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MODELING IMPACTS OF SOCIOECONOMIC STATUS AND
VACCINATION PROGRAMS ON TYPHOID FEVER EPIDEMICS

JONES M. MUTUA, COLIN T. BARKER, NAVEEN K. VAIDYA

Abstract. Typhoid fever is one of the most common endemic diseases in

tropical and developing countries. Socioeconomic gaps among the populations
in these countries may play a major role in the transmission and control of

Typhoid fever as well as in the effectiveness of vaccination programs. In this

study, we develop a mathematical model that describes impacts of socioeco-
nomic status and vaccination programs on the dynamics of Typhoid epidemics.

We establish that the global dynamics of Typhoid is determined by the basic
reproduction number, R0, which helps identify the socioeconomic condition

and vaccination program for successful mitigation of the disease. Using nu-

merical simulations of our model, we show that socioeconomic status plays a
significant role in Typhoid dynamics. We find that a low socioeconomic sta-

tus results in increased Typhoid cases and a higher R0 value. Furthermore,

increasing vaccination of the low socioeconomic population results in a lower
R0 value, lower Typhoid infections, and a lower disease prevalence. However,

both low and high socioeconomic class populations need to be targeted by

vaccination programs to achieve successful disease eradication.

1. Introduction

Typhoid fever is a well documented disease that affects mainly Southern Asia
[3, 13], Sub-Saharan Africa [1, 5, 6, 12], and most of other developing countries. It is
estimated that over 21 million Typhoid cases occur worldwide each year, with more
than half million annual Typhoid deaths, most of which occur in Africa [1, 6, 11, 12].
Several previous studies have assessed Typhoid epidemics and its treatment and
control strategies [4, 8, 9, 10, 13, 14]. Edward [4] explored the effects of education
as a potential means for eradication, while other studies [8, 9, 10] have used math-
ematical modeling to evaluate the impact of vaccines on controlling Typhoid fever.
Pitzer et al. [13, 14] studied the periodic impact of vaccination and water sanita-
tion methods, and concluded that vaccination alone does not fully clear the Typhoid
fever in a given population. While these studies significantly improve knowledge of
Typhoid epidemics and its control, much about its quantitative understanding still
remains unknown.

Corner et al. [3] observed that socioeconomic status plays an important role in
determining the burden of Typhoid fever. In particular, they show that people in
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lower socioeconomic class usually live near lakes, rivers and in environment with
poor sanitation, whereas people with higher socioeconomic status class usually live
further away from the water sources and in clean environment. Therefore, the living
styles governed by the socioeconomic status clearly put people with different socioe-
conomic categories into different levels of Typhoid burden. As indicated by Watson
and Edmunds [19], funding for vaccination programs, such as that from the World
Health Organization (WHO), are often limited, causing difficulty for such programs
to reach the entire susceptible population. In general, lower class individuals are
less educated, and thus less likely to have access to the vaccination programs. Com-
bined all these socioeconomic factors imply that high-class individuals have more
access to care, and thus are less likely to become infected and more likely to recover
quickly upon infection, compared to low-class individuals. Therefore, including so-
cioeconomic factors into the modeling of Typhoid epidemic dynamics is critical to
accurately evaluate prevention strategies, including vaccination programs.

In this study we develop a novel mathematical model to evaluate the effects
of socioeconomic status and vaccination programs on the spread of Typhoid. We
derive a formula for the basic reproduction number, and analyze how vaccination
of high-class and low-class populations affects the basic reproduction number. We
establish the local and global stability criteria of our model and compute the im-
portant epidemiological quantities, such as new infection and prevalence, over a
typhoid epidemic season.

2. Model formulation

We develop a model for transmission dynamics of Typhoid fever by incorporat-
ing socioeconomic status into the models based on previous studies [11, 13]. For
this, we divide the susceptible population into two classes: susceptible high- and
susceptible low-class, denoted by Sh and Sl, respectively. Both susceptible classes
may lead to infection (I) - either by person to person infection or by infection from
the bacteria in the environment (B). However, the rate at which the low-class sus-
ceptible individuals become infected is increased by a factor of k > 1 compared to
the infection rates βp (direct person to person) and βB (indirect through environ-
mental bacteria) of the high-class susceptible individuals. The infected individuals
either recover (R) at rate η or become asymptomatic carrier (C) at rate γ. Carriers
fully recover from typhoid bacteria at a rate of τ .

