BASISNESS OF FUČÍK EIGENFUNCTIONS FOR THE DIRICHLET LAPLACIAN

FALKO BAUSTIAN, VLADIMIR BOBKOV

Abstract

We provide improved sufficient assumptions on sequences of Fučík eigenvalues of the one-dimensional Dirichlet Laplacian which guarantee that the corresponding Fučík eigenfunctions form a Riesz basis in $L^{2}(0, \pi)$. For that purpose, we introduce a criterion for a sequence in a Hilbert space to be a Riesz basis.

1. Introduction

We study basis properties of sequences of eigenfunctions of the Fučik eigenvalue problem for the one-dimensional Dirichlet Laplacian

$$
\begin{gather*}
-u^{\prime \prime}(x)=\alpha u^{+}(x)-\beta u^{-}(x), \quad x \in(0, \pi) \\
u(0)=u(\pi)=0 \tag{1.1}
\end{gather*}
$$

where $u^{+}=\max (u, 0)$ and $u^{-}=\max (-u, 0)$. The Fučík spectrum is the set $\Sigma(0, \pi)$ of pairs $(\alpha, \beta) \in \mathbb{R}^{2}$ for which (1.1) possesses a nontrivial classical solution. Any $(\alpha, \beta) \in \Sigma(0, \pi)$ is called $F u c ̌ \imath \imath k$ eigenvalue and any corresponding nontrivial classical solution of 1.1 is called Fučik eigenfunction. The Fučík eigenvalue problem 1.1 was introduced in [4] and [6] to study elliptic equations with "jumping" nonlinearities, and it has since been widely investigated in various aspects and for different operators, see, e.g., the surveys [3], [8, Chapter 9.4], and references therein. To the best of our knowledge, basisness of sequences of Fučík eigenfunctions was considered for the first time in [2]. In that article, we provided several sufficient assumptions on sequences of Fučík eigenvalues to obtain Riesz bases of $L^{2}(0, \pi)$ consisting of Fučík eigenfunctions. Let us recall that a sequence is a Riesz basis in a Hilbert space if it is the image of an orthonormal basis of that space under a linear homeomorphism, see, e.g., 9. The aim of the present note is to use more general techniques to significantly improve the results of [2].

Let us describe the structure of the Fučík spectrum $\Sigma(0, \pi)$. It is not hard to see that the lines $\{1\} \times \mathbb{R}$ and $\mathbb{R} \times\{1\}$ are subsets of $\Sigma(0, \pi)$, since they correspond to sign-constant solutions of 1.1 which are constant multiples of $\sin x$, the first eigenfunction of the Dirichlet Laplacian in $(0, \pi)$. The remaining part of $\Sigma(0, \pi)$ is

[^0]exhausted by the hyperbola-type curves
$$
\Gamma_{n}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{n}{2} \frac{\pi}{\sqrt{\alpha}}+\frac{n}{2} \frac{\pi}{\sqrt{\beta}}=\pi\right\}
$$
for even $n \in \mathbb{N}$, and
\[

$$
\begin{aligned}
& \Gamma_{n}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{n+1}{2} \frac{\pi}{\sqrt{\alpha}}+\frac{n-1}{2} \frac{\pi}{\sqrt{\beta}}=\pi\right\} \\
& \widetilde{\Gamma}_{n}=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \frac{n-1}{2} \frac{\pi}{\sqrt{\alpha}}+\frac{n+1}{2} \frac{\pi}{\sqrt{\beta}}=\pi\right\}
\end{aligned}
$$
\]

for odd $n \geq 3$, see, e.g., [6, Lemma 2.8]. Evidently, $(\alpha, \beta) \in \Gamma_{n}$ for odd $n \geq 3$ implies $(\beta, \alpha) \in \widetilde{\Gamma}_{n}$. If u is a Fučík eigenfunction for some (α, β), then so is $t u$ for any $t>0$, while $-t u$ is a Fučík eigenfunction for (β, α). Hence, we neglect the curve $\widetilde{\Gamma}_{n}$ from our investigation of the basis properties of Fučík eigenfunctions. Each signchanging Fučík eigenfunction consists of alternating positive and negative bumps, where positive bumps are described by $C_{1} \sin \left(\sqrt{\alpha}\left(x-x_{1}\right)\right)$, while negative bumps are described by $C_{2} \sin \left(\sqrt{\beta}\left(x-x_{2}\right)\right)$, for proper constants $C_{1}, C_{2}, x_{1}, x_{2} \in \mathbb{R}$.

We want to uniquely specify a Fučík eigenfunction for each point of $\Sigma(0, \pi)$. In slight contrast to [2], we normalize Fučík eigenfunctions in such a way that they are "close" to the functions

$$
\varphi_{k}(x)=\sqrt{\frac{2}{\pi}} \sin (k x), \quad k \in \mathbb{N}
$$

which form a complete orthonormal system in $L^{2}(0, \pi)$. This choice will be helpful in the proof of our main result, Theorem 1.3, below.

