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DIFFERENTIAL EQUATIONS OF DYNAMICAL ORDER

ANDREI LUDU, HARIHAR KHANAL

Abstract. We introduce a special type of ordinary differential equations

dα(t)x/dtα(t) = f(t, x(t))

whose order of differentiation is a continuous function depending on the in-
dependent variable t. We show that such dynamical order of differentiation

equations (DODE) can be solved as a Volterra integral equations of second

kind with singular integrable kernel. We find the conditions for existence and
uniqueness of solutions of such DODE. We present the numeric approach and

solutions for particular cases for α(t) ∈ (0, 2) and discuss the asymptotic ap-

proach of the DODE solutions towards the classical ODE solutions for α = 1
and 2.

1. Introduction

Complex systems experience properties of self-organization and collective be-
havior which cannot be modeled by local partial differential equations, even if such
equations involve strong nonlinearities. A complex system can change its dynam-
ics from chaotic to deterministic, from stable to unstable, or from state dependent
to process dependent. It is reasonable to assume that the changing behavior of a
complex system can be related to changes in the range and scale of the interactions
between its parts, in either space (locality), or time (memory). The changing of
dynamics involves unpredictable variations in the time-scales associated to system’s
dynamics, and possibly variable-memory dependence [5]. An example of change of
behavior is provided by the “punctuated equilibrium” phenomenon in evolution of
living systems. It consists in temporal islands of morphological stability punctuated
by rare bursts of evolutionary change [18]. More examples showing wide variability
of time scales can be found in transient population growth rates in variable envi-
ronments [11], memory dependent diffusion [3], stochastic processes and multiplex
networks described by higher-order Markovian processes[13] coupling of nonlinear
variable boundary conditions with nonlinear waves [12] boundary area and speed
of action in self-replicating clusters [19].

The degree of locality of the interaction in a complex system is modeled in a
differential equation by the order of differentiation. Higher orders of derivatives
with respect to position involve larger number of interacting neighbors to be taken
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into account. A system with memory, on the other hand, can be modeled by
integro-differential equations, and the integral kernel controls the memory range.
Longer memory can be obtained by taking higher order of iterated integrals. The
new concept of variable order of differentiation could be an alternative for modeling
such types of systems with variable ranges of locality or memory. Continuous order
of differentiation was considered for complex systems through the fractional calculus
[8], while the research for systems with time-dependent or variable-dependent order
of differentiation is still in the stage of infancy [4, 14, 15, 17]. In the following, we
introduce a new type of differential equation with dynamical order of differentiation
(DODE) in the form

L
[
f(t, x), x′, . . . , x(n),

dα(t,x)

dtα(t,x)

]
= 0, (1.1)

where t ∈ R+ is the independent variable, x(t), x′ = x(1) = dx/dt, etc. the unknown
function and its derivatives, α and f arbitrary functions, and L a linear operator.
A common situation for (1.1) can be realized in the form of a time-dependent order
of differentiation dynamic equation

n∑
k=0

(
Ck(t)

dα(t)+kx

dtα(t)+k

)
= f(t, x), (1.2)

for some time-dependent coefficients Ck(t), with prescribed time dependence for the
variable order of differentiation through a given function α(t). Another situation
can occur in the form of a coupled ODE system

dα(t)x

dtα(t)
= L1[t, x, α]

dα(t)
dt

= L2[t, x, α],
(1.3)

where the dynamics of the variable order α(t) is coupled with the dynamics of the
x−variable.

The DODE approach can model complex systems exhibiting accelerated type of
dynamics, or systems revealing transitions from anomalous to normal states. Pop-
ulation dynamics, for example, was modeled by either hyperbolic growth, or power
laws, or double exponential laws. The most recent models based on traditional
piece-wise defined ODE predict an evolution law sustaining a transition from ex-
ponential behavior to criticality. In the present literature such types of modeling
challenges were solved by using free source terms in the dynamical ODE as power
laws. Such models artificially introduce higher order nonlinearities that increase the
difficulty of constructing existence and uniqueness criteria for solutions. Moreover,
such approaches are not expected to bring new qualitative changes in the dynamics
because the geometry of the ODE is not essentially changed by changing of the free
terms since the structure of the jet space for the ODE is invariant to the functional
dependence on nonhomogenous terms. It is known that the order of differentia-
tion changes the physical laws. The drag upon a submerged object changes from
inertia-less creep-flow (when force is proportional to the velocity) to Rayleigh drag
(force is proportional to acceleration). So the force term must change from the first
to the second time derivative when we accelerate a submerged object.

