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DISCRETE ALEKSANDROV SOLUTIONS OF THE

MONGE-AMPÈRE EQUATION

GERARD AWANOU

Abstract. We make two relaxations of the Oliker-Prussner method for the

Dirichlet problem for the Monge-Ampère equation. First we relax the convex-
ity requirement and consider mesh functions which are only discrete convex.

The second relaxation consists in using a finite stencil. The discrete nonlinear

equations are solved with a damped Newton’s method. We give two proofs of
convergence of the resulting scheme for right-hand side a density, on domains

which are convex and not necessarily strictly convex, under the assumption
that the boundary data has a continuous convex extension. The first proof is

based on the notion of Aleksandrov solution while the second uses viscosity

solutions.

1. Introduction

In this paper we prove the convergence of a finite difference scheme to weak
solutions, in the sense of Aleksandrov and in the sense of viscosity, for the Dirichlet
problem for the Monge-Ampère equation

detD2u = f in Ω

u = g on ∂Ω,
(1.1)

where f ∈ L1(Ω) ∩ C(Ω) is a non negative function and Ω is a convex bounded
domain of Rd with boundary ∂Ω. It is assumed that g ∈ C(∂Ω) can be extended
to a convex function g̃ ∈ C(Ω). The domain is not assumed to be strictly convex.

Problem (1.1) can be solved through polygonal approximations [28], i.e. with the
Oliker-Prussner method [27]. For recent developments on the discretization of (1.1),
we refer for example to [12, 23, 24]. The purpose of this paper is to present a tech-
nique which can be used to prove convergence of a class of approximations to (1.1)
when the domain is convex and not assumed to be strictly convex. As with [22], we
consider a method which is medius between the Oliker-Prussner method and finite
difference methods. It is relatively simpler to implement than the Oliker-Prussner
method, a possible advantage in three dimensions. This is achieved by relaxing the
convexity requirement on the approximate solutions. That relaxation leads to a
wide stencil scheme, which we further relax by using a finite stencil. The discrete
nonlinear equations are solved with a damped Newton’s method. Convergence of
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the method is first given in the setting of Aleksandrov solutions, using an equicon-
tinuity argument and a recent result [2] stating conditions under which the uniform
limit of discrete solutions satisfies the boundary condition strongly. The scheme
we analyze, leads to a set function that overestimates the discrete Monge-Ampère
measure defined through a discrete version of the subdifferential. This allows us to
use essentially the same tools as in the Aleksandrov theory of (1.1), c.f. [2].

Under the above assumptions, Aleksandrov solutions are equivalent to viscos-
ity solutions. The hallmark of the Barles-Souganidis approach for convergence to
viscosity solutions, is that no equicontinuity is used. Ingredients are stability, con-
sistency and monotonicity of the scheme. As well as a comparison principle for
Dirichlet boundary conditions in the sense of viscosity, which is not available for
the Monge-Ampère equation [10, 13, 18, 23, 25]. Here, using the equicontinuity
of the discrete solutions, and under the assumption that our scheme is (pointwise)
consistent, we obtain a uniform limit of discrete solutions which is shown to be a vis-
cosity solution of the equation satisfying the boundary condition strongly, hence is
unique by the comparison principle for boundary conditions imposed strongly. This
argument requires f to be integrable and is applicable to some other discretizations.

We also give some convergence results in the case where the right hand side is
a sum of Dirac masses instead of a positive density. However, in that case the
right-hand side becomes singular unlike in the case of the Oliker-Prussner method,
making the use of a damped Newton’s method for the relaxed scheme not feasible.
Nethertheless, these results could be useful for the analysis of schemes such as the
one in [7].

This article is organized as follows. In the next section we collect some notation
used throughout the paper, present and study the numerical scheme. Convergence
results are given in section 3. We finish with some numerical experiments.

2. Preliminaries

We use the notation ‖ · ‖ for the Euclidean norm of Rd. Let h be a small positive
parameter and let

Zdh = {mh : m ∈ Zd},

denote the orthogonal lattice with mesh length h. Let also (r1, . . . , rd) denote the
canonical basis of Rd. We define

Ωh = Ω ∩ Zdh.

For a function u ∈ C(Ω) its restriction on Ωh is also denoted u by an abuse of
notation. For x ∈ Ωh and e ∈ Zd let

hex = sup{rh : r ∈ [0, 1] and x+ rhe ∈ Ω}.

Next, let V ⊂ Zd \{0} such that {r1, . . . , rd} ⊂ V and such that for e ∈ V , −e ∈ V .
We define

∂Ωh = {x ∈ ∂Ω : ∃y ∈ Ωh and e ∈ V such that x = y + heye}, (2.1)

and denote by Uh the linear space of mesh functions, i.e. real-valued functions
defined on

Nh := Ωh ∪ ∂Ωh.
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For x ∈ Ωh, e ∈ Zd, e 6= 0 such that x± he ∈ Nh and uh ∈ Uh, let

∆euh(x) =
2

hex + h−ex

(uh(x+ hexe)− uh(x)

hex
+
uh(x− h−ex e)− uh(x)

h−ex

)
.

Definition 2.1. We say that a mesh function vh is discrete convex if ∆evh(x) ≥ 0
for all x ∈ Ωh and e ∈ V ⊂ Zd.

We denote by Ch the cone of discrete convex mesh functions. The restriction of
a convex function to Ωh is a discrete convex mesh function.

2.1. Aleksandrov solutions. The material in this subsection is taken from [15]
to which we refer for proofs. Let Ω be an open subset of Rd and let us denote by
P(Rd) the set of subsets of Rd.

Definition 2.2. Let u : Ω→ R. The normal mapping of u, or subdifferential of u
is the set-valued mapping ∂u : Ω→ P(Rd) defined by

∂u(x0) = {p ∈ Rd : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}. (2.2)

Let |E| denote the Lebesgue measure of the measurable subset E ⊂ Ω. For
E ⊂ Ω, we define

∂u(E) = ∪x∈E∂u(x).

Theorem 2.3 ([15, Theorem 1.1.13]). If u is continuous on Ω, the class

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable},

is a Borel σ-algebra and the set function M [u] : S → R defined by

M [u](E) = |∂u(E)|,

is a measure, finite on compact subsets, called the Monge-Ampère measure associ-
ated with the function u.

We can now define the notion of Aleksandrov solution of the Monge-Ampère
equation.

Definition 2.4. Let Ω ⊂ Rd be open and convex. Given a Borel measure ν on Ω,
a convex function u ∈ C(Ω) is an Aleksandrov solution of

detD2u = ν,

if the associated Monge-Ampère measure M [u] is equal to ν.

We recall an existence and uniqueness result for the solution of (1.1).

Proposition 2.5 ([16, Theorem 1.1]). Let Ω be a bounded convex domain of Rd.
Assume ν is a finite Borel measure and g ∈ C(∂Ω) can be extended to a function
g̃ ∈ C(Ω) which is convex in Ω. Then the Monge-Ampère equation (1.1) has a
unique convex Aleksandrov solution in C(Ω).