Definition 1.1. Let $n \geq 2$ and $(\alpha, \beta) \in \Gamma_{n}$. The normalized Fučik eigenfunction $g_{\alpha, \beta}^{n}$ is the C^{2}-solution of the boundary value problem with $\left(g_{\alpha, \beta}^{n}\right)^{\prime}(0)>0$ and which is normalized by

$$
\left\|g_{\alpha, \beta}^{n}\right\|_{\infty}=\sup _{x \in[0, \pi]}\left|g_{\alpha, \beta}^{n}(x)\right|=\sqrt{\frac{2}{\pi}}
$$

For $n=1$, we set $g_{\alpha, \beta}^{1}=\varphi_{1}$ for every $(\alpha, \beta) \in(\{1\} \times \mathbb{R}) \cup(\mathbb{R} \times\{1\})$.
Piecewise definitions of the Fučík eigenfunctions $f_{\alpha, \beta}^{n}=\sqrt{\pi / 2} g_{\alpha, \beta}^{n}$ can be found in the equations (1.2) and (1.3) in [2]. In accordance to [2], we study the basisness of sequences of Fučík eigenfunctions described by the following definition.

Definition 1.2. We define the Fučik system $G_{\alpha, \beta}=\left\{g_{\alpha(n), \beta(n)}^{n}\right\}$ as a sequence of normalized Fučík eigenfunctions with mappings $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $\alpha(1)=$ $\beta(1)=1$ and $(\alpha(n), \beta(n)) \in \Gamma_{n}$ for every $n \geq 2$.

We can now formulate our main result on the basisness of Fučík systems which presents a non-trivial generalization of [2, Theorems 1.4 and 1.9].

Theorem 1.3. Let $G_{\alpha, \beta}$ be a Fučik system. Let N be a subset of the even natural numbers and $N_{*}=\mathbb{N} \backslash N$. Assume that

$$
\begin{equation*}
\sum_{n \in N_{*}}\left[1-\frac{\left\langle g_{\alpha, \beta}^{n}, \varphi_{n}\right\rangle^{2}}{\left\|g_{\alpha, \beta}^{n}\right\|^{2}}\right]+E^{2}\left(\sup _{n \in N}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}\right)<1 \tag{1.2}
\end{equation*}
$$

with $\sup _{n \in N}\left\{4 \max (\alpha(n), \beta(n)) / n^{2}\right\} \in[4,9)$. Here, $E:[4,9) \rightarrow \mathbb{R}$ is a strictly increasing function defined as

$$
\begin{align*}
E(\gamma)= & \frac{2 \sqrt{2}}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2) \sin \left(\frac{\pi}{\sqrt{\gamma}}\right)}{(\gamma-1)(2 \sqrt{\gamma}-1)} \\
& +\frac{\left(\left(3+\pi^{2}\right) \gamma+\left(9-2 \pi^{2}\right) \sqrt{\gamma}-6\right)(\sqrt{\gamma}-2)}{3(\sqrt{\gamma}-1)(\sqrt{\gamma}+2)(3 \sqrt{\gamma}-2)} \\
& +\frac{4}{\sqrt{3} \pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2) \sin \left(-\frac{3 \pi}{\sqrt{\gamma}}\right)}{(9-\gamma)(2 \sqrt{\gamma}-3)(4 \sqrt{\gamma}-3)} \tag{1.3}\\
& +\frac{2}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2)}{(16-\gamma)(3 \sqrt{\gamma}-4)(5 \sqrt{\gamma}-4)} \\
& +\sqrt{\frac{6}{5}} \frac{2}{\pi} \frac{\gamma^{2}(\sqrt{\gamma}-2)}{\sqrt{\gamma}-1} \sum_{k=5}^{\infty} \frac{1}{\left(k^{2}-\gamma\right)((k-1) \sqrt{\gamma}-k)((k+1) \sqrt{\gamma}-k)} .
\end{align*}
$$

Then $G_{\alpha, \beta}$ is a Riesz basis in $L^{2}(0, \pi)$.
The proof of this theorem is given in Section 3 and is based on a general basisness criterion provided in Section 2. We visualize special cases of domains on the (α, β) plane described in Theorem 1.3 in Figures 1 and 2 below.

Notice that, thanks to the orthonormality of $\left\{\varphi_{n}\right\}$, the terms in the first sum in (1.2) satisfy

$$
\begin{equation*}
0 \leq 1-\frac{\left\langle g_{\alpha, \beta}^{n}, \varphi_{n}\right\rangle^{2}}{\left\|g_{\alpha, \beta}^{n}\right\|^{2}}=\left\|g_{\alpha, \beta}^{n}-\varphi_{n}\right\|^{2}-\frac{\left(\left\|g_{\alpha, \beta}^{n}\right\|^{2}-\left\langle g_{\alpha, \beta}^{n}, \varphi_{n}\right\rangle\right)^{2}}{\left\|g_{\alpha, \beta}^{n}\right\|^{2}} \leq\left\|g_{\alpha, \beta}^{n}-\varphi_{n}\right\|^{2}, \tag{1.4}
\end{equation*}
$$

and we have the explicit bounds

$$
\left\|g_{\alpha, \beta}^{n}-\varphi_{n}\right\|^{2} \leq \begin{cases}\frac{8\left(3+\pi^{2}\right)}{9} \frac{(\max (\sqrt{\alpha}, \sqrt{\beta})-n)^{2}}{n^{2}} & \text { for even } n \tag{1.5}\\ \frac{8 n^{2}\left(n^{2}+1\right)}{(n-1)^{4}} \frac{(\sqrt{\alpha}-n)^{2}}{n^{2}} & \text { for odd } n \geq 3 \text { with } \alpha \geq n^{2} \\ \frac{10 n^{2}\left(n^{2}+1\right)}{(n+1)^{4}} \frac{(\sqrt{\beta}-n)^{2}}{n^{2}} & \text { for odd } n \geq 3 \text { with } \beta>n^{2}\end{cases}
$$

see the estimates $(3.2),(3.4),(3.5),(3.6)$ in [2, Section 3]. In view of (1.4), if we choose $N=\emptyset$, then Theorem 1.3 is an improvement of [2, Theorem 1.4].