The paper is organized as follows: in the second section we introduce DODE
and their realization as fractional differential equations, and further on solve them
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as Volterra integral equations. In the third section, we analyze a DODE one-
dimensional model and find the existence and uniqueness criteria associated to
initial conditions. In the fourth section we present the numerical solutions for the
discussed DODE systems, and provide examples.

2. Dynamical order differential equation

In this section we introduce a DODE for a one-dimensional dynamical system
x(t) in the form

dα(t)x

dtα(t)
= Dα(t)x = f(t, x), (2.1)

where the real function α(t) describes the variable order of differentiation. The
most natural approach is to represent this DODE through the formalism of frac-
tional derivatives [9, 8, 16]. The generalization of differential calculus to non-integer
orders of derivatives can be traced back to Leibniz and Riemann. Since then, there
have been defined several types of fractional derivatives, in the sense of Riemann,
Liouville, Grünwald, Jumarie, or Weyl [1]. All these operators are non-local, hence
being suitable for modeling multiple scales, fractional differentiability, or for highly
irregular and nowhere differentiable functions [1]. The fractional derivatives and
fractional integrals have applications in visco-elasticity, feedback amplifiers, elec-
trical circuits, electro-analytical chemistry, fractional multipoles, neuron modeling
and related areas in physics, chemistry, and biological sciences [9, 16].

In the following, we extend the traditional definitions of fractional derivatives
and integrals to time-dependent orders. We introduce the time-dependent fractional
integration operator of order α : [t0,∞)→ (0, 1), t0 > 0 by

t0I
α(t)
t x(t) =

1
Γ(α(t))

∫ t

t0

(t− s)α(t)−1x(s)ds, (2.2)

where Γ is the Gamma function. We define the fractional derivative of variable
order by the following operator sequence

t0D
α(t)
t x(t) =

d

dt

(
t0I

α(t)
t

)
x(t), (2.3)

for α(t) ∈ (0, 1). When α is a constant this definition generates the Riemann-
Liouville fractional derivative [8]. The definition (2.3) can be generalized for higher
values of α(t) by

t0D
α(t)
t x(t) =

dm

dtm

(
t0I

m−α(t)
t

)
x(t), (2.4)

with α(t) ∈ (m − 1,m), m positive integer. The explicit expression of the time-
dependent Riemann-Liouville fractional derivative of order α(t) : R+ → [m− 1,m)
reads

t0D
α(t)
t x(t) =

dm

dtm
1

Γ(m− α(t))

∫ t

t0

x(s)
(t− s)α(t)−m+1

ds, (2.5)

again for any positive integer m. In all the following calculations the independent
variable will be t, and we also choose t0 = 0, without any loss of generality [6]. We
will skip the subscripts t0 = 0 and t from the expression of the fractional derivative.
It is straightforward to check that variable order fractional derivatives obey Leibnitz
rule, chain rule and can be used to develop multivariable Taylor series [8].
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When α(t) = α0 = const and x ∈ Cm(I), by applying consecutive integration
by parts in (2.5) we obtain the expression [1, 8]

Dα0 x(t) =
m−1∑
k=0

x(k)(0)tk−α0

Γ(k − α0 + 1)
+

1
Γ(m− α0)

∫ t

0

(t− s)m−α0−1x(m)(s)ds. (2.6)

The integral in the right hand side term represents the Caputo fractional derivative
of x(t), [1, 3, 8], and it can be obtained directly from the definition (2.4) by an
inverted sequence of operators

DCα0x(t) = Im−α0
dmx(t)
dtm

. (2.7)

From (2.6) for constant α0 one can verify that the fractional derivative converges
uniformly towards the integer order derivative when α0 approaches its domain lim-
its. For example if m = 1, α0 ∈ (0, 1) we have

lim
α0−>0+

Dα0x(t) = lim
α0−>0+

[ x(0)t−α0

Γ(1− α0)
+

1
Γ(1− α0)

∫ t

0

x′(s)
(t− s)α0

ds
]

= x(t),

as well as the right limit, after an integration by parts reads

lim
α0−>1−

Dα0x(t)

= lim
α0−>1−

[ x(0)t−α0

Γ(1− α0)
+
x′(0)t1−α0

Γ(2− α0)
+

1
(1− α0)Γ(1− α0)

∫ t

0

x′′(s)
(t− s)α0−1

ds
]

= x′(t).

