an appropriate correction, the
resulting surface may involve serious artifacts including oscillatory patterns.

Figure 3. A schematic illustration of LiDAR scan coverages. The
dash-dot lines (in blue) indicate the center of the scan strips and
the red bullets in the overlapped areas are check points.

The elevation misfits can be eliminated using local elevation averages that are
obtained from each of the data sets and measured over the overlapped scan areas.
For a simple presentation, we first assume that the scan coverages overlap maximum
twice as shown in Figure 3. In the figure, Si, i = 1, 2, 3, denote the scan strips, the
dash-dot lines (in blue) indicate the center of the scan strips, and Ci are points on
the center lines. The check points P12 and P23 represent centroids of overlapped
areas between the scans S1 and S2 and between S2 and S3, respectively. The data
correction begins with partitioning the overlapped areas and setting check points,
the two rows of red points shown in Figure 3. Then the average elevation values
on each of overlapped scan strips are computed in a vicinity of the check points,
using the data values at pixels that are scanned and assigned from both sides of the
adjacent scan strips. If the average elevations obtained from the two different scan
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strips are different at the check points, the data on the two adjacent strips can be
adjusted piecewise linearly so that the resulting data sets have the same average
elevations at the check points.

Figure 4. A schematic illustration for data correction through
local elevation averages.

In Figure 4, we assume that the average elevation at P12 computed from S1

(E12) is larger than that from S2 (E21). Then the data elevation values in S1

and S2 can be corrected by adjusting the data values on half-strips linearly. For
example, assuming that

−−−→
C1C2 is parallel to the y-axis, the elevation values can be

adjusted as follows.
(x, y, z) ∈ S1 7→ (x, y, z′),

(x, y, z) ∈ S2 7→ (x, y, z′′),
(3.1)

where

z′ = z +
(E21 − E12)/2
p12,y − c1,y

(y − c1,y),

z′′ = z +
(E21 − E12)/2
c2,y − p12,y

(c2,y − y).

Here c1,y, c2,y, p12,y are the second coordinates of C1, C2, P12, respectively. Note
that when y = p12,y,

z′ = z + (E21 − E12)/2, z′′ = z + (E21 − E12)/2;

the corrections have the same magnitude from the both sides.
The algorithm for the elimination of Moiré patterns should also incorporate the

following concerns.
• Array of check points: The misfits, the differences of the average elevations on
overlapped areas, may differ when measured from different regions. Thus we have
introduced a line of check points in each of overlapped areas, aligned parallel to the
x direction, as shown in Figures 3. The Moire effects can be reduced effectively by
applying piecewise bilinear functions, as explained earlier in this subsection.
• Multiple overlaps: The scan coverages may overlap more than twice for some
regions; in practice, it is often the case that some regions are covered three times. In
this case, the array of check points should include more rows in the cross direction of
the scan flight (the y direction), in order to represent the misfits more appropriately.
For example, let the data overlap m times in the scan strip Sk. Then the misfit
correction function (MCF) for the data in Sk can be defined to be a polynomial of
degree at most m− 1 in the y direction. The MCF is still piecewise linear in the x
direction.
• Accuracy of MCFs: It is occasionally the case that data loci are distributed with
a largely varying density; the data may involve missing gaps. Thus, local elevation
averages obtained from raw data may not accurately represent the real elevation
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averages for some regions and therefore the MCFs can be erroneous. In order to
overcome the difficulty, we may consider the following strategy.

(i) Construct the surfaces for each of the scan strips using the IR-CIM (2.4).
(ii) Compute the local elevation averages using the elevation values from the

reconstructed surfaces.
(iii) Construct MCFs for each of overlapped strips.
(iv) Apply the MCFs to the reconstructed surfaces.
(v) Blend the corrected surfaces for a single surface covering the whole scan

area.
(vi) Improve the blended surface by applying the IR-CIM.

The final step is not expensive computationally, because the blended surface would
be a good approximation of the final result.

4. Numerical experiments

This section gives numerical examples to show effectiveness of the IR-CIM and
the Moiré-pattern reduction algorithm applied for DEM modeling. The 12 strips
of LiDAR point cloud data acquired over Mississippi farms near Mississippi State
University, as shown in Figure 1(c), are utilized for the modeling. The data set
includes approximately 37 million points counted including multiple arrivals.

Figure 5. Final image surface in 96 million pixels, covering a
region of 3km×2km square with a quarter-meter resolution.

Figure 5 depicts the final elevation image in 96 million pixels, which covers a
region of 3Km×2Km square with a quarter-meter resolution. In this study, the
Moiré effect is reduced using the elevation averages measured from the data, ap-
plying the formulas in (3.1). About 17% of the pixel values of the image can be
assigned directly from the elevation values in the data and other pixel values are
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computed using the IR-CIM (2.4). The algorithm (written in a combination of C
and C++) converges in 3 iterations, taking 67.2 seconds on a desktop computer for
the whole processing.

(a) (b)

Figure 6. Moiré effect and its correction.

Figure 6 shows image surfaces, shown in a prism view of 1cm resolution in
elevation, covering the region marked with a square (in red) in Figure 5. When the
data values are used without correction of Moiré effect, the reconstructed surface
involves oscillatory patterns as in Figure 6(a). On the other hand, our Moiré-effect
reduction algorithm has eliminated the oscillatory patterns effectively as depicted
in Figure 6(b). In the last image, Moiré effect is hardly observable even shown in
1cm resolution in elevation.

Figure 7. Correction of elevation values, shown on a vertical line
segment. The solid curve (in black) represents the corrected eleva-
tion values over an overlapped region of two scan strips.

To further investigate effectiveness of the suggested algorithm, we select a vertical
segment in the mid of the square-marked region in Figure 5 and compare elevation
values. In Figure 7, the dotted and dashed curves indicate elevation values obtained
from separate scan strips of an overlapped region, while the solid curve (in black)
represents the corrected elevation values over the overlapped region of the two scan
strips. As one can see from the figure, the elevation values are corrected using a
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locally linear correction function effectively, to result in a continuous and reliable
image surface.

Conclusions. Surface reconstruction from point cloud data is a challenging prob-
lem particularly when no constraint is imposed on their locations, as for LiDAR
data. This article has applied an effective PDE-based algorithm, called the curva-
ture interpolation method (CIM), for a set of LiDAR data acquired from a field
survey over Mississippi farms near Mississippi State University. For the reduction
of oscillatory patterns appearing over overlapped regions of scan strips, we have
introduced an effective misfit correction function (MCF) which is piecewise linear.
A recursive application of the CIM with the suggested MCF has converged in 3-4
iterations to produce reliable and piecewise smooth image surfaces that introduce
no Moiré effect, taking less than a second per million pixels on common desktop
computers.

Acknowledgments. H. Kim and S. Kim were supported in part by NSF grant
DMS-1228337.
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