Let us summarize a few properties of the function E defined in Theorem 1.3 , see the end of Section 3 for a discussion.

Lemma 1.4. The function E has the following properties:
(i) E is continuous in $[4,9)$.
(ii) Each summand in the definition 1.3 of E is strictly increasing in $[4,9)$.
(iii) We have $E(4)=0$ and $E(6.49278 \ldots)=1$.
(iv) The infinite sum in the definition 1.3 of E in $(4,9)$ can be expressed as follows:

$$
\begin{aligned}
& \sqrt{\frac{6}{5}} \frac{2}{\pi} \frac{\gamma^{2}(\sqrt{\gamma}-2)}{\sqrt{\gamma}-1} \sum_{k=5}^{\infty} \frac{1}{\left(k^{2}-\gamma\right)((k-1) \sqrt{\gamma}-k)((k+1) \sqrt{\gamma}-k)} \\
& =\sqrt{\frac{6}{5}} \frac{2}{\pi} \frac{\sqrt{\gamma}}{\sqrt{\gamma}-1} \sum_{k=5}^{\infty}\left(\frac{1}{k^{2}-\gamma}-\frac{1}{k^{2}-\frac{\gamma}{(\sqrt{\gamma}-1)^{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sqrt{\frac{6}{5}} \frac{1}{\pi(\sqrt{\gamma}-1)}\left(\pi(\sqrt{\gamma}-1) \cot \left(\frac{\pi \sqrt{\gamma}}{\sqrt{\gamma}-1}\right)-\pi \cot (\pi \sqrt{\gamma})-(\sqrt{\gamma}-2)\right) \\
& -\sqrt{\frac{6}{5}} \frac{2}{\pi} \frac{\gamma^{2}(\sqrt{\gamma}-2)}{\sqrt{\gamma}-1} \sum_{k=1}^{4} \frac{1}{\left(k^{2}-\gamma\right)((k-1) \sqrt{\gamma}-k)((k+1) \sqrt{\gamma}-k)}
\end{aligned}
$$

The interval $[4,9)$ appears naturally in the proof of Theorem 1.3 . In fact, Lemma 1.4 (iii) indicates that the highest possible value of $\sup _{n \in N}\left\{4 \max (\alpha(n), \beta(n)) / n^{2}\right\}$ to satisfy the assumption $\sqrt{1.2}$ is even smaller than 9 .

We obtain the following practical corollary of Theorem 1.3 by applying the upper bounds $\sqrt{1.5}$ for the case that N is the set of all even natural numbers, see Figure 1 .

Corollary 1.5. Let $G_{\alpha, \beta}$ be a Fučik system, and $\varepsilon>0$. Assume that

$$
\sup _{n \in \mathbb{N} \text { even }}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}<6.49278 \ldots
$$

and

$$
\max (\alpha(n), \beta(n)) \leq\left(n+\sqrt{c_{n}} n^{(1-\varepsilon) / 2}\right)^{2} \quad \text { for all odd } n \geq 3
$$

where

$$
0 \leq c_{n}<\frac{1-E^{2}\left(\sup _{n \in \mathbb{N} \text { even }}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}\right)}{45\left(\left(1-\frac{1}{2^{1+\varepsilon}}\right) \zeta(1+\varepsilon)-1\right)}
$$

with the Riemann zeta function ζ. Then $G_{\alpha, \beta}$ is a Riesz basis in $L^{2}(0, \pi)$.

Figure 1. The assumptions of Corollary 1.5 are satisfied for $(\alpha(n), \beta(n))$ belonging to bold parts of curves Γ_{n} inside the shaded regions. We have $\varepsilon=0.5$ for both panels and $\sup _{n \in \mathbb{N} \text { even }}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}=5,6$ in panel (A), (B), respectively.

If we assume that the first sum of $\sqrt[1.2]{ }$ in Theorem 1.3 is vanishing, which corresponds to $c_{n}=0$ for all odd $n \geq 3$ in the previous corollary, we obtain the following result.

Corollary 1.6. Let $G_{\alpha, \beta}$ be a Fučík system such that $g_{\alpha, \beta}^{n}=\varphi_{n}$ for any odd n. Assume that

$$
\begin{equation*}
\sup _{n \in \mathbb{N} \text { even }}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}<6.49278 \ldots \tag{1.6}
\end{equation*}
$$

Then $G_{\alpha, \beta}$ is a Riesz basis in $L^{2}(0, \pi)$.

Figure 2. The assumption 1.6 is satisfied for $(\alpha(n), \beta(n))$ belonging to bold parts of curves Γ_{n} inside the shaded region.