Definition 2.6. A sequence µn of Borel measures converges to a Borel measure µ
if µn(B)→ µ(B) for any Borel set B with µ(∂B) = 0.

We note that there are several equivalent definitions of weak convergence of
measures which can be found for example in [11, Theorem 1, section 1.9].
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2.2. Discretizations of the normal mapping. For a mesh function uh ∈ Ch,
the discrete normal mapping of uh at the point x ∈ Ω ∩ Zdh is defined as

∂huh(x) = {p ∈ Rd : uh(x+ hexe) ≥ uh(x) + p · (hexe)∀e ∈ Zd}.

For a subset E ⊂ Ω, we define

∂huh(E) = ∪x∈E∩Zdh∂huh(x),

which is Borel measurable for E Borel measurable. The proof is essentially the
same as the corresponding one at the continuous level [4, p. 117–118]. Put

Mh[uh](E) = |∂huh(E)| for a Borel set E.

Note that if E ∩ Zdh = {x}, we have Mh[uh](E) = Mh[uh]({x}). We will make the
abuse of notation

Mh[uh](x) = Mh[uh]({x}).
A numerical scheme based on Mh[uh] would require a wide scheme. We will use
Mh[uh] in our proof of convergence. We now consider a discrete Monge-Ampère
measure based on the finite stencil V . Put

∂V uh(x) = {p ∈ Rd, uh(x+ hexe) ≥ uh(x) + p · (hexe)∀e ∈ V },

and ∂V uh(E) = ∪x∈E∩Zdh∂V uh(x) with

MV [uh](E) = |∂V uh(E)| for a Borel set E.

We have

MV [uh](x) ≥Mh[uh](x), ∀x ∈ Ωh, (2.3)

since ∂huh(x) ⊂ ∂V uh(x).

2.3. Viscosity solutions of the elliptic Monge-Ampère equation. A convex
function u ∈ C(Ω) is a viscosity solution of (1.1) if u = g on ∂Ω and for all
φ ∈ C2(Ω) the following holds

• at each local maximum point x0 of u− φ, f(x0) ≤ detD2φ(x0)
• at each local minimum point x0 of u−φ, f(x0) ≥ detD2φ(x0), if D2φ(x0) ≥

0, i.e. D2φ(x0) has positive eigenvalues.

As explained in [17], the requirement D2φ(x0) ≥ 0 in the second condition above
is natural for the two dimensional case we consider. The space of test functions
in the definition above can be restricted to the space of strictly convex quadratic
polynomials [15, Remark 1.3.3].

An upper semi-continuous convex function u is said to be a viscosity sub solution
of detD2u(x) = f(x) if the first condition holds and a lower semi-continuous convex
function is said to be a viscosity super solution when the second holds. A viscosity
solution of (1.1) is a continuous function which satisfies the boundary condition
and is both a viscosity sub solution and a viscosity super solution. Note that the
notion of viscosity solution is a pointwise notion, i.e. conditions will be checked at
a point in the domain.

For further reference, we recall the comparison principle of sub and super solu-
tions, [17, Theorem V. 2].

Theorem 2.7. Let u and v be respectively sub and super solutions of detD2u(x) =
f(x) in Ω. Then if supx∈∂Ω max(u(x)− v(x), 0) = M , then u(x)− v(x) ≤M in Ω.
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2.3.1. Equivalence with Aleksandrov solutions. For f > 0, a convex function u ∈
C(Ω) is an Aleksandrov solution of (1.1) if and only if it is a viscosity solution of
(1.1), [15, Propositions 1.3.4 and 1.7.1]. The equivalence of viscosity and Aleksan-
drov solutions in the degenerate case f ≥ 0 is discussed in [3].

2.4. The numerical scheme. We consider the following discretization of (1.1):
find uh ∈ Ch such that

MV [uh](x) = hdf(x), x ∈ Ωh

uh(x) = g(x), x ∈ ∂Ωh.
(2.4)

We establish the stability, unicity and existence of solutions to (2.4). We first recall
the Brunn-Minkowski’s inequality [29].

Lemma 2.8. For two nonempty, compact convex sets K and L, their Minkowski
sum is defined as

K + L = {a+ b, a ∈ K and b ∈ L}.

We have

|K + L|1/d ≥ |K|1/d + |L|1/d. (2.5)

Lemma 2.9. Given x ∈ Ωh the operator vh → (MV [vh](x))1/d is concave on Ch.

Proof. We recall that given a set K and λ ∈ R, λK = {λx, x ∈ K}. We observe
that for λ > 0, p ∈ ∂V vh(x) if and only if λp ∈ ∂V (λvh)(x). Thus by the positive
homogeneity (of degree d) of volume in Rd

(MV [λvh](x))1/d = λ(MV [vh](x))1/d.

It is therefore enough to prove that for vh, wh ∈ Ch, we have

(MV [vh + wh](x))1/d ≥ (MV [vh](x))1/d + (MV [wh](x))1/d. (2.6)

Next, we note that

∂V vh(x) + ∂V wh(x) ⊂ ∂V (vh + wh)(x),

and thus |∂V (vh + wh)(x)| ≥ |∂V vh(x) + ∂V wh(x)|. We may assume that ∂V vh(x)
and ∂V wh(x) are nonempty. Assuming that ∂V vh(x) is compact and convex, (2.6)
follows from (2.5).

Using the definition and the canonical basis of Rd one shows that ∂V vh(x) is
bounded. Thus ∂V vh(x) is compact since it can be shown to be a closed set. The
convexity of ∂V vh(x) is a consequence of its definition. This concludes the proof. �

Lemma 2.10. Let Cy(x) = ‖y − x‖ denote the cone with vertex y ∈ Ωh. Then

Mh[Cy](y) ≥ ωd > 0,

where ωd is the volume of the closed unit ball.

Proof. We have Cy(y) = 0 and p ∈ ∂V Cy(y) if and only if p · e ≥ −‖e‖∀e ∈ V .
Clearly ∂V Cy(y) contains the closed unit ball with volume ωd. This concludes the
proof. �
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2.4.1. Stability. Since f ∈ L1(Ω) ∩ C(Ω) and f ≥ 0, we have∑
x∈Ωh

hdf(x) ≤ A, (2.7)

with A a number independent of h, for h sufficiently small. For x ∈ Ω we denote
by d(x, ∂Ω) the distance of x to ∂Ω. For a subset S of Ω, diam(S) denotes its
diameter.

Lemma 2.11. Let vh ∈ Ch. Then

max
x∈Nh

vh(x) ≤ max
x∈∂Ωh

vh(x).

Proof. Suppose there is x0 ∈ Ωh such that maxx∈Nh vh(x) = vh(x0) and vh(x0) >
maxx∈∂Ωh vh(x).