We assume that within one season (100 days) of Typhoid epidemic, individuals
moving from either high class to low class, or from low class to high class are
negligible. σh and σl denote the per capita rates, at which individuals from high-
class and low-class are vaccinated (V ). The vaccinated individuals lose effectiveness
at a rate of ω. Infected individuals and asymptomatic carriers produce bacteria
into the environment at per capita rates pi and pc, respectively. Bacteria in the
environment also grows logistically with a per capita rate r and carrying capacity
κ, and becomes non-infectious at a rate ξ.

We denote µ to be the natural mortality rate and let δ represent the mortality
rate due to Typhoid infection. The birth rate of the susceptible population for
high class and low class individuals is given by Λh and Λl, respectively. Table
2 provides the description of all model parameters along with the source of their
numerical values and Figure 1 provides a schematic diagram of the model. The full
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mathematical model can be given in a system of differential equations as follows:

dSh
dt

= Λh + ωV − (βpI + βBB + σh + µ)Sh,

dSl
dt

= Λl + ωV − (k(βpI + βBB) + σl + µ)Sl,

dV
dt

= σhSh + σlSl − (2ω + µ)V,

dI
dt

= (βpI + βBB)Sh + k(βpI + βBB)Sl − (δ + µ+ γ + η)I,

dC
dt

= γI − (µ+ τ)C,

dR
dt

= τC + ηI − µR,

dB
dt

= piI + pcC + rB
(
1− B

κ

)
− ξB.

(2.1)
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Figure 1. The model scheme.

3. Model Analysis

3.1. Feasibility. Note that from the system (2.1), the total human population, N ,
is given by

N = Sh + Sl + I + C +R+ V.

Also, since all parameters are positive, it can be shown that Sh(t) ≥ 0, and similarly
all other state variables are also non-negative.

Adding up all states yields that dN
dt ≤ Λ−µN , where Λ = Λh + Λl. This implies

that as t→∞, N ≤ Λ/µ. This shows that N(t) is ultimately bounded. Note also
that dB

dt ≤ piI+pcC+rB(1−B
κ ). Since I, C ≤ N ≤ Λ

µ , dB
dt ≤ (pi+pc)Λ

µ+rB(1−B
κ ).

As discussed in Mutua et al. [11], we can easily show that B is ultimately bounded.
Thus, the solutions of system (2.1) exist globally on the interval [0,∞) and the
model is mathematically well-posed.
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Table 1. Model parameter values

Parameter Definition
Parameter
Symbol

Parameter
Value

Source

Natural Birthrate (high class) Λh
168.12
day−1 Estimated

Natural Birthrate (low class) Λl
298.88
day−1 Estimated

Natural Mortality Rate µ
0.00004
day−1 [11]

Disease-induced Mortality δ
0.002
day−1 [11]

Rate of progression to carriers γ 0.04 day−1 [11]

Bacterial growth rate r
0.014
day−1 Estimated

Bacterial decay rate ξ
0.0645
day−1 Estimated

Rate of shedding into water sup-
ply from infected class pi

10 bacteria
per
individual
day−1

[11]

Rate of shedding into water sup-
ply from carrier class pc

1 bacteria
per
individual
day−1

[11]

Recovery rate from infection η
0.0657
day−1 [11]

Recovery rate from carriers τ
0.000315
day−1 [11]

Infection rate (person to person) βp
2.1397E-11
day−1 Estimated

Infection rate (bacteria to per-
son) βB

1.37E-09
day−1 [11]

Vaccination rate (high class) σh 0 day−1 Varied
over [0,1]

Vaccination rate (low class) σl 0 day−1 Varied
over [0,1]

Waning rate of vaccination effect ω
9.0411E-04
day−1 [10]