We remark that Corollaries 1.5 and 1.6 are significant improvements of [2, Theorem 1.9] since each point $(\alpha(n), \beta(n)) \in \Gamma_{n}$ for even $n \geq 2$ is free to belong to the whole angular sector in between the line

$$
\beta=\left(\sqrt{\sup _{n \in \mathbb{N} \text { even }}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}}-1\right)^{-2} \alpha
$$

and its reflection with respect to the main diagonal $\alpha=\beta$, and the angle of that sector is allowed to be larger than the one provided by [2, Theorem 1.9]. We refer to Figure 2 for the domain on the (α, β)-plane given by Corollary 1.6. Moreover, Corollary 1.5 improves [2, Theorem 1.9] in the sense that $g_{\alpha, \beta}^{n}$ for odd $n \geq 3$ might differ from φ_{n}, see Figure 1 .

2. BASISNESS CRITERION

In this section, we formulate a useful generalization of the separation of variables approach of [5] in a real Hilbert space X. The provided criterion will be applied to the space $L^{2}(0, \pi)$ to prove our main result, Theorem 1.3 , in the subsequent section.
Theorem 2.1. Let $M \in \mathbb{N}$. Let $N_{*}, N_{m} \subset \mathbb{N}, 1 \leq m \leq M$, be pairwise disjoint sets which form a decomposition of the natural numbers, i.e.,

$$
N_{*} \cup \bigcup_{m=1}^{M} N_{m}=\mathbb{N}
$$

Let $\left\{\phi_{n}\right\}$ be a complete orthonormal sequence in X and $\left\{f_{n}\right\} \subset X$ be a sequence that can be represented as

$$
\begin{equation*}
f_{n}=\phi_{n}+\sum_{k=1}^{\infty} C_{n, k}^{m} T_{k}^{m} \phi_{n} \quad \text { for every } n \in N_{m}, 1 \leq m \leq M \tag{2.1}
\end{equation*}
$$

and satisfies

$$
\Lambda_{*}:=\left(\sum_{n \in N_{*}}\left[1-\frac{\left\langle f_{n}, \phi_{n}\right\rangle^{2}}{\left\|f_{n}\right\|^{2}}\right]\right)^{1 / 2}<\infty
$$

In the representation formula (2.1), $\left\{T_{k}^{m}\right\}$ is a family of bounded linear mappings from X to itself with bounds $\left\|T_{k}^{m}\right\|_{*} \leq t_{k}^{m}$ on the operator norm and $\left\{C_{n, k}^{m}\right\}$ is a family of constants with uniform bounds $\left|C_{n, k}^{m}\right| \leq c_{k}^{m}$ that satisfy

$$
\begin{equation*}
\Lambda_{m}:=\sum_{k=1}^{\infty} c_{k}^{m} t_{k}^{m}<\infty \tag{2.2}
\end{equation*}
$$

Then $\left\{f_{n}\right\}$ is a basis in X provided that

$$
\begin{equation*}
\Lambda_{*}^{2}+\sum_{m=1}^{M} \Lambda_{m}^{2}<1 \tag{2.3}
\end{equation*}
$$

If, in addition, the subsequence $\left\{f_{n}\right\}_{n \in N_{*}}$ is bounded, then $\left\{f_{n}\right\}$ is a Riesz basis in X.

Proof. Denote $\widetilde{f}_{n}=\rho_{n} f_{n}$, where $\rho_{n}=1$ for $n \in \mathbb{N} \backslash N_{*}$, and the values of ρ_{n} for $n \in N_{*}$ will be specified later. Let $\left\{a_{n}\right\}_{n \in \widetilde{N}}$ be an arbitrary finite sequence of constants with a finite index set $\widetilde{N} \subset \mathbb{N}$. Setting $\widetilde{N}_{*}=N_{*} \cap \widetilde{N}$ and $\widetilde{N}_{m}=N_{m} \cap \tilde{N}$ for every $1 \leq m \leq M$, we obtain

$$
\begin{equation*}
\left\|\sum_{n \in \widetilde{N}} a_{n}\left(\tilde{f}_{n}-\phi_{n}\right)\right\| \leq \sum_{m=1}^{M}\left\|\sum_{n \in \widetilde{N}_{m}} a_{n}\left(f_{n}-\phi_{n}\right)\right\|+\left\|\sum_{n \in \widetilde{N}_{*}} a_{n}\left(\rho_{n} f_{n}-\phi_{n}\right)\right\| \tag{2.4}
\end{equation*}
$$

For the first sum on the right-hand side of 2.4 , we apply the representation 2.1 and obtain