For all e ∈ V , we have vh(x0) ≥ vh(x0 +hex0
e) and vh(x0) ≥ vh(x0−h−ex0

e). This
implies that ∆evh(x0) ≤ 0 and hence ∆evh(x0) = 0 since vh is discrete convex. We
have

vh(x0 + hex0
e)− vh(x0)

hex0

=
vh(x0)− vh(x0 − h−ex0

e)

h−ex0

.

Since the left hand side of the above equation is non positive and the right hand
side non negative, we conclude that vh(x0) = vh(x0 + hex0

e) = vh(x0 − h−ex0
e),

i.e. the maximum is also reached at x0 + hex0
e and x0 − h−ex0

e. Repeating this
argument, we may assume that the maximum is reached at an interior point x0

such that x0 +hex0
e ∈ ∂Ωh. Since by assumption vh(x0) > vh(x0 +hex0

e), we obtain
∆evh(x0) < 0, contradicting the assumption vh ∈ Ch. �

Lemma 2.12 below is an analogue of [15, Lemma 1.4.1], c.f. [26], and is a discrete
version of the Aleksandrov-Bakelman-Pucci’s maximum principle [30, Theorem 8.1],
an analogue of which can be found in [19].

Lemma 2.12. Let uh ∈ Ch such that uh ≥ 0 on ∂Ωh. Then for x ∈ Ωh

uh(x) ≥ −C(d)
[

diam(Ω)d−1d(x, ∂Ω)Mh[uh](Ωh)
]1/d

,

for a positive constant C(d) which depends only on d.

Theorem 2.13. Solutions uh to (2.4) are uniformly bounded.

Proof. By Lemma 2.11, we have

uh(x) ≤ max
x∈∂Ωh

g(x). (2.8)

By Lemma 2.12,

uh(x)− min
x∈∂Ωh

g(x) ≥ −C(d)
[

diam(Ω)d−1d(x, ∂Ω)Mh[uh](Ωh)
]1/d

.

Since uh solves (2.4), by (2.7) and (2.3)

A ≥
∑
x∈Ωh

hdf(x) =
∑
x∈Ωh

MV [uh](x) ≥
∑
x∈Ωh

Mh[uh](x) ≥Mh[uh](Ωh).

In addition d(x, ∂Ω) ≤ diam(Ω). We conclude that uh(x) ≥ minx∈∂Ωh g(x)−C, for
a constant C. Combined with (2.8), we have shown that solutions uh to (2.4) are
uniformly bounded. �
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2.4.2. Uniqueness.

Theorem 2.14. Under the assumption that f > 0 on Ωh, Problem (2.4) has a
unique solution uh.

Proof. We consider the convex envelope of the mesh function uh

Γ(uh)(x) = sup
Laffine

{L(x) : L(y) ≤ uh(y) for all y ∈ Nh},

which is a piecewise linear convex function, c.f. for example [2, p. 11]. We note that
Γ(uh) depends on the stencil V . This notion of convex envelope generalizes the one
used in [2] where we used V = Zd \ {0}. The following result is an analogue of [2,
Lemmas 6 and 7] and [2, Theorem 4] where we considered ∂huh. The proofs are
identical.

If x ∈ Ωh and Γ(uh)(x) 6= uh(x), then ∂V uh(x) = ∅. Moreover, for a subset
E ⊂ (conv(Nh))◦, ∂V uh(E) = ∂Γ(uh)(E) up to a set of measure 0 and thus

MV [uh](E) = M [Γ(uh)](E).

Since g extends to a continuous convex function on Ω, analogous to [2, Lemma 5],
Γ(uh) = uh on ∂Ωh if uh solves (2.4).

Next, under the assumption that f > 0 on Ωh, ∂V uh(x) 6= ∅ for all x ∈ Ωh, and
we conclude that if uh solves (2.4), Γ(uh) solves the Monge-Ampère equation

M [Γ(uh)](E) =
∑

x∈E∩Ωh

hdf(x),

for each Borel set E ⊂ (conv(Nh))◦ with Γ(uh) = g on ∂Ωh and hence Γ(uh) is
a prescribed piecewise linear convex function on the boundary of conv(Nh). By
Proposition 2.5, the solution is unique, and since Γ(uh) = uh on ∂Ωh, the solution
uh is unique. �

2.4.3. Existence. We show that minimizers of a convex functional over a convex set
solve (2.4). For vh ∈ Uh and i = 1, . . . , d we consider the first-order difference like
operator defined by

∂i−vh(x) :=
vh(x)− vh(x− h−rix ri)√

h−rix

, x ∈ Ωh,

and the convex functional

Jh(vh) =
∑
x∈Ωh

‖Dhvh(x)‖2,

where Dhvh is given by

Dhvh(x) = (∂i−vh(x))i=1,...,d.

We seek a minimizer of Jh over

Sh = {vh ∈ Ch : vh = gh on ∂Ωh, and (MV [vh](x))1/d ≥ f(x)1/d, x ∈ Ωh}. (2.9)

The set Sh is a discrete version of

S = {v ∈ C(Ω) : v convex , v = g on ∂Ω, and detD2v ≥ f}.
It is known, [21], that the solution u of (1.1) is the maximal element of S. This
observation may be used to prove the existence of a discrete solution. The proof be-
low is motivated by a variational characterization of solutions of (1.1), [21, Section
4], and an observation in [20, p. 86] on discrete Monge-Ampère equations.
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Lemma 2.15. The set Sh is convex and nonempty.

Proof. The convexity of Sh follows from Lemma 2.9. For each y in Ωh, let qy be a
cone such that MV [qy](y) ≥ f(y). For example, we may define qy by

qy(x) =
(f(y)

ωd

)1/d

Cy(x).

Put q̂ =
∑
y∈Ωh

qy. Since g is bounded on ∂Ω, we can find a number κ such that
q̂ − κ ≤ g on ∂Ω. We define wh ∈ Uh by

wh(x) = q̂(x)− κ, x ∈ Ωh

wh = g on ∂Ωh.

We claim that wh ∈ Sh.
Let x ∈ Ωh and e ∈ V . Either wh(x+ hexe) = q̂(x+ hexe)− κ or wh(x+ hexe) =

g(x+hexe) ≥ q̂(x+hexe)−κ. Similarly wh(x−h−ex e) ≥ q̂(x−h−ex e)−κ. We conclude
using the convexity of q̂ that

hex + h−ex
2

∆ewh(x) ≥ q̂(x+ hexe)− κ− wh(x)

hex
+
q̂(x− h−ex e)− κ− wh(x)

h−ex

=
hex + h−ex

2
∆eq̂(x) ≥ 0.

Thus wh ∈ Ch. Next, we prove that ∂V q̂(x) ⊂ ∂V wh(x) for x ∈ Ωh.
Since wh = q̂ up to a constant on Ωh, we only need to check that for p ∈ ∂V q̂(x)

we have p · (hexe) ≤ wh(x+hexe)−wh(x) when x+hexe ∈ ∂Ωh. Let thus p ∈ ∂V q̂(x)
such that x+ hexe ∈ ∂Ωh. We have

p · e ≤ q̂(x+ hexe)− q̂(x) = q̂(x+ hexe)− κ− wh(x)

≤ g(x+ hexe)− wh(x) = wh(x+ hexe)− wh(x).

