
International Conference on Applications of Mathematics to Nonlinear Sciences,

Electronic Journal of Differential Equations, Conference 24 (2017), pp. 115–121.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GEOMETRIC CRITERIA FOR INVISCID 2D SURFACE
QUASIGEOSTROPHIC EQUATIONS

RAMJEE SHARMA

Abstract. It remains an open question if all classical solutions of the inviscid
surface quasigeostrophic (SQG) equation are global in time or not. In this arti-

cle, this issue is addressed through a geometric approach. This article contains

three sections. The first section introduces the SQG equation, and presents
existing results along with open problems. The second section presents local

uniqueness and existence results of the SQG equations. Finally, the third sec-

tion presents several geometric criteria under which the solutions of the SQG
equation become regular for all time. The relation between the geometry of

the level curves and the regularity of the solutions is the central focus of this
part.

1. Surface quasigeostrophic equations

The surface quasigeostrophic (SQG) equations are evolution equations for scalars
which are carried by a fluid flow. The 2D SQG equations are given by

θt + u · ∇θ + κ(−∆)αθ = 0, ∇ · u = 0,

θ(x, 0) = θ0(x),
(1.1)

where θ = θ(x, t) is a scalar and x ∈ R2 or x ∈ T2, a periodic box. The quantities
κ ≥ 0 and α > 0 are parameters. The vector u = (u2, u2) is the velocity field and
u · ∇ ≡ u1

∂
∂x1

+ u2
∂
∂x2

. Since u is divergence free, there exists a stream function ψ
such that

u = (−∂x2ψ, ∂x1ψ).
The scalar θ is related to ψ through the relation

(−∆)1/2ψ = θ.

Using the notation Λ ≡ (−∆)1/2 and ∇⊥ = (−∂x2 , ∂x1), the velocity u can be
expressed in terms of θ as

u = ∇⊥Λ−1θ = (−R2θ,R1θ),

where R1 and R2 are the usual Riesz transforms. The fractional Laplacian (−∆)α

is defined through the Fourier transform as

Λ̂αf(k) = |k|αf̂(k). (1.2)
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Using (1.2) the velocity u in the Fourier space can be expressed in terms of θ as

û =
i(−k2θ̂, k1θ̂)

|k|
. (1.3)

Depending upon the values of κ and α, we classify the equation (1.1) in the following
categories.

When κ = 0, equation (1.1) is called inviscid SQG.
When κ > 0, equation (1.1) is called dissipative SQG.

The dissipative SQG is further divided into the following categories.

When α > 1/2, equation (1.1) is called subcritical SQG.
When α = 1/2, equation (1.1) is called critical SQG.
When α < 1/2, equation (1.1) is called supercritical SQG.

The SQG equations model the buoyancy, or potential temperature on the 2D hor-
izontal boundaries. These equations are derived through the quasigeostrophic ap-
proximations for non homogeneous fluid flow [4]. The original 3D quasigeostrophic
equations were first derived by Charney in the 1940s. They have been used in
describing the major features of large-scale fluid motion in atmosphere and oceans
[15, 17, 18]. On the 2D horizontal boundaries, the 3D quasigeostrophic equations
with uniform potential vorticity reduce to the SQG equations (1.1). The inviscid
SQG was derived by Blumen in 1978 [1], by Constantin, Majda and Tabak in 1994
[4] and by Pierrehumbert in 1995 [19].

The global regularity problem for the subcritical case was solved by Constantin
and Wu in [9]. If α > 1

2 , the dissipative term (−∆)αθ controls the nonlinear term.
In this case one can use energy type estimates to show that the solutions are global
in time [7]. If α < 1

2 , the dissipative term is not sufficient to control the non linear
term. This phenomenon makes the study of the long time behavior of the solution
much more difficult. So far for the long time behavior of the solutions in this case,
we have to rely upon the numerical results [4, 5]. Therefore, at a formal level, we
can see that α = 1

2 is a critical index. The critical case was solved by Kiselev,
Nazarov and Volverg [16] for the periodic cases, and by Caffarelli and Vasseur [2]
for the whole space. A more direct proof is given by Constantin and Vicol [6]. The
supercritical case was studied and partial results were obtained by Constantin and
Wu in ([10, 11]).

The study of these equations is important because of several practical reasons.
The inviscid SQG is useful in modeling the frontogenesis, the formation of strong
fronts between masses of hot and cold air [4, 18]. And also, due to its similarities
with the 3D Euler equations in many aspects [4], the study of inviscid SQG can
be very useful in the study of possible finite time singularities of 3D Euler and 3D
Navier-Stokes Equations. Moreover, the dissipative SQG with κ > 0 and α = 1

2 is
used in the studies of strongly rotating fluids [3].