$$
\begin{aligned}
& \sum_{m=1}^{M}\left\|\sum_{n \in \widetilde{N}_{m}} a_{n}\left(f_{n}-\phi_{n}\right)\right\| \\
& =\sum_{m=1}^{M}\left\|\sum_{n \in \widetilde{N}_{m}} a_{n} \sum_{k=1}^{\infty} C_{n, k}^{m} T_{k}^{m} \phi_{n}\right\|=\sum_{m=1}^{M}\left\|\sum_{k=1}^{\infty} T_{k}^{m} \sum_{n \in \tilde{N}_{m}} C_{n, k}^{m} a_{n} \phi_{n}\right\| \\
& \leq \sum_{m=1}^{M} \sum_{k=1}^{\infty}\left\|T_{k}^{m} \sum_{n \in \widetilde{N}_{m}} C_{n, k}^{m} a_{n} \phi_{n}\right\| \leq \sum_{m=1}^{M} \sum_{k=1}^{\infty} t_{k}^{m}\left\|\sum_{n \in \widetilde{N}_{m}} C_{n, k}^{m} a_{n} \phi_{n}\right\| \\
& \leq \sum_{m=1}^{M} \sum_{k=1}^{\infty} t_{k}^{m} c_{k}^{m}\left\|\sum_{n \in \widetilde{N}_{m}} a_{n} \phi_{n}\right\|=\sum_{m=1}^{M} \Lambda_{m}\left\|\sum_{n \in \widetilde{N}_{m}} a_{n} \phi_{n}\right\|
\end{aligned}
$$

while for the second sum we obtain

$$
\left\|\sum_{n \in \widetilde{N}_{*}} a_{n}\left(\rho_{n} f_{n}-\phi_{n}\right)\right\| \leq\left(\sum_{n \in \widetilde{N}_{*}}\left\|\rho_{n} f_{n}-\phi_{n}\right\|^{2}\right)^{1 / 2}\left(\sum_{n \in \widetilde{N}_{*}}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

Let us choose ρ_{n} to be a minimizer of the distance $\left\|\rho f_{n}-\phi_{n}\right\|^{2}$ with respect to ρ. Since

$$
\left\|\rho f_{n}-\phi_{n}\right\|^{2}=\rho^{2}\left\|f_{n}\right\|^{2}-2 \rho\left\langle f_{n}, \phi_{n}\right\rangle+1
$$

we readily see that
$\left\|\rho_{n} f_{n}-\phi_{n}\right\|^{2}=\min _{\rho \in \mathbb{R}}\left\|\rho f_{n}-\phi_{n}\right\|^{2}=1-\frac{\left\langle f_{n}, \phi_{n}\right\rangle^{2}}{\left\|f_{n}\right\|^{2}}=\left\|f_{n}-\phi_{n}\right\|^{2}-\frac{\left(\left\|f_{n}\right\|^{2}-\left\langle f_{n}, \phi_{n}\right\rangle\right)^{2}}{\left\|f_{n}\right\|^{2}}$
with $\rho_{n}=\left\langle f_{n}, \phi_{n}\right\rangle /\left\|f_{n}\right\|^{2}$. Evidently, we have $\left|\rho_{n}\right| \leq 1$. We remark that in case of $\rho_{n}=0$, we get $\Lambda_{*} \geq 1$ which violates the assumption (2.3). Applying now the Cauchy inequality, we deduce from 2.4 that

$$
\begin{aligned}
\left\|\sum_{n \in \widetilde{N}} a_{n}\left(\widetilde{f}_{n}-\phi_{n}\right)\right\| & \leq \sum_{m=1}^{M} \Lambda_{m}\left\|\sum_{n \in \tilde{N}_{m}} a_{n} \phi_{n}\right\|+\Lambda_{*}\left(\sum_{n \in \widetilde{N}_{*}}\left|a_{n}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{m=1}^{M} \Lambda_{m}^{2}+\Lambda_{*}^{2}\right)^{1 / 2}\left\|\sum_{n \in \widetilde{N}} a_{n} \phi_{n}\right\|
\end{aligned}
$$

We conclude from the assumption 2.3 that the sequence $\left\{\tilde{f}_{n}\right\}$ is Paley-Wiener near to the complete orthonormal sequence $\left\{\phi_{n}\right\}$ and, thus, it is a Riesz basis in X, see, e.g., [9, Chapter 1, Theorem 10]. Clearly, $\left\{f_{n}\right\}=\left\{\rho_{n}^{-1} \widetilde{f}_{n}\right\}$ is a basis in X. Assume that the subsequence $\left\{f_{n}\right\}_{n \in N_{*}}$ is bounded. Then there exists $0<c<1$ such that $\left|\rho_{n}\right| \geq c$ for all $n \in \tilde{N}_{*}$. This is evident for finite N_{*} since $\rho_{n} \neq 0$. In the case of infinite N_{*}, if we suppose that ρ_{n} goes to zero up to a subsequence, then the sum

$$
\Lambda_{*}=\left(\sum_{n \in N_{*}}\left[1-\frac{\left\langle f_{n}, \phi_{n}\right\rangle^{2}}{\left\|f_{n}\right\|^{2}}\right]\right)^{1 / 2}=\left(\sum_{n \in N_{*}}\left[1-\rho_{n}^{2}\left\|f_{n}\right\|^{2}\right]\right)^{1 / 2}
$$

does not converge. Recalling $\rho_{n}=1$ for every $n \in \mathbb{N} \backslash N_{*}$, we obtain $1 \leq\left|\rho_{n}^{-1}\right| \leq c^{-1}$ for all $n \in \mathbb{N}$ which implies that $\left\{f_{n}\right\}$ is a Riesz basis in X, see, e.g., 9 , Chapter 1 , Theorem 9].

In the case $N_{1}=\mathbb{N}$, Theorem 2.1 simplifies to Theorem D from [5] and for $N_{*}=\mathbb{N}$ we get the result of Theorem V-2.21 and Corollary V-2.22 i) from [7] which were discussed in [2].