We conclude that MV [wh](x) ≥ MV [q̂](x). Therefore by the Brunn-Minkowski
inequality (2.5),

MV [wh](x)1/d ≥
∑
y∈Ωh

MV [qy](x)1/d ≥ f(x)1/d.

This concludes the proof. �

We observe that if p ∈ ∂V uh(x), x ∈ Ωh, we have

uh(x)− uh(x− h−ex e)

h−ex
≤ p · e ≤ uh(x+ hexe)− uh(x)

hex
. (2.10)

Thus

MV [uh](x) ≤
d∏
i=1

hex + h−ex
2

∆riuh(x). (2.11)

We define a discrete norm on Uh by

‖vh‖20,h = hd
∑
x∈Ωh

vh(x)2,

and a semi norm by

|vh|21,h = hd
∑
x∈Ωh

d∑
i=1

1

h−rix

(
∂i−vh(x)

)2
,
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an analogue of a Sobolev semi-norm.

Lemma 2.16. We have an analogue of Poincaré’s inequality,

C‖vh‖0,h ≤ |vh|1,h, for vh = 0 on ∂Ωh, (2.12)

for a constant C > 0 independent of h.

Proof. Given x ∈ Ωh and 1 ≤ i ≤ d, let mi
x = max{m ∈ N : x−mh−rix ri ∈ Ωh}, and

put yix = x−mi
xhri. Thus yix−h

−ri
yix

ri ∈ ∂Ωh and by assumption vh(yix−h
−ri
yix

ri) = 0.

We have

vh(x) =

mix−1∑
j=0

vh(x− jhri)− vh(x− (j − 1)hri) + vh(yix)

=

mix−1∑
j=0

h
vh(x− jhri)− vh(x− (j + 1)hri)

h
+ h−riyix

vh(yix)− vh(yix − h
−ri
yix

ri)

h−riyix

.

It follows that

vh(x)2 ≤
(mix−1∑

j=0

h2 + (h−riyix
)2
)(mix−1∑

j=0

(vh(x− jhri)− vh(x− (j + 1)hri))
2

h2

+
(vh(yix)− vh(yix − h

−ri
yix

ri))
2

(h−riyix
)2

)

≤ mi
xh

2
(mix−1∑

j=0

1

h
(∂i−vh(x− jhri))2 +

1

h−riyix

(∂i−vh(yix))2
)
.

Since mi
xh and h are bounded by the diameter of Ω, for some constant C > 0

independent of h,

∑
x∈Ωh

vh(x)2 ≤ 1

C

∑
x∈Ωh

mix−1∑
j=0

1

h
(∂i−vh(x− jhri))2 +

1

h−riyix

(∂i−vh(yix))2

≤ 1

C

∑
x∈Ωh

d∑
i=1

1

h−rix

(∂i−vh(x))2,

which concludes the proof. �

Lemma 2.17. The functional Jh is coercive on Sh, i.e.

Jh(vh)→∞ as ‖vh‖0,h →∞, vh ∈ Sh.

Proof. We will assume that h is fixed. We first note that for all x ∈ Ωh and
e ∈ V , hex > 0. Let αh = min{hex, x ∈ Ωh, e ∈ V }. Thus for i = 1, . . . , d,
1/h−rix ≥ αh/(h−rix )2 and hdJh(vh) ≥ αh|vh|21,h.

Let Φ(p) = ‖p‖2. Using Φ′ to denote the Fréchet derivative of Φ, we have

(Φ′(p)− Φ′(q))(p− q) = 2‖p− q‖2.

We argue as in [31, p. 550] and put φ(t) = Φ(tDhvh(x) + (1− t)Dhwh(x)). Then

Φ(Dhvh(x))− Φ(Dhwh(x))
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= φ(1)− φ(0) =

∫ 1

0

φ′(t)dt

=

∫ 1

0

Φ′(tDhvh(x) + (1− t)Dhwh(x))(Dhvh(x)−Dhwh(x))dt

=

∫ 1

0

(
Φ′(tDhvh(x) + (1− t)Dhwh(x))− Φ′(Dhwh(x))

)
(Dhvh(x)−Dhwh(x))

+ Φ′(Dhwh(x))(Dhvh(x)−Dhwh(x))dt

≥ ‖Dhvh(x)−Dhwh(x)‖2 − 2‖Dhwh(x)‖ ‖Dhvh(x)−Dhwh(x)‖.

We conclude that

hdJh(vh)− hdJh(wh)

= hd
∑
x∈Ωh

Φ(Dhvh(x))− Φ(Dhwh(x))

≥ hd
∑
x∈Ωh

‖Dhvh(x)−Dhwh(x)‖2 − 2hd
∑
x∈Ωh

‖Dhwh(x)‖ ‖Dhvh(x)−Dhwh(x)‖.

Next ∑
x∈Ωh

‖Dhwh(x)‖ ‖Dhvh(x)−Dhwh(x)‖

≤
( ∑
x∈Ωh

‖Dhwh(x)‖2
)1/2( ∑

x∈Ωh

‖Dhvh(x)−Dhwh(x)‖2
)1/2

= Jh(wh)1/2Jh(vh − wh)1/2.

Next, if zh = 0 on ∂Ωh, we claim that Jh(zh) ≤ (4d/αh)h−d‖zh‖20,h. Indeed

Jh(zh) =
∑
x∈Ωh

‖Dhzh(x)‖2 =
∑
x∈Ωh

d∑
i=1

(∂i−zh(x))2

=
∑
x∈Ωh

d∑
i=1

(zh(x)− zh(x− h−rix ri))
2

h−rix

≤ 2

αh

∑
x∈Ωh

d∑
i=1

zh(x)2 + zh(x− h−rix ri)
2

≤ 2d

αh

∑
x∈Ωh

zh(x)2 +
2

αh

d∑
i=1

∑
x∈Ωh

zh(x− h−rix ri)
2,

which using zh = 0 on ∂Ωh gives

Jh(zh) ≤ 2d

αh

∑
x∈Ωh

zh(x)2 +
2

αh

d∑
i=1

∑
x∈Ωh

zh(x)2 ≤ 4d

αh

∑
x∈Ωh

zh(x)2 =
4d

αh
h−d‖zh‖20,h.

If vh−wh = 0 on ∂Ωh, we obtain Jh(vh−wh) ≤ (4d/αh)h−d‖vh−wh‖20,h. Therefore,
for vh and wh ∈ Sh

hdJh(vh)− hdJh(wh) ≥ αh|vh − wh|21,h − 2
( 4d

αh

)1/2

Jh(wh)1/2‖vh − wh‖0,h,
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and so using (2.12),

hdJh(vh)− hdJh(wh) ≥ Cαh‖vh − wh‖20,h − 2
( 4d

αh

)1/2

Jh(wh)1/2‖vh − wh‖0,h,

from which the coercivity of Jh on Sh holds. �

Theorem 2.18. The functional Jh has a minimizer uh in Sh and uh solves the
finite difference equations (2.4).