The main mathematical issue concerning the SQG equation (1.1) is: Given
θ(x, 0) = θ0(x), which is smooth and becomes 0 at infinity, does the equation
(1.1) have a global classical solution? The global regularity issues for the super
critical case and the inviscid case are still open. This article focuses only on the
inviscid case.
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2. Local well-Posedness and Regularity Criteria

In this section we consider the inviscid SQG equation, namely equation (1.1)
with κ = 0, given by

θt + u · ∇θ = 0, ∇ · u = 0,

θ(x, 0) = θ0(x)
(2.1)

The following theorem guarantees the global existence of weak solutions of equations
(2.1).

Theorem 2.1. For a given θ0 ∈ L2
(
R2
)

or L2(T2), there exist a global weak
solution of (2.1)∫ T

0

∫
[θ(x, t)φt(x, t) + θ(x, t) u · ∇φ] dx dt+

∫
θ0(x)φ(x, 0) dx = 0

for smooth test function φ(x, t) and T > 0, where φ(x, T ) = 0.

This theorem was proved in the Ph.D. thesis of Resnick under the supervision
of Constantin [20].

We remark that whether or not weak solutions are unique is unknown.
Recently there has been significant progress in the studies of global regularity

of equation (2.1) under certain conditions in the topology of level set curves by
Constantin et al. [4], Cordoba et al. [12], and Hou et al. [13, 14]. However, the
global regularity issue has remained open in the general case.

The local existence results have been already proved for SQG equation (2.1) by
Constantin et al. [4]. More precisely, if the initial value θ(x, 0) = θ0(x) ∈ Hs(R2)
for some integer s ≥ 3, then there is a smooth solution θ(x, t) of equation (2.1)
that also belongs to Hs(R2) for each time, t, in a sufficiently small time interval,
0 ≤ t < T?. Furthermore, if T?, the maximal interval of smooth existence is finite,
i.e. T? <∞, then

|θ(·, t)|s →∞ as t↗ T?.

Theorem 2.2. Let θ0 ∈ Hs(R2) with s > 2 and T? < ∞. Then the interval
0 ≤ t < T? is a maximal interval of Hs existence of the solution of SQG equation
(2.1) if and only if ∫ T

0

|∇θ|L∞(s)ds→∞ as T ↗ T?.

3. Geometry of level curves and regularity

The main goal of this section is to predict or rule out the finite time singularity
of the solution of the inviscid SQG equations in certain geometric configuration of
the level sets. We first review a few concepts in the geometric theory on the inviscid
SQG equations which will be useful in our proofs later.

3.1. Particle trajectory. Given the velocity field u, the particle trajectory is
defined by

dX(a, t)
dt

= u(X(a, t), t)

X(a, 0) = a.
(3.1)

The existence for the ODE (3.1) is guaranteed by the following theorem.
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Theorem 3.1. Assume u ∈ C(R2 × [0, T )) or u ∈ C(T2 × [0, T )) and for each
t ∈ [0, T ),

|u(x, t)− u(y, t)| ≤ Lt|x− y|
for any x, y ∈ R2 (or T2). In other words u is uniformly Lipschitz. Then the ODE
(3.1) has a unique solution

X = X(a, t) ∈ C1([0, T )).

The incompressibility of the velocity field in equation (2.1) plays a very important
role in the regularity of the solution.

3.2. Level sets and tangent vector. Assume that θ is a classical solution of the
SQG (2.1) on [0, T ) and u is the corresponding velocity field. Then

x2 = f(x1, t)

is a level curve if
θ(x1, f(x1, t), t) = C (a constant),

where C is independent of x1 and t.

Lemma 3.2. Fix t ∈ [0, T ). If x2 = f(x1, t) is a level curve, then ∇⊥θ is tangent
to this curve.

Proof. The tangent vector to the level curve x2 = f(x1, t) at x = x1 is given by
(1, fx1(x1, t)). Then it suffices to show

∇θ · (1, fx1(x1, t)) = 0.

But this is easy to verify that

∂x1θ(x1, f(x1, t), t) + ∂x2θ(x1, f(x1, t), t)fx1(x1, t) = 0.

Here we used the fact θ (x1, f(x1, t), t) = C. �

We now develop a relationship between magnitude of the vector ∇⊥θ and the
geometry of the level sets using the incompressibility condition. First we prove a
technical lemma.