Remark 2.2. It can be seen from the proof of Theorem 2.1 that if we weaken the definition of Λ_{*} to

$$
\widetilde{\Lambda}_{*}:=\left(\sum_{n \in N_{*}}\left\|f_{n}-\phi_{n}\right\|^{2}\right)^{1 / 2} \leq \Lambda_{*}
$$

then we can formulate the following result under the assumptions of Theorem 2.1 the sequence $\left\{f_{n}\right\}$ is a Riesz basis in X provided that

$$
\widetilde{\Lambda}_{*}^{2}+\sum_{m=1}^{M} \Lambda_{m}^{2}<1
$$

The boundedness of the subsequence $\left\{f_{n}\right\}_{n \in N_{*}}$ is not required under this modified assumption.

3. Proof of Theorem 1.3

We prove Theorem 1.3 by applying the general basisness criterion introduced in the previous section. To determine the bounds on the family of constants $\left\{C_{n, k}^{m}\right\}$ in Theorem 2.1 we will make use of the Fourier coefficients of Fučík eigenfunctions corresponding to Fučík eigenvalues on the first nontrivial curve Γ_{2}. Namely, we
provide estimates for the Fourier coefficients of the odd Fourier expansion of the function

$$
g_{\gamma, \gamma /(\sqrt{\gamma}-1)^{2}}^{2}=\sum_{k=1}^{\infty} A_{k}(\gamma) \varphi_{k}(x)
$$

for $\gamma>4$ which are given by

$$
A_{k}(\gamma)=\int_{0}^{\pi} g_{\gamma, \gamma /(\sqrt{\gamma}-1)^{2}}^{2}(x) \varphi_{k}(x) \mathrm{d} x=\frac{2}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(2-\sqrt{\gamma}) \sin \left(\frac{k \pi}{\sqrt{\gamma}}\right)}{\left(k^{2}-\gamma\right)\left(k^{2}(\sqrt{\gamma}-1)^{2}-\gamma\right)}
$$

and of the function

$$
g_{\delta /(\sqrt{\delta}-1)^{2}, \delta}^{2}=\sum_{k=1}^{\infty} \widetilde{A}_{k}(\delta) \varphi_{k}(x)
$$

for $\delta>4$ which are given by

$$
\widetilde{A}_{k}(\delta)=\int_{0}^{\pi} g_{\delta /(\sqrt{\delta}-1)^{2}, \delta}^{2}(x) \varphi_{k}(x) \mathrm{d} x=(-1)^{k} A_{k}(\delta)
$$

In the case $\gamma=\delta=4$, we have $A_{2}=1$ and $A_{k}=0$ for any other $k \in \mathbb{N}$.
Obviously, we have

$$
\begin{equation*}
\left|A_{1}(\gamma)\right|=B_{1}(\gamma):=\frac{2}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2) \sin \left(\frac{\pi}{\sqrt{\gamma}}\right)}{(\gamma-1)(2 \sqrt{\gamma}-1)} \tag{3.1}
\end{equation*}
$$

and it was shown in [2, Section 5] that

$$
\begin{equation*}
\left|A_{2}(\gamma)-1\right| \leq B_{2}(\gamma):=\frac{\left(\left(3+\pi^{2}\right) \gamma+\left(9-2 \pi^{2}\right) \sqrt{\gamma}-6\right)(\sqrt{\gamma}-2)}{3(\sqrt{\gamma}-1)(\sqrt{\gamma}+2)(3 \sqrt{\gamma}-2)} \tag{3.2}
\end{equation*}
$$

For $\gamma \in[4,9)$, we clearly have

$$
\begin{equation*}
\left|A_{3}(\gamma)\right|=B_{3}(\gamma):=\frac{2}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2)\left(-\sin \left(\frac{3 \pi}{\sqrt{\gamma}}\right)\right)}{(9-\gamma)(2 \sqrt{\gamma}-3)(4 \sqrt{\gamma}-3)} \tag{3.3}
\end{equation*}
$$

and for $k \geq 4$ we use the simple estimate

$$
\begin{equation*}
\left|A_{k}(\gamma)\right| \leq B_{k}(\gamma):=\frac{2}{\pi} \frac{\gamma^{2}}{\sqrt{\gamma}-1} \frac{(\sqrt{\gamma}-2)}{\left(k^{2}-\gamma\right)((k-1) \sqrt{\gamma}-k)((k+1) \sqrt{\gamma}-k)} \tag{3.4}
\end{equation*}
$$

Evidently, the same bounds hold for \widetilde{A}_{k}. Numerical calculations with the exact coefficients show that the used estimates in (3.2) and (3.4) do not influence the results in a significant way.