Modifier for infection rate for low
class k 1.25 day−1

Varied
over
[1,10]

Basic Reproduction Number R0 18.2 Computed

3.2. Basic Reproduction Number. The basic reproduction number, R0, is de-
fined as the average number of secondary infections caused by a single infectious
individual, introduced into the entire susceptible populations, during his or her
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infectious period. We calculated R0 for the system (2.1) using the next genera-
tion matrix method [18]. For the sake of simplicity in carrying out our analysis,
we assume that, in a short period of one Typhoid epidemic season, the vaccine
effectiveness does not wane (ω = 0). We, however, note that our computation
with ω 6= 0 did not make any noticeable change on the numerical values of the
reproduction number. System (2.1) has the following disease free equilibrium

E0 =
(

Λh
σh + µ

,
Λl

σl + µ
,

σhΛh
µ(σh + µ)

+
σlΛl

µ(σl + µ)
, 0, 0, 0, 0

)T
.

We now introduce the matrices

F =

βp(h1 + kh2) 0 βB(h1 + kh2)
0 0 0
pi pc r

 , V =

h3 0 0
−γ h4 0
0 0 ξ


where

h1 =
Λh

σh + µ
, h2 =

Λl
σl + µ

,

h3 = δ + µ+ γ + η, and h4 = µ+ τ.

Then, the basic reproduction number, R0, which is the spectral radius of the matrix
FV −1, is

R0 :=
1

2h3h4ξ

[
h2h4kξβp + Ψ4 +

√
Ψ1 − 2Ψ2 + 4Ψ3(h2k + h1) + Ψ2

4 − 2Ψ5

]
,

where

Ψ1 = (h2h4kξβp)2 + 2h2h1k(h4ξβp)2, Ψ2 = rh2h3h
2
4kξβp + rh1h3h

2
4ξβp,

Ψ3 = γh3h4pcξβB + h3h
2
4piξβB , Ψ4 = h1h4ξβp + rh3h4, Ψ5 = h1h3h

2
4rξβp.

3.3. Stability analysis. The following theorem follows from [18, Theorem 2].

Theorem 3.1. The disease-free equilibrium E0 of system (2.1) is locally asymptot-
ically stable if R0 < 1, and unstable if R0 > 1.

Furthermore, we are able to show that R0 can also provide the condition for the
global stability of E0. The global asymptotic stability of R0 is investigated using
the procedure previously implemented for typhoid model by Mutua et al. [11]. We
prove the global stability result in the following theorem.

Theorem 3.2. If R0 < 1, the disease-free equilibrium E0 of the system (2.1) is
globally asymptotically stable.

Proof. We define the spectral bound or the stability modulus of an n × n matrix
M , denoted by s(M), by s(M) := max{Re(λ) : λ is an eigenvalue of M}.

Using the equations for infectious compartments of the linearized system of (2.1)
at E0, we define the following matrix:

J =

[
βp

“
Λh
σh+µ

”
+ kβp

“
Λl
σl+µ

”
− (δ + µ+ γ + η) 0 βB

“
Λh
σh+µ

”
+ kβB

“
Λl
σl+µ

”
γ −(µ+ τ) 0
pi pc (r − ξ)

]
.

Clearly, J is irreducible and has non-negative off-diagonal elements. Then s(J) is
a simple eigenvalue of J with a positive eigenvector (see,e.g., [15, Theorem A.5]).
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Assume that R0 < 1. Then we have s(J) < 0 from the local stability result.
Thus, we can find a sufficiently small positive number ρ0 such that s(Jρ0) < 0 (see,
e.g., [7, Section II.5.8]), where

Jρ0 =

a11 0 a13

γ −(µ+ τ) 0
pi pc (r − ξ)