Lemma 3.3. Let

σ(x, t) =
∇⊥θ
|∇⊥θ|

be the unit tangent vector. Assume at a fixed time t > 0,∇⊥θ is C1. Let

A = {x ∈ R2 : ∇⊥θ 6= 0}.

Then at this time t, for any x ∈ A it holds

∂

∂s
|∇⊥θ|(x, t) = −(∇ · σ(x, t))|∇⊥θ|(x, t) (3.2)

where s is the arc length variable along the level set curve passing x. Furthermore,
for any y that is on the same level set as x (3.2) then gives

|∇⊥θ|(y, t) = |∇⊥θ|(x, t)e
R y

x
(−∇·σ)(s,t)ds (3.3)

as long as the level set segment connecting x and y lies in A, where the integration
is along the level set.
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Proof. From
∇⊥θ
|∇⊥θ|

= σ

we obtain ∇⊥θ = |∇⊥θ|σ. Since

∇ · ∇⊥θ = (
∂

∂x1
,
∂

∂x2
) · (− ∂θ

∂x2
,
∂θ

∂x1
) = − ∂2θ

∂x1∂x2
+

∂2θ

∂x2∂x1
= 0,

we obtain

0 = ∇ · ∇⊥θ = ∇ · (|∇⊥θ|σ)

= (|∇⊥θ|)(∇ · σ) +∇(|∇⊥θ) · σ

= (∇ · σ)(|∇⊥θ|) + (σ · ∇)(|∇⊥θ|)

Next, using σ · ∇ = ∂
∂s , we obtain

(∇ · σ)(|∇⊥θ|) +
∂

∂s
(|∇⊥θ|) = 0.

This implies
∂

∂s
(|∇⊥θ|) = −(∇ · σ)|∇⊥θ|.

Now integrating along the level set from x to y we obtain∫ y

x

∂
∂s (|∇⊥θ|)ds
|∇⊥θ|

= −
∫ y

x

(∇ · σ)(x(s), t)ds,

which is equivalent to∫ y

x

∂

∂s
ln(∇⊥θ|)ds = −

∫ y

x

(∇ · σ)(x, t)ds.

Form this we obtain

ln(|∇⊥θ|)(y, t)− ln(|∇⊥θ|)(x, t) = −
∫ y

x

(∇ · σ)(x, t)ds.

This gives
|∇⊥θ|(y, t) = |∇⊥θ|(x, t)e

R y
x

(−∇·σ)(x(s),t)ds.

�

Next we prove the main theorem on the geometric criteria of the level curve of
equations (2.1).

Theorem 3.4. Let Lt be a portion of the level curve in the solution of the inviscid
SQG equations (2.1) such that |∇⊥θ(x(t), t)| ≥ C|∇⊥θ(·, t)|L∞(R2). Assume that
for all t ∈ [0, T ) there is another point y(t) on the same level curve that contains
Lt such that the σ(x, t) = ∇⊥θ

|∇⊥θ| along a point x(t) ∈ Lt, and y(t) is well defined.
Furthermore, assume ∣∣ ∫ y(t)

x(t)

(∇ · σ)(x(s), t)ds
∣∣ ≤ C

for some absolute constant C, and∫ T

0

|∇⊥θ|(y(t), t)dt <∞.
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Then equation (2.1) has a classical solution up to time T . In addition, we have

e−C ≤ |∇
⊥θ(x(t), t)|

|∇⊥θ(y(t), t)|
≤ eC .

Proof. From 3.3 we have

|∇⊥θ(x, t)| = |∇⊥θ|(y, t)e
R y

x
(∇·σ)(s,t)ds.

Integrating the above equation from 0 to T we obtain∫ T

0

|∇⊥θ(x(t), t)|dt =
∫ T

0

|∇⊥θ(y(t), t)|e
R y

x
(∇·σ)(s,t)dsdt

≤
∫ T

0

|∇⊥θ(y, t)|e|
R y

x
(∇·σ)(s,t)ds|dt

≤ eC
∫ T

0

|∇⊥θ(y(t), t)|dt <∞.

(3.4)

Therefore, ∫ T

0

|∇θ|L∞(s)ds =
∫ T

0

|∇⊥θ|(x(t), t)dt <∞

Now by Theorem 2.2, there will be no finite time blow up until time T . �
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[10] P. Constantin, J. Wu; Regularity of Hölder continuous solutions of the supercritical quasi-

geostrophic equation, Ann. Inst. H. Poincare Anal. Non Lin., 25, (2008), 1103-1110.
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