Lemma 3.1. Let $\gamma \in[4,9)$ and $k \in \mathbb{N}$. Then B_{k} is strictly increasing.
Proof. For simplicity, we introduce the change of variables $x=\sqrt{\gamma} \in[2,3)$. The first derivative of $B_{k}\left(x^{2}\right)$ with $k \in \mathbb{N} \backslash\{1,3\}$ is a rational function with a positive denominator and we can easily check that the numerator is positive, as well. Hence, $B_{k}(\gamma)$ with $k \in \mathbb{N} \backslash\{1,3\}$ is strictly increasing for $\gamma \in[4,9)$. The first derivative of $B_{1}\left(x^{2}\right)$ takes the form
$\frac{2 x^{2}(x-1) \cos \left(\frac{\pi}{x}\right)\left[x\left(2 x^{4}-4 x^{3}-x^{2}+15 x-8\right) \tan \left(\frac{\pi}{x}\right)-\pi\left(2 x^{4}-5 x^{3}+5 x-2\right)\right]}{\pi(x-1)^{2}\left(x^{2}-1\right)^{2}(2 x-1)^{2}}$.
Noting that $x\left(2 x^{4}-4 x^{3}-x^{2}+15 x-8\right)>0$ for $x \in[2,3)$, we can use the simple lower bound $\tan \left(\frac{\pi}{x}\right) \geq \sqrt{3}$ to show that the expression in square brackets is positive.

Since all other terms in the derivative are also positive, we conclude that $B_{1}(\gamma)$ is strictly increasing for $\gamma \in[4,9)$.

Finally, the numerator of the first derivative of $B_{3}\left(x^{2}\right)$ is given by

$$
\begin{align*}
& -2 x^{2}\left[x\left(10 x^{5}+90 x^{4}-765 x^{3}+1872 x^{2}-1863 x+648\right) \sin \left(\frac{3 \pi}{x}\right)\right. \\
& \left.+3 \pi\left(8 x^{6}-42 x^{5}+7 x^{4}+315 x^{3}-693 x^{2}+567 x-162\right) \cos \left(\frac{3 \pi}{x}\right)\right] \tag{3.5}
\end{align*}
$$

whereas the denominator is a positive polynomial. We have $\sin \left(\frac{3 \pi}{x}\right)<0$ and $\cos \left(\frac{3 \pi}{x}\right)<0$ for $x \in[2,3)$, and taking into account that

$$
\begin{gathered}
x\left(10 x^{5}+90 x^{4}-765 x^{3}+1872 x^{2}-1863 x+648\right)<0, \\
3 \pi\left(8 x^{6}-42 x^{5}+7 x^{4}+315 x^{3}-693 x^{2}+567 x-162\right)>0,
\end{gathered}
$$

we employ the estimates

$$
\sin \left(\frac{3 \pi}{x}\right)<-\left(\frac{3 \pi}{x}-\pi\right)+\frac{1}{6}\left(\frac{3 \pi}{x}-\pi\right)^{3} \quad \text { and } \quad \cos \left(\frac{3 \pi}{x}\right)>-1 .
$$

As a result, the expression (3.5) is estimated from below by a polynomial which is positive for $x \in[2,3)$. Thus, $B_{3}(\gamma)$ is strictly increasing for $\gamma \in[4,9)$.

Now we are ready to prove our main result.
Proof of Theorem 1.3. We apply Theorem 2.1, where we consider $X=L^{2}(0, \pi)$, the sequence $\left\{f_{n}\right\}$ is the Fučík system, which is bounded by definition, and the complete orthonormal set $\left\{\phi_{n}\right\}$ is given by $\left\{\varphi_{n}\right\}$. We set $M=1$ and $N_{1}=N$ and choose $N_{*}=\mathbb{N} \backslash N$ as assumed in Theorem 1.3 . We define the linear operators $T_{k}^{1}: L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)$ as

$$
T_{k}^{1} g(x)=g^{*}\left(\frac{k x}{2}\right)
$$

where

$$
g^{*}(x)=(-1)^{\kappa} g(x-\pi \kappa) \quad \text { for } \pi \kappa \leq x \leq \pi(\kappa+1), \quad \kappa \in \mathbb{N} \cup\{0\}
$$

is the 2π-antiperiodic extension for arbitrary functions $g \in L^{2}(0, \pi)$. In particular, we have $T_{k}^{1} \sin (n x)=\sin \left(\frac{k n x}{2}\right)$ for every even n. It was proven in [2, Appendix B] that $\left\|T_{k}^{1}\right\|_{*}=1$ for even k and $\left\|T_{k}^{1}\right\|_{*}=\sqrt{1+1 / k}$ for odd k.

Let $n \in N$ be fixed and recall that n is even. To begin with, we assume that $\alpha(n)>n^{2}$. The Fučík eigenfunction $g_{\alpha, \beta}^{n}$ has the dilated structure

$$
g_{\alpha, \beta}^{n}(x)=g_{\gamma_{n}, \gamma_{n} /\left(\sqrt{\gamma_{n}}-1\right)^{2}}^{2}\left(\frac{n x}{2}\right) \quad \text { with } \quad \gamma_{n}=\frac{4 \alpha(n)}{n^{2}}
$$

and, thus, has the odd Fourier expansion

$$
g_{\alpha, \beta}^{n}(x)=g_{\gamma_{n}, \gamma_{n} /\left(\sqrt{\gamma_{n}}-1\right)^{2}}^{2}\left(\frac{n x}{2}\right)=\sum_{k=1}^{\infty} A_{k}\left(\gamma_{n}\right) \varphi_{k}\left(\frac{n x}{2}\right)=\sum_{k=1}^{\infty} A_{k}\left(\gamma_{n}\right) T_{k}^{1} \varphi_{n}(x) .
$$