However, (2.6) is not valid anymore when α(t) is not constant. We need to substi-
tute it with

Dα(t)x(t)

=
1

(α(t)− 1)Γ(1− α(t))

[ x(0)t−α(t)

Γ(1− α(t))
−DCα(t)x(t)

]
× α′(t)

Γ2(2− α(t))

[
Γ(2− α(t))DCα(t)−1x(t)

( 1
α(t)− 1

− Γ′(1− α(t))
Γ(1− α(t))

)
− L1 + x(0)t1−α(t)

( 1
α(t)− 1

+ ln t− Γ′(1− α(t))
Γ(1− α(t))

)]
,

(2.8)

where

L1 =
1

Γ(2− α(t))

∫ t

0

x′(s) ln(t− s)
(t− s)α(t)−1

ds

is a convolution with singular kernel. It is straightforward to verify that even in
the time-dependent order of differentiation case, (2.8), the fractional derivative has
the same asymptotic behavior limα(t)→0+ Dα(t) = 1 and limα(t)→1− D

α(t) = d/dt.
We mention that in definition (2.5) we always place the integer order time deriv-

ative in front of the whole expression, in the original Liouville and Riemann style,
[8], and the time dependence of the variable order is considered as a function of t
even inside the integral.

The Riemann-Liouville type of variable-order derivatives were proposed first time
in [17]. More exploring of the concept of variable and distributed order of integra-
tion and differentiation through fractional derivatives, and also the connection with
the memory of the process, were analyzed in [14]. In this report the authors use
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time and space dependence for the order of differentiation, and several examples of
such differential equations are solved by using Laplace transform method. Caputo
type fractional derivative of variable-order was developed in [4]. Since then, more
extended versions were reported, expansion formulas for the calculation of fractional
derivatives of variable order were proposed and applied to modeling explicit effects
of memory. The new types of variable order fractional derivative mentioned above
describe very good anomalous diffusion problems that could not been investigated
using the concept of integer of fractional constant order derivative. Application of
the variable order fractional derivative include population growth models, special
cases of viscoelasticity, complex transport process, and anomalous relaxation.

3. Existence and uniqueness of solutions

We introduce DODE through the theory of fractional differential operators.
There are several ways to introduce the fractional differential: Riemann-Liouville,
Caputo, Jumariè, Erdèly-Kober, Baleanu-Atangana, Caputo-Almeida, etc. [7, 6, 2]
and more recently [4, 14], each generating well-defined operators with convenient
properties. However, the introduction of fractional differential equations with ini-
tial conditions is of a more delicate problem, and its physical meaning is not fully
understood [2, 8]. Present approaches on initial problems in literature incorporate
classical derivatives of the initial data, as suggested first time in [3], and followed
by many other authors [2, 6], pretty much like in the case of initial value problems
with integer-order equations. The initial value problem for a DODE of variable
order α(t) with m ∈ Z+ has the form

Dα(t)
(
x(t)− Tm−1[x]

)
= f(t, x(t)),

x(k)(0) = xk, k = 0, 1, . . . ,m− 1,
(3.1)

for given initial data {xk ∈ R}k=0,...,m−1, with Tm−1[x](t) the Taylor polynomial of
order m− 1 for x(t), the source term f a continuous function f : R+×R→ R, and
the variable order of differentiation also a continuous function α : R+ → (m−1,m).

In our paper we study the case m = 1 with variable order of differentiation in
the range α ∈ (1, 2). According to the definition of fractional derivatives (2.5) and
(3.1) we have

Dα(t)
(
x(t)− x(0)− tx′(0)

)
=

d2

dt2
1

Γ(2− α(t))

∫ t

0

x(s)− x0 − sx1

(t− s)α(t)−1
ds

= f(t, x(t)).