Proof. Since Jh is convex and coercive on Sh and Sh is nonempty, closed and convex,
it follows that the functional Jh has a minimizer uh on Sh.

We now show that uh solves the finite difference equations (2.4). To this end, it
suffices to show that

MV [uh] = hdf on Ωh.

Let us assume to the contrary that there exists x0 ∈ Ωh such that

MV [uh](x0) > hdf(x0) ≥ 0. (2.13)

By (2.10), if there were a direction e ∈ V such that ∆euh(x0) = 0, we would
have ∂V uh(x0) contained in the hyperplane p · e = (uh(x0 + hexe) − uh(x0))/hex =
(uh(x0)−uh(x0−h−ex e))/h−ex , and hence MV [uh](x0) = 0 contradicting (2.13). We
conclude that for all e ∈ V ∆euh(x0) > 0. Let

ε0 = inf{∆euh(x0) : e ∈ V }.

We recall that MV [uh](x) is the volume of a polygon since it is the volume of
a domain obtained as an intersection of half-spaces p · (hexe) ≤ uh(x + hexe) −
uh(x). Moreover ∂V uh(x) is bounded by (2.11). The vertices of the polygon have
coordinates linear combinations of the values uh(y), y ∈ Nh. It is known that the
volume of a polygon is a polynomial function, hence a continuous function, of the
coordinates of its vertices [1]. Thus the mapping E : R→ R which maps the value
of a mesh function vh at x0 to MV [uh](x0) is finite valued and continuous. By
(2.13), with r0 = uh(x0), E(r0) > hdf(x0). Therefore there exists ε1 > 0 such that
for |r − r0| < ε1, we have E(r) > hdf(x0). Finally, put ε = hex0

h−ex0
min(ε0, ε1). We

define wh by

wh(x) = uh(x), x 6= x0, wh(x0) = uh(x0) +
ε

4
.

By construction wh = gh on∂Ωh. For x 6= x0, we have

∆ewh(x) = ∆euh(x),∆ewh(x) = ∆euh(x) +
ε

4

2

hex + h−ex

1

hex
or

∆ewh(x) = ∆euh(x) +
ε

4

2

hex + h−ex

1

h−ex
.

Moreover ∆ewh(x0) = ∆euh(x0)−ε/(2hex0
h−ex0

) ≥ ε0−ε/(2hex0
h−ex0

) ≥ ε/(2hex0
h−ex0

) >
0 by the definition of ε. We conclude that wh ∈ Ch.

Also by construction, MV [wh](x0) = E(r0 + ε/4) > hdf(x0). We claim that for
x 6= x0 MV [wh](x) ≥MV [uh](x). Let p ∈ Rd and e ∈ V such that p·(hexe) ≤ uh(x+
hexe)−uh(x). Either uh(x+hexe) = wh(x+hexe) or uh(x+hexe) = wh(x+hexe)−ε/4.
This gives p · (hexe) ≤ wh(x + hexe) − wh(x). This proves the claim. We conclude
that MV [wh](x) ≥ hdf(x) for all x ∈ Ωh.
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It remains to show that Jh(wh) < Jh(uh). Let Ωx0
denote the subset of Ωh

consisting in x0 and the points x0 + h
rj
x0rj , j = 1, . . . , d. We have

Jh(wh) =
∑
x/∈Ωx0

‖Dhuh(x)‖2 + ‖Dhwh(x0)‖2 +

d∑
j=1

‖Dhwh(x0 + hrjx0
rj)‖2

=
∑
x/∈Ωx0

‖Dhuh(x)‖2 +

d∑
i=1

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2

+

d∑
j=1

d∑
i=1

1

h−ri
x0+h

rj
x0

(wh(x0 + hrjx0
rj)− wh(x0 + hrjx0

rj − h−rix0
ri))

2.

Next,

Jh(wh)

=
∑
x/∈Ωx0

‖Dhuh(x)‖2 +

d∑
j=1

d∑
i=1 i 6=j

1

h−ri
x0+h

rj
x0

(wh(x0 + hrjx0
rj)

− wh(x0 + hrjx0
rj − h−rix0

ri))
2 +

d∑
i=1

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2

+
1

h−ri
x0+h

ri
x0

(wh(x0 + hrix0
ri)− wh(x0))2.

We note that h−ri
x0+h

ri
x0

= hrix0
and we have

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2 +
1

hrix0

(wh(x0 + hrix0
ri)− wh(x0))2

=
1

h−rix0

(
uh(x0)− uh(x0 − h−rix0

ri) +
ε

4

)2
+

1

hrix0

(
uh(x0 + hrix0

ri)− uh(x0)− ε

4

)2
=

1

h−rix0

(uh(x0)− uh(x0 − h−rix0
ri))

2 +
1

hrix0

(uh(x0 + hrix0
ri)− uh(x0))2

+
ε2

16

( 1

h−rix0

+
1

hrix0

)
+

ε

2h−rix0

(uh(x0)− uh(x0 − h−rix0
ri))

− ε

2hrix0

(uh(x0 + hrix0
ri)− uh(x0)).

Thus, since for i 6= j, wh(x0 + hrj)−wh(x0 + hrj − hri) = uh(x0 + hrj)− uh(x0 +
hrj − hri), and by our choice of ε,

Jh(wh) = Jh(uh) +
ε2

16

d∑
i=1

( 1

h−rix0

+
1

hrix0

)
− ε

2

d∑
i=1

hrix0
+ h−rix0

2
∆riuh(x0)

≤ Jh(uh) +
εε0
16

d∑
i=1

hrix0
+ h−rix0

− ε

4

d∑
i=1

(hrix0
+ h−rix0

)∆riuh(x0)

= Jh(uh) +
ε

4

d∑
i=1

(hrix0
+ h−rix0

)
(ε0

4
−∆riuh(x0)

)
< Jh(uh),
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since ∆euh(x0) ≥ ε0 > ε0/4 for all e ∈ V . This contradicts the assumption that uh
is a minimizer and concludes the proof. �

3. Convergence analysis

In this section, we first address the convergence of the solution uh of (2.4) to the
Aleksandrov solution u of (1.1). We require V ⊂ Zd\{0} to converge to Zd\{0}. We
thus simply assume that V = Zd \ {0}. We then give a direct proof of convergence
to the viscosity solution of (1.1). Finally we make remarks about the case the right
hand side of (2.4) approximates a sum of Dirac masses.

Definition 3.1. Let uh ∈ Uh for each h > 0. We say that uh converges to a
function u uniformly on a compact set K ⊂ Ω if and only if for each sequence
hk → 0 and for all ε > 0, there exists h−1 > 0 such that for all hk, 0 < hk < h−1,
we have

max
x∈Nhk∩K

|uhk(x)− u(x)| < ε.