From this, we directly see that the representation 2.1) of $g_{\alpha, \beta}^{n}$ in terms of $\left\{\varphi_{n}\right\}$ holds with the constants $C_{n, k}^{1}=A_{k}\left(\gamma_{n}\right)$ for $k \neq 2$ and $C_{n, 2}^{1}=1-A_{2}\left(\gamma_{n}\right)$. The bounds for the constants $\left|C_{n, k}^{1}\right|$ are given by the functions $B_{k}\left(\gamma_{n}\right)$ defined in (3.1), (3.2),
(3.3), and (3.4), which are strictly increasing in the interval [4,9) by Lemma 3.1. For the case $\beta(n)>n^{2}$, the Fučík eigenfunction has the form

$$
g_{\alpha, \beta}^{n}(x)=g_{\delta_{n} /\left(\sqrt{\delta_{n}}-1\right)^{2}, \delta_{n}}^{2}\left(\frac{n x}{2}\right) \quad \text { with } \quad \delta_{n}=\frac{4 \beta(n)}{n^{2}}
$$

and by analogous arguments we get the bounds $\left|C_{n, k}^{1}\right| \leq B_{k}\left(\delta_{n}\right)$. If $\alpha(n)=n^{2}$, and hence $\beta(n)=n^{2}$, then we set $C_{n, k}^{1}=0$ for every $k \in \mathbb{N}$.

In view of the monotonicity, we have

$$
\left|C_{n, k}^{1}\right| \leq B_{k}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right)
$$

Therefore, we can provide the following upper estimate on the constant Λ_{1} defined in 2.2):

$$
\begin{aligned}
\Lambda_{1} \leq & \sqrt{2} B_{1}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right)+B_{2}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right) \\
& +\sqrt{\frac{4}{3}} B_{3}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right)+B_{4}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right) \\
& +\sqrt{\frac{6}{5}} \sum_{k=5}^{\infty} B_{k}\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right) \\
= & E\left(\sup _{n \in N} \max \left(\gamma_{n}, \delta_{n}\right)\right)=E\left(\sup _{n \in N}\left\{\frac{4 \max (\alpha(n), \beta(n))}{n^{2}}\right\}\right)
\end{aligned}
$$

with the function E introduced in Theorem 1.3 , and E is strictly increasing in $[4,9)$. Noticing that we have

$$
\Lambda_{*}=\left(\sum_{n \in N_{*}}\left[1-\frac{\left\langle g_{\alpha, \beta}^{n}, \varphi_{n}\right\rangle^{2}}{\left\|g_{\alpha, \beta}^{n}\right\|^{2}}\right]\right)^{1 / 2}
$$

the assumption (1.2) yields the assumption $\Lambda_{*}^{2}+\Lambda_{1}^{2}<1$ in Theorem 2.1. This completes the proof of Theorem 1.3 .

We conclude this note by discussing Lemma 1.4. The monotonicity statement(ii) directly follows from Lemma 3.1, and to obtain the alternative representation (iv), we make use of the identity

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}-a^{2}}=\frac{1}{2 a^{2}}-\frac{\pi \cot (\pi a)}{2 a}, \quad a \notin \mathbb{N}
$$

see, e.g., [1, (6.3.13)]. The representation (iv) shows that the function E is continuous in $[4,9)$. The combination of the continuity and monotonicity of E allows us to compute values of E with an arbitrary precision. In particular, we have $E(6.49278 \ldots)=1$.

Acknowledgements. V. Bobkov was supported in the framework of implementation of the development program of Volga Region Mathematical Center (agreement no. 075-02-2022-888). This work is supported by the German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD), Project F-2021b-8_d.

References

[1] M. Abramowitz, I. A. Stegun; Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, 1972.
[2] F. Baustian, V. Bobkov; Basis properties of Fuč̌̌k eigenfunctions, Anal. Math., 48 (2022), 619-648.
[3] M. Cuesta; On the Fučik spectrum of the Laplacian and p-Laplacian, Proceedings of the "2000 Seminar in Differential Equations", Kvilda (Czech Republic), 2000.
[4] E. N. Dancer; On the Dirichlet problem for weakly non-linear elliptic partial differential equations, P. Roy. Soc. Edinb. A, 76 (1977), 283-300.
[5] R. J. Duffin, J. J. Eachus; Some notes on an expansion theorem of Paley and Wiener, Bull. Am. Math. Soc., 48 (1942), 850-855.
[6] S. Fučík; Boundary value problems with jumping nonlinearities, Čas. Pěst. Mat., 101 (1976), 69-87.
[7] T. Kato; Perturbation theory for linear operators, Springer, 1980.
[8] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou; Topological and variational methods with applications to nonlinear boundary value problems, Springer, 2014.
[9] R. M. Young; An introduction to nonharmonic Fourier series, Academic Press, 1980.
Falko Baustian
Institute of Mathematics, University of Rostock, Germany
Email address: falko.baustian@uni-rostock.de
Vladimir Bobkov
Institute of Mathematics, Ufa Federal Research Centre, Russia
Email address: bobkov@matem.anrb.ru

[^0]: 2020 Mathematics Subject Classification. 34L10, 34B08, 47A70.
 Key words and phrases. Fucik spectrum; Fucik eigenfunctions; Riesz basis; Paley-Wiener stability.
 (C)2022 This work is licensed under a CC BY 4.0 license.

 Published August 25, 2022.