 ,
a11 = βp

( Λh
σh + µ

+ ρ0

)
+ kβp

( Λl
σl + µ

+ ρ0

)
− (δ + µ+ γ + η),

a13 = βB

( Λh
σh + µ

+ ρ0

)
+ kβB

( Λl
σl + µ

+ ρ0

)
is irreducible and has non-negative off-diagonal elements. From the first and the
second equations of the system (2.1), we obtain dSh

dt ≤ Λh − (σh + µ)Sh and dSl
dt ≤

Λl − (σl + µ)Sl. This implies that Sh(t) ≤ Ŝh(t) → Λh
σh+µ as t → ∞ and Sl(t) ≤

Ŝl(t)→ Λl
σl+µ

as t→∞. Then, it follows that there is a t1 > 0 such that

Sh(t) ≤ Λh
σh + µ

+ ρ0 and Sl(t) ≤
Λl

σl + µ
+ ρ0, ∀ t ≥ t1.

Now, from system (2.1), we obtain for t ≥ t1 that
dI

dt
≤ (βpI + βBB)

( Λh
σh + µ

+ ρ0

)
+ k(βpI + βBB)

( Λl
σl + µ

+ ρ0

)
− (δ + µ+ γ + η)I,

dC

dt
= γI − (µ+ τ)C,

dB

dt
≤ piI + pcC + (r − ξ)B.

Consider the auxiliary system

dÎ

dt
= (βpÎ + βBB̂)

( Λh
σh + µ

+ ρ0

)
+ k(βpÎ + βBB̂)

( Λl
σl + µ

+ ρ0

)
− (δ + µ+ γ + η)Î , t ≥ t1,

dĈ

dt
= γÎ − (µ+ τ)Ĉ, t ≥ t1,

dB̂

dt
= piÎ + pcĈ + (r − ξ)B̂, t ≥ t1.

(3.1)

Since Jρ0 is irreducible and has non-negative off-diagonal elements, it follows that
s(Jρ0) is simple and associates a strongly positive eigenvector ṽ ∈ R3 (see,e.g., [16,
Theorem A.5]). For any solution (Sh(t), Sl(t), V (t), I(t), C(t), R(t), B(t)) of (2.1)
with nonnegative initial value (Sh(0), Sl(0), V (0), I(0), C(0), R(0), B(0)), there is a
sufficiently large b > 0 such that (I(t1), C(t1), B(t1)) ≤ bṽ holds. It is easy to
see that G(t) := bes(Jρ0 )(t−t1)ṽ is a solution of (3.1) with G(t1) := bṽ. By the
comparison principle [16, Theorem B.1], it follows that

(I(t), C(t), B(t)) ≤ bes(Jρ0 )(t−t1)ṽ, ∀t ≥ t1.
Since s(Jρ0) < 0, it follows that

lim
t→∞

(I(t), C(t), B(t)) = (0, 0, 0).
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It then follows that the equations for Sh and Sl are asymptotic to the following
systems

dSh(t)
dt

= Λh − (σh + µ)Sh(t),

and
dSl(t)
dt

= Λh − (σl + µ)Sl(t)

and hence,

lim
t→∞

Sh(t) =
Λh

σh + µ
and lim

t→∞
Sl(t) =

Λl
σl + µ

,

by the theory for asymptotically autonomous semiflows (see, e.g., [17, Corollary
4.3]). These results, along with 3rd and 6th equations of the system (2.1), also
imply limt→∞ V (t) = σhΛh

µ(σh+µ) + σlΛl
µ(σl+µ) and limt→∞R(t) = 0. Thus, E0 is globally

asymptotically stable. �

4. Numerical Results

4.1. Base Case Scenario. We consider a base case without any vaccination pro-
grams, i.e. σh = σl = 0. Using the mathematical formula derived in section 3.2
and the parameter values in Table 1, we computed the basic reproduction number
for the base case to be R0 = 18.20. The computed reproduction number is consis-
tent with the previous estimate in Mutua et al. [11]. Based on our model, we also
calculated the total number of new Typhoid cases generated in a single epidemic
season (≈ 100 days) using the formula∫ 100

0

[(βpI(t) + βBB(t))Sh(t) + (kβpI(t) + kβBB(t))Sl(t)]dt.