3.1. Convergence to the Aleksandrov solution.

Theorem 3.2. Let uh solve (2.4). There is a subsequence uhk which converges
uniformly on compact subsets to a convex function v ∈ C(Ω) such that

detD2v ≤ f(x) in Ω

v = g on ∂Ω,

Proof. The family uh is a uniformly bounded family of discrete convex functions
by Theorem 2.13. Moreover uh = g on ∂Ω and g ∈ C(∂Ω) can be extended to a
convex function g̃ ∈ C(Ω). In addition, by (2.3) and (2.7)

Mh[uh](Ωh) ≤
∑
x∈Ωh

MV [uh](x) =
∑
x∈Ωh

hdf(x) ≤ A.

It is proven in [2, Theorem 14] that there is a subsequence uhk which converges
uniformly on compact subsets to a convex function v ∈ C(Ω) such that v = g on
∂Ω. It is also proven in [2, Theorem 8] that Mh[uh] defines a Borel measure (as the
Monge-Ampère measure of the convex envelope of uh), which converges weakly to
M [v]. Since by (2.3), we have

Mh[uh](x) ≤ hdf(x), x ∈ Ωh,

as an inequality in measures, we obtain detD2v ≤ f(x). �

To complete the proof we need additional notions. Given u : Ω → R, the local
subdifferential of u is given by

∂lu(x0) =
{
p ∈ Rd : ∃ a neighborhood Ux0 of x0 such that

u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ux0

}
.

Clearly for all x0 ∈ Ω we have ∂u(x0) ⊂ ∂lu(x0). Moreover we the following result.

Lemma 3.3 ([14, Exercise 1]). If Ω is convex and u is convex on Ω, then ∂u(x) =
∂lu(x) for all x ∈ Ω.

We recall that for a family of sets Ak

lim sup
k

Ak = ∩n ∪k≥n Ak.
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Lemma 3.4. Assume that uh → v uniformly on compact subsets of Ω, with v
convex and continuous. Then for K ⊂ Ω compact and any sequence hk → 0

lim sup
hk→0

∂V uhk(K) ⊂ ∂v(K).

Proof. Let

p ∈ lim sup
hk→0

∂V uhk(K) = ∩n ∪k≥n ∂V uhk(K).

Thus for each n, there exists kn and xkn ∈ K∩Zdhkn such that p ∈ ∂V uhkn (xkn). By

an abuse notation, let xj denote a subsequence xknj of xkn converging to x0 ∈ K.

We have xknj ∈ K ∩ Zdhknj and so with our abuse of notation xj ∈ K ∩ Zdhj .
Let Bε(x0) denote the ball of center x0 and radius ε in the maximum norm. We

choose ε > 0 such that Bε(x0) ⊂ Ω. Let z ∈ Bε/4(x0) and zhj ∈ Bε/4(x0) ∩ Zdhj
such that zhj → z.

We have for j sufficiently large ‖xj − x0‖ ≤ ε/8. With e = zhj − xj , xj + e = zhj
while xj−e = 2xj−zhj ∈ Bε/4(x0) as ‖2xj−zhj−x0‖ = ‖2(xj−x0)+(x0−zhj )‖ ≤
ε/2. That is xj ± e ∈ Ω ∩ Zdhj .

Since p ∈ ∂V uhj (xj) for all j,

uhj (zhj ) ≥ uhj (xj) + p · (zhj − xj). (3.1)

Next, note that

|uhj (xj)− v(x0)| ≤ |uhj (xj)− v(xj)|+ |v(xj)− v(x0)|.

By the convergence of xj to x0 and the uniform convergence of uh to v on K, we
obtain uhj (xj) → v(x0) as hj → 0. Similarly uhj (z) → v(z) as hj → 0, using
uhj (zhj )− v(z) = (uhj (zhj )− v(zhj )) + (v(zhj )− v(z)). Taking pointwise limits in
(3.1), we obtain

v(z) ≥ v(x0) + p · (z − x0) ∀z ∈ B ε
4
(x0).

We conclude that p ∈ ∂lv(K), the image of K by the local subdifferential of v, and
thus p ∈ ∂v(K) by Lemma 3.3, since v is convex and Ω convex. �

Theorem 3.5. The limit convex function v given by Theorem 3.2 satisfies for
K ⊂ Ω compact

M [v](K) =

∫
K

f(x)dx.

Thus for any Borel set B, M [v](B) =
∫
B
f(x)dx.

Proof. It follows from Lemma 3.4

lim sup
hk→0

MV [uhk ](K) ≤M [v](K). (3.2)

By Theorem 3.2 M [v](K) ≤
∫
K
f(x)dx. But MV [uh](K) =

∑
x∈K h

df(x). We
conclude from (3.2) that

lim sup
hk→0

MV [uhk ](K) =

∫
K

f(x)dx ≤M [v](K) ≤
∫
K

f(x)dx,

from which the result follows. �

Theorem 3.6. The solution uh of (2.4) converges uniformly on compact subsets
to the Aleksandrov solution u of (1.1).
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Proof. It follows from Theorems 3.2 and 3.5, that there is a subsequence which
converges uniformly on compact subsets to a convex function v ∈ C(Ω) which solves
(1.1). By unicity of the solution of the latter, the whole family must converge to
u. �

3.2. Convergence to the viscosity solution. Again, we assume that V = Zd \
{0}. For a direct proof of convergence to the viscosity solution of (1.1), we recall
the notion of monotonicity and consistency. We note that consistency was not used
for the proof of convergence to the Aleksandrov solution.

Since we have proven convergence to the Aleksandrov solution, and Aleksandrov
solutions are equivalent to viscosity solutions with our assumptions, we obtain
convergence to the viscosity solution as well. The purpose of this section is to
indicate how one may exploit equicontinuity to give a different proof of convergence
to the viscosity solution.

The scheme (2.4) is said to be monotone if for zh and wh in Uh, zh(y) ≥
wh(y), y 6= x with zh(x) = wh(x), we have Mh[zh](x) ≥Mh[wh](x).

We say that the scheme (2.4) is consistent if for all C2 convex functions φ, a
sequence xh → x ∈ Ω

lim
h→0

1

hd
Mh[φ](xh) = detD2φ(x).

We could only give a proof which is simple of a weaker form of consistency for the
scheme (2.4). Let B(x, r) denote the ball of center x and radius r in the maximum
norm and let x′h denote the unique mesh point in B(x, h/2). We say that the
scheme is weakly consistent if for all strictly convex quadratic polynomials φ, we
have

lim
h→0

1

hd
Mh[φ](x′h) = detD2φ(x).

Lemma 3.7. The scheme (2.4) is monotone.

Proof. For zh and wh in Uh such that zh(y) ≥ wh(y), y 6= x with zh(x) = wh(x),
we have from the definition of discrete normal mapping ∂hwh(x) ⊂ ∂hzh(x). Thus
Mh[zh](x) ≥Mh[wh](x), i.e. the scheme (2.4) is monotone. �

Lemma 3.8. The scheme (2.4) is weakly consistent.