(3.2)

By integrating twice with respect to t in (3.2) we have

1
Γ(2− α(t))

∫ t

0

x(s)− x0 − sx1

(t− s)α(t)−1
ds =

∫ t

0

F (τ)dτ, (3.3)

F (t) =
∫ t

0

f(s, x(s))ds. (3.4)

We multiply the right hand side of (3.3) with Γ(α(t)− 1)Γ(2− α(t)) at numerator
and denominator and express this product by the integral representation of the
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beta function B(α(t)− 1, 2− α(t)). By using Fubini theorem for iterated integrals
we can re-write the right hand side in (3.3) in the form

1
Γ(α(t)− 1)Γ(2− α(t))

∫ t

0

dσ

∫ 1

0

F (τ)
σα(t)−2

(1− σ)α(t)−1
dσdτ. (3.5)

The last two factors in the integrand in (3.5) can be re-written in the form (1 −
σ)1−α(t)σα(t)−2 = [t − τ − σ(t − τ)]1−α(t)[τ − τ + σ(t − τ)]−2+α(t)(t − τ) with the
help of a dummy variable t−τ . By the substitution s = τ +σ(t−τ), ds = (t−τ)dσ
and using Dirichlet formula we can write (3.3) in the form∫ t

0

ds

(t− s)α(t)−1

[
x(s)− x0 − sx1 −

1
Γ(α(t)− 1)

∫ s

0

F (τ)dτ
(s− τ)2−α(t)

]
= 0. (3.6)

It results that the fractional initial value problem in (3.1) is reducible to a Volterra
integral equation of second kind with singular integrable kernel, k(t, τ) = (t −
τ)α(t)−2, as long as α(t) ∈ (1, 2), in the form

x(t) = x0 + tx1 +
1

Γ(α(t)− 1)

∫ t

0

∫ τ
0
f(s, x(s))ds

(t− τ)2−α(t)
dτ. (3.7)

If α = const, (3.7) would reduce to a weakly singular Volterra integral equations
which can be studied in the general theory of integral equations with algebraic
singularity, or in the frame of fractional calculus. The major difference between our
case α(t) not constant, (3.7) and traditional singular Volterra equations, is that in
our case the kernel also depends on t− τ , but in addition it depends on t through
the variable order of differentiation of the original DODE, (3.1).

Any solution of (3.7) is a solution of the initial value DODE problem (3.1)
with m = 2, being represented by a continuous function x(t), t ≥ 0. In order to
compare solutions for (3.1) with the limiting traditional situations where α ∈ {1, 2}
is integer we notice that limα→2− D

α(t)(x(t)− x0 − tx1) = x′′(t) = f(t, x(t)). This
result represents the α→ 2− limiting solution for the ODE (3.1) and initial problem
x(0) = x0, x

′(0) = x1, f(0, x0) = 0.
For the lower limit α→ 1+ we use the integral equation version (3.7):

x′(t)− x1 → lim
α→1+

1
Γ(α(t)− 1)

∫ t

0

f(τ, x(τ))dτ
(t− τ)2−α(t)

= 0,

because f(t, x) is continuous on any compact [0, t], and hence upper bounded, and
because the corresponding kernel is integrable. This result represents the α → 1+

limiting solution for the ODE (3.1) x′(t)−x1 = f(t, x(t)) with x(0) = x0, f(0, x0) =
0.

The existence and uniqueness problem for the DODE (3.7) was not yet studied.
Only the qualitative study of fractional differential equation with constant frac-
tional order α0 ∈ (0, 1) were completed in literature. If the fractional derivative in
the fractional differential equation is of Riemann-Liouville type, some difficulties
may occur if one tries to follow the proof of existence, uniqueness and asymptotic
integration from the traditional theory of ODEs.

A way to surpass these existence and uniqueness difficulties is provided by using
integral inequalities and perturbation techniques. A Peano type local existence
theorem has been established and also a comparison principle for global existence
was presented. The weight of research was concentrated on studying the qualitative
theory for the case α ∈ (0, 1). For larger than 1 values for α the operators are the
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same, except for the left composition with an integer order derivative operator
(in front of the whole equation). In that, the existence and uniqueness theory of
solutions for initial value problems for fractional differential equation of various
orders was discussed by Samko [17].