In this formula, the integrand (βpI(t) + βBB(t))Sh(t) + (kβpI(t) + kβBB(t))Sl(t)
is the rate of new infection per unit time, and thus the integral of this rate over the
entire epidemic season gives the total new infections. Also for t = 0 to t = 100, we
calculated the Typhoid peak prevalence as percentage given by max{100(I+C)/N}.
Based on our simulations, we estimated approximately 2.6 million of new Typhoid
cases. During this epidemic, the peak prevalence reached is 22%.

4.2. Sensitivity to base case R0. To identify important parameters that affect
R0, we performed the sensitivity analysis by calculating the sensitivity index SX
given by

SX =
X

R0
.
∂R0

∂X
,

where X is a parameter whose sensitivity is sought. The larger the magnitude of
the number, the greater impact that parameter has on R0 and correspondingly,
the smaller the magnitude, the weaker the impact on R0. Also, the negative (or
positive) sensitivity value indicates whether the reproduction number decreases
(or increases) when the parameter is increased. The sensitivity result is shown
in Figure 2. Figure 2 suggests that while the rate of infection from bacteria and
the natural death rate have the largest impact on the basic reproduction number,
the parameter k, related to socioeconomic factor, also has significant impact on
R0. This shows that the socioeconomic factor can not be ignored while developing
prevention strategies.



70 J. M. MUTUA, C. T. BARKER, N. K. VAIDYA EJDE-2017/CONF/24

 

Figure 2. Sensitivity of Parameter Estimations to R0. The bar
corresponding to a parameter X represents the value of the sensi-
tivity index SX .

4.3. Effect of vaccination. We studied the effects of vaccination of high and
low class populations by varying the corresponding vaccination rates σh and σl,
respectively. Our results (Figure 3, left) show that increasing the vaccination rate
of only low class population, i.e. increasing σl with σh = 0, decreases R0 from
18 to 10, whereas increasing the vaccination rate of only high class populations,
i.e. increasing σh with σl = 0, decreases R0 from 18 to 15. While vaccinating
low-class population seems more effective on reducing R0, this result shows that
vaccination programs targeted at only one class of the population might not be
enough to avoid typhoid epidemics. However, increasing the vaccination rates of
both population classes simultaneously can bring the value of R0 below 1, thereby
avoiding the epidemics. Therefore both classes need to be taken into consideration
while designing proper vaccination programs.

Also, increasing the rate of vaccination of only high-class populations from σh = 0
to σh = 1 with σl = 0 fixed leads to a decrease in the total new infections by
nearly 1 million (from 2.6 million to about 1.6 million) (Figure 3, middle), while a
similar vaccination program targeted to low-class population only (i.e. increasing
σl from 0 to 1 with σh = 0 fixed) can decrease the new infection by 2 million
(from 2.6 million to about 0.5 million) (Figure 3, middle). These results again
suggest that vaccination programs which target the low-class population are more
effective towards reducing new Typhoid cases. As expected, vaccinating both classes
simultaneously can reduce the new infection to a negligible level. We also analyzed
the effects of vaccination on the peak prevalence reached during an epidemic season
(Figure 3, right) and found the similar results in the sense that vaccination programs
targeting low-class population produce lower peak of the disease prevalence. We
found that the peak prevalence dropped from 22% to 14% (an 8% drop) with
vaccination for only high-class, compared to 16% drop (from 22% to 6%) with
vaccination for low-class only. Again, vaccination of both classes brought peak
prevalence further down to below 4%.
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Figure 3. Effect of vaccination on R0 (left), the total new infec-
tions (middle) and the peak prevalence (right).

4.4. Effects of socioeconomic factor (k). Socioeconomic status impacts the
living standards, including access to important resources such as clean water among
others. To study the effect of variation of the socioeconomic status in the dynamics
of Typhoid, we can consider the parameter k in our model, which represents the
Typhoid infection rate exacerbated by the deteriorated situation in the low class
population. We let k vary from k = 1 (no effect of socioeconomic status) to k = 10.
We note that k = 10 is an arbitrary maximum and is chosen for the purpose of
demonstration. However, results for any value greater than k = 10 can similarly be
obtained using our model simulations. We also study how this effect of k is altered
when vaccination program is introduced. Specifically, we vary k at four levels of
vaccination: no vaccination (σh = σl = 0), vaccination of high class only (σh = 0.05
and σl = 0), vaccination of low class only (σh = 0 and σl = 0.05), and vaccination
of both high and low classes (σh = 0.05 and σl = 0.05).