Proof. Let x ∈ Ω and φ a strictly convex quadratic polynomial. Let µ have density
detD2φ, i.e. for each Borel set B, µ(B) =

∫
B

detD2φ(x)dx. Given a sequence of
Borel measures µn which converges weakly to µ, we are interested in the uniform
convergence of µn(B) to µ(B) for B in a subset B of Borel sets.

Let B consist of balls B(x0, r) of center x0 and radius r ≤ r0 for r0 > 0 fixed.
Thus B consists of convex sets in a bounded set. By the Blaschke selection theorem,
any sequence in B has a convergent subsequence, hence B is sequentially compact
in the Hausdorff metric. By the same argument B ∩ B is compact for any closed
ball B. Since detD2φ > 0, µ(∂B(x0, r)) = 0, i.e. B is a µ-continuity class using the
terminology of [8]. By [8, Theorem 6 and example 6], B is a µ-uniformity class, i.e.
if µn weakly converges to µ, then µn(B(x0, r))→ µ(B(x0, r)) uniformly in r.

We recall a form of the Moore-Osgood theorem on exchanging limits. Consider
the double sequence an,k with an,k → Bk uniformly in k as n→∞ and for each n,
limk→∞ an,k = An. Then the double limits exist with

lim
n→∞

lim
k→∞

an,k = lim
k→∞

lim
n→∞

an,k.
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We also recall that every continuity point of detD2φ is a Lebesgue point of detD2φ.
That is, as detD2φ ∈ C(Ω) we have for x0 ∈ Ω

lim
r→0

1

|B(x0, r)|

∫
B(x0,r)

detD2φ(x)dx = detD2φ(x0).

Let us denote as well by φ the restriction of φ to Nh. By the weak convergence of
Mhk [φ] to µ, we have for x ∈ Ω and uniformly in r

lim
k→∞

Mhk [φ](B(x, r)) = µ(B(x, r)).

Therefore,

lim
r→0

1

|B(x, r)|
lim
k→∞

Mhk [φ](B(x, r)) = lim
r→0

1

|B(x, r)|
µ(B(x, r)) = detD2φ(x).

By the Moore-Osgood theorem, we obtain

lim
k→∞

lim
r→0

1

|B(x, r)|
Mhk [φ](B(x, r)) = detD2φ(x).

We now take r = hk/2 so that |B(x, r)| = hdk.
Now, there is a unique mesh point x′hk in B(x, hk) and x′hk → x as k → ∞.

Therefore Mhk [φ](B(x, hk/2)) = Mhk [φ](x′hk) and we obtain the (weak) consistency
of the scheme,

lim
k→∞

1

hdk
Mhk [φ](x′hk) = detD2φ(x). �

By the stability of the scheme (2.4), c.f. Theorem 2.13, the half-relaxed limits

u∗(x) = lim sup
y→x,h→0

uh(y) = lim
δ→0

sup{uh(y) : y ∈ Ωh, |y − x| ≤ δ, 0 < h ≤ δ}

u∗(x) = lim inf
y→x,h→0

uh(y) = lim
δ→0

inf{uh(y) : y ∈ Ωh, |y − x| ≤ δ, 0 < h ≤ δ},

are well defined.
Our numerical experiments indicate that (2.4) is consistent. This is taken as an

assumption in the following theorem. Rates of convergence of the Oliker-Prussner
method, hence interior consistency, were given in [27]. Similar arguments could
be followed for the discretization (2.4). But this would make this contribution too
long.

Theorem 3.9. Let f > 0 and f ∈ C(Ω). Assume that g can be extended to
a convex function g̃ ∈ C(Ω). Under the assumption that (2.4) is consistent, the
upper half-relaxed limit u∗ is a viscosity sub solution of detD2u(x) = f(x) and the
lower half-relaxed limit u∗ is a viscosity super solution of detD2u(x) = f(x) at
every point x of Ω. Moreover, solutions uh of (2.4) converge uniformly on compact
subsets to the unique viscosity solution of (1.1).

Proof. The result follows from the results of [5] and the stability, consistency and
monotonicity of the scheme, combined with equicontinuity of the approximations.
The part of the proof below which uses the consistency and monotonicity of the
scheme follows [9].

The family uh is a family of discrete convex functions which is uniformly bounded
and by (2.7) have Monge-Ampère masses uniformly bounded (using the terminology
of [2]). Moreover uh = g on ∂Ωh for a convex function g ∈ C(Ω). By [2, Theorem
14], there is a subsequence uhk which converges uniformly on compact subsets to a
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convex function v ∈ C(Ω) which solves v = g on ∂Ω. It follows from the definitions
that v = u∗ = u∗ on Ω. At this point, it is not known yet that the limit convex
function v is a viscosity solution of (1.1).

We show that v = u∗ is a viscosity super solution of detD2u(x) = f(x) at every
point x of Ω. Recall that v ∈ C(Ω). Let x0 ∈ Ω and φ be a strictly convex quadratic
polynomial such that u∗ − φ has a local minimum at x0 with (u∗ − φ)(x0) = 0.
Without loss of generality, we may assume that x0 is a strict local minimum.

Let B0 denote a closed ball contained in Ω and containing x0 in its interior. We
let xhl be a subsequence in B0 such that xhl → x0 with uhl(xl) → u∗(x0). Let x′l
be defined by

cl := (uhl − φ)(x′l) = min
B0

uhl − φ.

Since the sequence x′l is bounded, it converges to some x1 after possibly passing to
a subsequence. Since (uhl − φ)(x′l) ≤ (uhl − φ)(xhl) we have

(u∗ − φ)(x0) = lim
l→∞

(uhl − φ)(xhl) ≥ lim inf
l→∞

(uhl − φ)(x′l) ≥ (u∗ − φ)(x1).

Since x0 is a strict minimizer of the difference u∗ − φ, we conclude that x0 = x1

and cl → 0 as l→∞.
By definition

uhl(x) ≥ φ(x) + cl, ∀x ∈ B0 ∩ Ωhl ,

with equality at x = x′l, and thus, by the monotonicity of the scheme

0 =
1

hdl
Mhl [uhl ](x

′
l)− f(x′l) ≥

1

hdl
Mhl [φ+ cl](x

′
l)− f(x′l) =

1

hdl
Mhl [φ](x′l)− f(x′l),

which gives by the consistency of the scheme detD2φ(x0)− f(x0) ≤ 0.
Similarly one shows that if φ is a strictly convex quadratic polynomial such that

u∗ − φ has a local maximum at x0 with (u∗ − φ)(x0) = 0, we have detD2φ(x0) −
f(x0) ≥ 0.