Other procedures to investigate the qualitative properties of fractional differ-
ential equation consist in Weissinger’s work on generalized Banach Fixed Point
Theorem [6], the recent introduced Mittag-Leffler transcendental functions, or the
exponentially weighted Chebyshev norms introduced originally by Bielecki [7]. This
last direction was completed by establishing the global existence of solutions for
the integral equation resulting from a fractional differential equation for constant
α ∈ (0, 1) [2].

In the following, we use the procedure given in [15]. Namely, we generalize the
qualitative results from [2, 6] for the time-dependent α(t) order of DODE of type
(3.1) and (3.7). We follow the same pattern and introduce a Banach space endowed
with an exponentially weighted metric (the Bielecki metric), followed by the proof
that the integral operator in (3.7) is a contraction in this Banach space. With all
these prerequisites we have

Theorem 3.1. Providing that α(t) : R+ → (1, 2) is continuous, and fulfills the
condition that for all p ∈

(
2,mint≥0

{
1

α(t)−1 ,
1

2−α(t)

})
we have

sup
t≥0

Γ(1 + p(α(t)− 2))
Γ(α(t)− 1)

≤ +∞,

and f(t, x) : R+ × R→ R is continuous and satisfies

|f(t, x)− f(t, y)| ≤ G(t)|x− y|,

for all t ≥ 0, x, y ∈ R, where G(t) : R+ → R+ is a continuous function, then the
initial value DODE from (3.1) has a unique solution defined on R+.

Proof. It was proved above that the problem in (3.1) is reducible to the integral
problem in (3.7). Following [2, 15] and generalizing for time dependence of the
order of differentiation, α(t), we introduce the operator

T [x](t) = x0 + tx1 +
1

Γ(α(t)− 1)

∫ t

0

F (τ)dτ
(t− τ)2−α(t)

, (3.8)

F (t) =
∫ t

0

f(s, x(s))ds, (3.9)

acting T : C0(R+,R)→ C0(R+,R), and the function

h(t) = 1 + |T [x0 + tx1](t)|.

Let G(t) be the continuous function whose existence is secured by the hypothesis
of Theorem 3.1, and two real numbers p, q such that

1 < p < min
t≥0
{ 1
α(t)− 1

,
1

2− α(t)
} < 2

and 1
p + 1

q = 1. For any λ ∈ R such that

λ > pq
2

sup
t≥0

(Γ(1 + p(α(t)− 2))
Γ(α(t)− 1)

)q
, (3.10)
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we define the function

Hλ(t) = h(t) exp
(
t+

λ

q

∫ t

0

[h(s)G(s)]qds
)
. (3.11)

Next we build a linear space

B =
{
x ∈ C0(R+,R) : sup

t≥0

|x(t)|
Hλ(t)

< +∞
}
. (3.12)

We endow this space with a distance between any x, y ∈ B defined by

dλ(x, y) = sup
t≥0

{ |x(t)− y(t)|
Hλ(t)

}
.

We can show that dλ is a distance, it generates a Bielecki norm ‖ · ‖λ, (B, dλ) is a
complete metric space, and (B, ‖ · ‖λ) is and a Banach space. Next step is to prove
that T : B → B is a contraction for certain values of λ. We calculate

|T [x]− T [y]|

=
1

Γ(α(t)− 1)

∫ t

0

|f(s, x(s))− f(s, y(s))|
(t− s)2−α(t)

ds

≤ 1
Γ(α(t)− 1)

∫ t

0

G(s)|x(s)− y(s)|
(t− s)2−α(t)

ds

≤ 1
Γ(α(t)− 1)

∥∥ es

(t− s)2−α(t)

∥∥
Lp(0,t)

∥∥G(s)|x(s)− y(s)|
es

∥∥
Lq(0,t)

,

(3.13)

where we used the relation between p and q and the Hölder inequality for the Lp

norm ∥∥ es

(t− s)2−α(t)

∥∥
Lp(0,t)

=
(∫ t

0

eps

(t− s)p(2−α(t))
ds
)1/p

. (3.14)

By two consecutive changes of variable of integration s → σ = t − s, σ → u/p we
obtain for (3.14)

etp1− 1
p

Γ(α(t)− 1)

(∫ pt

0

e−uup(−2+α(t))p−p(α(t)−1)du
)1/p

≤ etp2− 1
p−α(t)

Γ(α(t)− 1)

(∫ ∞
0

up(α(t)−2)e−udu
)1/p

.