4.4.1. Effect of k with no vaccination. In Figure 4 (left) we show the effect of k
on the reproduction number R0. In the absence of vaccination (σh = σl = 0), the
reproduction number grows from R0 = 18.2 to R0 = 44.0 when k is increased from
1 to 10. The effect of k on new Typhoid infections and the peak prevalence of
the disease is presented in Figure 4 (middle and right). We observe that with no
vaccination the total new infections grow rapidly from 2.6 millon to 4.5 million. As
k increases from k = 1 to k = 10 the peak prevalence grows to 41% from 20%.

4.4.2. Effect of k under high-class targeted vaccination. Simulating the model with
vaccination for the high class only (i.e. σh = 0.05, and σl = 0), we observe that
R0 increases from 13.5 to 43.0 (Figure 4, left). This change is almost the same
as the case with no vaccination discussed above, indicating that the effect of k
remains almost unaltered due to high-class targeted vaccines. However, the effect
of high-class targeted vaccination is greater on the total new infections and the
peak prevalence (Figure 4, middle and right). Our simulation results show that
on increasing k from 1 to 10, the total new infections over one Typhoid epidemic
season increase from 1.4 million to 3.8 million, and the peak prevalence rises from
12.7% to 38.9% (Figure 4).

4.4.3. Effect of k under low-class targeted vaccination. Simulating the model with
vaccination for the low class only (σh = 0, and σl = 0.05) we observe that R0

begins at nearly half of the base case (Figure 4, left) for k = 1. In this case, the
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reproduction number is hardly affected by the increase in the value of k (Figure 4,
left). On increasing k from 1 to 10, the total new infections grow from 0.7 million
to 2.9 million (Figure 4, middle), and the peak prevalence increases from 7.6% to
26.4% (Figure 4, right). Compared to high-class targeted vaccines, in the presence
of low-class targeted vaccines, increase in the total new infections and the prevalence
due to the socioeconomic factor k is smaller. Therefore, the effect of k is smaller in
the presence of low-class targeted vaccination program than the high-class targeted
vaccines.

4.4.4. Effect of k under both-class targeted vaccination. The effect of k on all of R0,
the total new infection and the peak prevalence becomes pronounced under both-
class targeted vaccination (σh = 0.05 and σl = 0.05). In this case (Figure 4, left)
we see that the basic reproduction number, R0, changes from 0.6 at k = 1 to 1.3 at
k = 10. Since an increase in k can cause R0 greater than 1, the socioeconomic factor
can be a determinant factor for the success of vaccination programs. Under both-
class targeted vaccination, on increasing k from 1 to 10, the total new infections
over one Typhoid epidemic season increases from 0.3 million to 2.3 million (Figure
4, middle). Similarly, the peak prevalence of the disease increases from 5% to 25.2%
when k increases from 1 to 10 (Figure 4, right).

Figure 4. Effect of socioeconomic factor (k) R0 (left), the total
new infections (middle), and the peak prevalence (right).

5. Conclusion

Typhoid fever continues to be a significant burden on populations in developing
countries, most of which are in Southern Asia and Sub-Saharan Africa. Here, we
present a novel deterministic mathematical model to study the impact of varying
socioeconomic status on Typhoid fever epidemics. Using mathematical analysis and
simulations of our model, we show how socioeconomic status and vaccination pro-
gram in combination impact the key features of Typhoid epidemics, including the
basic reproduction number, the new Typhoid cases, and the peak prevalence of the
disease. Given the significant effects of socioeconomic status on disease epidemic
outcomes revealed by our results, we recommend targeting both-class population
rather than the single-class population for developing Typhoid intervention strate-
gies including effective vaccination programs, even though the targeting low-class
population provides better outcomes than the high-class.
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