It follows that v = u∗ = u∗ on Ω is a viscosity solution of detD2u = f . By
the comparison principle Theorem 2.7, v is equal to the unique viscosity solution
of (1.1). Thus all subsequences uhk converge uniformly on compact subsets to the
same limit. This concludes the proof. �

Several discrete Monge-Ampère equations, e.g. [6, 22], can be written as

Mh[uh](x) = hdf(x), x ∈ Ωh,

for some operator Mh which satisfies

Mh[uh] ≤ CMh[uh].

For f ∈ C(Ω),
∑
x∈Ωh

hdf(x)→
∫

Ω
f(x)dx and thus∑

x∈Ωh

Mh[uh](x) ≤ C
∑
x∈Ωh

Mh[uh](x) = C
∑
x∈Ωh

hdf(x) ≤ A,

for a constant A independent of h. Thus (2.7) holds for schemes such as the ones in
[6, 22] and convergence to the viscosity solution on convex domains not necessarily
strictly convex can be proven as for Theorem 3.9.
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3.3. Remarks on the case of a sum of Dirac masses for the right-hand
side. Consider the problem

detD2u =

N∑
l=1

clδdl in Ω

u = g on ∂Ω,

(3.3)

where dl is a mesh point, cl a real number, δdl the Dirac mass at dl and N is the
number of Dirac masses. Here, we assume that the parameter h is chosen so that
dl is a mesh point. For example, we may restrict h to take the form 1/2j for a
positive integer j when Ω is a cube. The corresponding discrete problem is

MV [uh](x) = fh(x), x ∈ Ωh

uh(x) = g(x), x ∈ ∂Ωh,
(3.4)

where fh is a mesh function which equals 0 at all mesh points, except dl where
it takes values cl for l = 1, . . . , N . Discrete solutions have Monge-Ampère masses
uniformly bounded as

∑
x∈Ωh

fh(x) is uniformly bounded. Our convergence analysis
to the Aleksandrov solution holds in this case as well. This does not appear to be
an effective method in the case of Dirac masses.

The method we discussed is a variant of the Oliker-Prussner method [28]. For
the latter (3.3) requires the masses cl to be non zero. But with our approximations
fh, fh(x) = 0 in parts of the computational domain Ωh. A method which is solely
based on the interpretation of f(x) as a continuous function should handle better
the case where fh(x) = 0 in parts of the computational domain. The numerical
method discussed in [7] can be interpreted as a variant of (3.4) with numerical
integration for the computation of the discrete subdifferential at points dl and the
use of a different scheme elsewhere.

4. Numerical experiments

The computational domain is the unit square [0, 1]2. The initial guess for the
iterations was taken as a shifted quadratic x2 + y2 − 2. The discrete nonlinear
system was solved with a damped Newton’s method [22]. Let δ, ρ ∈ (0, 1). Given
an initial guess u0

h to the nonlinear equations G(uh) = 0, set k = 0. If G(ukh) = 0,
stop. Put pk(τ) = ukh − τG′(ukh)−1G(ukh) and let ik be the smallest non-negative
integer i such that

‖G(pk(ρi))‖ ≤ (1− δρi)‖G(vkh)‖.
We set uk+1

h = pk(ρik). In the experiments, we take δ = ρ = 1. Errors are given
in the maximal norm. We used a 1.4 GHz Quad-Core Intel Core i5 MacBook Pro
and the implementation was in Matlab.

Table 1. Smooth solution u(x, y) = e(x2+y2)/2 with g(x, y) =

e(x2+y2)/2 and f(x, y) = (1 + x2 + y2)ex
2+y2 .

h 1/24 1/25 1/26 1/27 1/28 1/29

Error 3.51 10−4 8.81 10−5 2.20 10−5 5.51 10−6 1.38 10−6 3.45 10−7

Rate 1.99 1.99 1.99 1.99 2

Time 7.97 10−2 2.01 10−1 1.01 10−0 4.27 10−0 2.02 10+1 9.75 10+1
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Table 2. Non smooth solution u(x, y) = −
√

2− x2 − y2 with

g(x, y) = −
√

2− x2 − y2 and f(x, y) = 2/(2− x2 − y2)2.

h 1/24 1/25 1/26 1/27 1/28 1/29

Error 6.89 10−4 2.36 10−4 8.21 10−5 2.88 10−5 1.01 10−5 3.58 10−6

Rate 1.55 1.52 1.51 1.50 1.50

Time 7.07 10−2 1.94 10−1 2.17 10−0 1.94 10+1 1.84 10+1 1.91 10+3

For the smooth solution, the number of Newton iterations was about 40, while
for the non smooth solution it took hundreds of iterations for fine resolutions.

Acknowledgements. The author thanks the anonymous referees for valuable
comments. The author was partially supported by NSF grants DMS-1319640 and
DMS-1720276. The author would like to thank the Isaac Newton Institute for Math-
ematical Sciences, Cambridge, for support and hospitality during the programme
“Geometry, compatibility and structure preservation in computational differential
equations” where part of this work was undertaken. Part of this work was supported
by EPSRC grant no EP/K032208/1.

References

[1] Eugene L. Allgower, Phillip H. Schmidt; Computing volumes of polyhedra, Math. Comp. 46

(1986), no. 173, 171–174.
[2] Gerard Awanou; On the weak convergence of Monge-Ampère measures for discrete convex

mesh functions, Acta Appl. Math. 172 (2021), Paper No. 6, 31.

[3] Gerard Awanou, Romeo Awi; Convergence of finite difference schemes to the Aleksandrov
solution of the Monge-Ampère equation, Acta Applicandae Mathematicae 144 (2016), no. 1,

87–98.

[4] Ilya J. Bakelman; Convex analysis and nonlinear geometric elliptic equations, Springer-
Verlag, Berlin, 1994, With an obituary for the author by William Rundell, Edited by Steven

D. Taliaferro.

[5] G. Barles, P. E. Souganidis; Convergence of approximation schemes for fully nonlinear second
order equations, Asymptotic Anal. 4 (1991), no. 3, 271–283.

[6] Jean-David Benamou, Francis Collino, Jean-Marie Mirebeau; Monotone and consistent dis-

cretization of the Monge-Ampère operator, Math. Comp. 85 (2016), no. 302, 2743–2775.
[7] Jean-David Benamou, Brittany D. Froese; Weak Monge-Ampère solutions of the semi-

discrete optimal transportation problem, Topological optimization and optimal transport,
Radon Ser. Comput. Appl. Math., vol. 17, De Gruyter, Berlin, 2017, pp. 175–203.

MR 3729377
[8] Patrick Billingsley, Flemming Topsøe; Uniformity in weak convergence, Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete 7 (1967), 1–16.
[9] Bruno Bouchard, Romuald Elie, Nizar Touzi; Discrete-time approximation of BSDEs and

probabilistic schemes for fully nonlinear PDEs, Advanced financial modelling, Radon Ser.
Comput. Appl. Math., vol. 8, Walter de Gruyter, Berlin, 2009, pp. 91–124.

[10] Jean-Paul Daniel; Quelques résultats d’approximation et de régularité pour des équations
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