(3.15)

By using the integral representation of the Gamma function we can write expression
(3.15) in the form

etp2− 1
p−α(t)

Γ(α(t)− 1)
Γ1/p(p(α(t)− 2) + 2) ≤ etpqΓ(p(α(t)− 2) + 1)

Γ(α(t)− 1)
, (3.16)

and hence we found a function C(α(t), p) such that (3.14) becomes∥∥ es

(t− s)2−α(t)

∥∥
Lp(0,t)

≤ etC(α(t), t). (3.17)

For the second norm from (3.13), we can re-write it in the form(∫ t

0

[ d
ds

(eλ R s
0 h

q(τ)Gq(τ)dτ

λ

)] |x(s)− y(s)|q

Hq
λ(s)

ds
)1/q

≤
(
eλ

R t
0 h

q(τ)Gq(τ)dτ
)1/q

λ1/q
dλ(x, y).

(3.18)
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By combining (3.17) and 3.18, by noticing that the expression on the top of (3.18)
is Hλ(t)e−t, and by applying supt≥0 on the resulting inequality we have

dλ(T [x], T [y]) ≤
[
λ−1/q sup

t≥0
C(α(t), t)

]
dλ(x, y). (3.19)

Since λ fulfills the constraint in (3.10) and α(t) fulfills the supremum inequality
from the hypothesis of Theorem 3.1 we have

sup
t≥0

C(α(t), t)
λ1/q

< 1,

and thus (3.19) proves that the operator T is a contraction on B, and according
to the Brouwer Fixed Point Theorem it has one unique fixed point x(t). Since the
initial value problem (3.1) is equivalent with the integral equation (3.7), and since
this integral equation can be written in the form T [x](t) = x(t), the existence and
uniqueness of the fixed point for the operator T proves Theorem 3.1. �

We mention that the supremum condition from the hypothesis of Theorem 3.1
can be fulfilled even in the limit α(t)→ 0 because the denominator of the expression
approaches Γ(0+)→ +∞.

4. Numerical solutions and discussions

In the following we present the numerical solutions to the DODE (3.1) for a test
source term in the form f(t, x(t)) = −λx(t) which reads as

Dα(t)
(
x(t)− x(0)− tx′(0)

)
= λx(t), x(0) = x0, x′(0) = x1. (4.1)

Then (4.1) is reduced to the Volterra form (3.7) and is solved numerically. Writing
f(t, x(t)) = −λx(t) and g(t) = x0 + tx1, the (3.7) can be realized in the following
two different forms

x(t) = g(t) + λ

∫ t

0

(
K(t, s)

∫ s

0

x(u) du
)
ds (4.2)

and

x(t) = g(t) + λ

∫ t

0

k(t, s)x(s) ds (4.3)

with the kernels K(t, s) and k(t, s) defined as

K(t, s) = − 1
Γ(α(t)− 1)

(t− s)α(t)−2, k(t, s) = − 1
Γ(α(t))

(t− s)α(t)−1. (4.4)

The second form, (4.3), is a simplification of the first form, (4.2), and the equiva-
lence between them can be proved easily by using the Dirichlet formula for changing
the limits in a double integral. Generally, the Voltera equations of second kind are
solved by using some iterative techniques (resolvent kernel, successive approxima-
tion) or numerical integration [10]. With the singular kernels iterative methods are
not applicable here. Due to the presence of the unknown function x(t) inside two
integrals on the right hand side of (4.2), the simplified form (4.3) is preferred for nu-
merical integration. We approximate these equations employing simple quadrature
rules as described below.

We divide the interval of integration 0 ≤ s ≤ t into n equal subintervals of
width ∆s = tn/n, n ≥ 1, where tn is the end point we choose for t. Define
sj = j∆s, j = 0, 1, 2, · · · , n and ti = i∆s = si. Thus, x(ti) ≡ x(si). Since the
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integration stops at s ≤ t, we have k(ti, sj) = 0 for j > i. With this notation, using
the composite trapezoid rule, we write an approximation to (4.3) as x(t0) = g(t0)
and for i = 1, 2, · · · , n with j ≤ i

x(ti) = g(ti) + ∆s
2

(
k(t0, s0)x(s0) + 2

i−1∑
j=1

k(ti, sj)x(sj) + k(ti, si)x(si)
)

(4.5)

For (4.2) we use trapezoid rule for the inner integral and the Riemann (left sum)
approximation for the outer integral.

x(ti) = g(ti) + ∆s2
n−1∑
j=0

K(ti, sj)
(

1
2x(s0) +

j−1∑
k=1

x(sk) + 1
2x(sj)

)
, j ≤ i. (4.6)

First, we test the case α(t) = 2. With x0 = 2 and x1 = 1, we expect the
solution to (4.2) and (4.3) mimic the initial value problem of the second order
ODE x′′(t) = −λx, x(0) = 2, x′(0) = 1. The numerical solutions to the integral
equations and the exact solution of the ODE x(t) = 2 cos

√
λt + 1√

λ
sin
√
λt are

plotted together in Figure 1 and Figure 2. We observe in Figure 1 that for λ = 10π
and λ = 20π, both the integral equations solutions look similar (in “eye norm”).
The numerical solutions to (4.2) is not accurate for large values of λ as seen in
Figure 2. Solution from the simplified form (4.3) is found to be stable also for rapid
time variation with the large value of λ. Figure 3 (left) presents the case α(t) = 2
with λ = −10π, x(0) = 2 and x′(0) = 0. Here we obtained the exponential solution
x(t) = e

√
−λt + e−

√
−λt as expected.

Figure 1. Test comparison between the two forms of the integral
equations for α(t) = 2. Exact solution of second order ODE in
red, numerical solutions of the integral (4.2) in blue and (4.3) in
green with x0 = 2, x1 = 1, λ = 10π (left) and λ = 20π (right).
The simplified form (4.3) provides the correct (constant amplitude
sinusoidal behavior for constant order 2 of differentiation in the
equivalent ODE) result.

Next, we test the case with α(t) = 1. In this case we expect the solution
to follow exponential growth function x(t) = x0e

−λt, solution of the first order
ODE. Our integral equation formulation requires two values x0 and x1 to define
g(t) = x0 +x1t. Hence this case seems to be an “overdetermined system” imposing
two initial conditions for x(0) = x0 and x′(0) = x1 for the first order ODE. But the
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Figure 2. Test comparison between the two forms of the integral
equations for α(t) = 2 and higher frequency. Exact solution of
second order ODE in red, numerical solutions of the integral (4.2)
in blue and (4.3) in green with α(t) = 2, x0 = 2, x1 = 1, λ = 40π
(left) and λ = 1000π (right). The simplified form (4.2) provides
the correct result for rapid time variation, too.

numerical solutions behaves well in this case also. In Figure 4, the solutions from
(4.3) with λ = ±5π, x0 = 2 and x1 = 0 are presented. The solutions to the integral
equation for the positive as well as negative value of λ seemed to be consistent with
the solutions to first order ODE as expected.

Figure 3. Test comparison between the two forms of the integral
equations for α(t) = 2 and negative values of λ. Numerical so-
lutions to (4.2) in blue and (4.3) in green with x0 = 2, x1 = 0,
λ = −5π (left) and λ = −10π (right). Both the solution agree well
with the exact solution of the second order ODE in red.

The simplified (4.3) was found to approximate the VODE (4.4) well for the fixed
order of differentiation α = 1, 2. Finally, using (4.3), we explore the following types
of variation in α ∈ (1, 2).

(a) α(t) = 1 + t
(b) α(t) = 2− t
(c) α(t) = 1 + 1

2

[
1 + tanh

(
100

(
t− 1

2

))]
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Figure 4. Numerical solution to the integral equation a fixed dif-
ferentiation order α(t) = 1. Numerical solutions x(t) of (4.3) in
blue with x0 = 2, x1 = 0, λ = −5π (left) and λ = 5π (right). Both
the solutions agree well with the exact solutions of the first order
ODE in red.

(d) α(t) = 1 + sin(12πt)
The approximate solutions to the integral equation with linear increase in α(t) are
presented in Figure 4 and Figure 5. The solution with α(t) = 1 + t in Figure 4
starts with an exponential growth and becomes oscillating as α goes closer to 2.

Figure 5. The order of differentiation increasing linearly from 1 to
2. Solution x(t) of the integral (4.2) with λ = −10π, α(t) = 1 + t
and x0 = 2, x1 = 1. The solution develops from an exponential
grow in the beginning when α ∼ 1 towards oscillating solution in
the final stage when α ∼ 2.

The solutions with α(t) = 2− t in Figure 5 develops from oscillatory to exponen-
tial. In general, numerical solutions to (4.3) follows the expected traditional ODE
behavior of exact solutions for constant values of α.

To understand better the behavior of the solution during the transition moment
α : 1→ 2, and to be confident in the formulas and numerical procedure, we tested
a situation when α(t) is constant (either 1 or 2) and transits very fast, yet smooth
from 1 to 2 in a narrow neighborhood of a point in time. As expected results
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Figure 6. The order of differentiation dropping linearly from 2
to 1. The solution x(t) of the integral (4.3) with α(t) = 2 − t,
x0 = 2, x1 = 1 for λ = 2π (left) and λ = −2π (right). Both
the solutions are consistent with the exact ODE solution at the
limiting cases α→ 1+ and α→ 2−.

Figure 7. Very steep transition for the order of differentiation,
from 1 to 2, α(t) = 1 + 1

2

[
1 + tanh

(
100

(
t− 1

2

))]
. Solution x(t)

of the integral (4.3) with λ = −10π (left), λ = −50π (right) and
x0 = 2, x1 = 1. Far away from the transition point (t = 1

2 ) the
solutions have their regular behavior, and a new type of solution
showing a singular spike occurs at transition point.

presented in Figure 7 demonstrate that our numerical procedures can reproduce
situations when α is constant, and also provide an interesting transition of the
solutions between the two different regimes.

To verify the variable memory effect induced by variable order of differentiation,
we studied numerically the case when α(t) is an oscillatory function of time. The
results presented in Figure 7 show that the numerical solutions of the integral
equation x(t) follow the order of differentiation in the asymptotic limits as α(t)
oscillates between 1 and 2.
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Figure 8. Oscillating order of differentiation α(t) = 1+sin(12πt).
Solution x(t) of the integral (4.3) with λ = π (left) and λ = 5π
(right), x0 = 2, x1 = 1. Basically, the solution follows the order
of differentiation oscillating for 1 � α ≤ 2 and dropping to zero
(because λ > 0) for α < 1. The slower solution (left) has longer
memory and tends to lag behind α(t), while the fast variation
solution (right) is stronger locally dependent on the order.

5. Conclusions

In this paper we introduced a new type of ordinary differential equations (DODE)
whose order of differentiation is variable, and a function of the independent variable.
We defined this new equation and reviewed several physical situations in which such
variable order of differentiation can model a complex phenomenon. We show that
the DODE can be represented in terms of a generalization of fractional derivatives
whose order of differentiation are functions of the variables. We demonstrated that
solving a DODE reduces to finding the solution of a Volterra integral equation of
second kind with singular integrable kernel, and we proved a theorem of existence
and uniqueness of the solutions of DODE for some constraints applied to the vari-
able order of differentiation. We solved a DODE equation numerically by using
a specific numerical procedure and presented several examples for various laws of
variation of the order of differentiation α(t) with time. We note that the solution
is always delayed with respect to α(t) in a measure depending on the relative rate
of variation of the solution compared to the rate of variation of α(t). For example,
when α(t) evolves from 1 to 2, the solution is expected to change its behavior from
exponential to oscillatory, and this effect happens but lags the change of α. Another
issue that needs further study is the management of the initial conditions which
should change themselves in a smooth manner in synchronicity with the order of
differentiation.
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