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INFINITELY MANY RADIAL SOLUTIONS FOR A p-LAPLACIAN

PROBLEM WITH NEGATIVE WEIGHT AT THE ORIGIN

ALFONSO CASTRO, JORGE COSSIO, SIGIFREDO HERRÓN, CARLOS VÉLEZ

Abstract. We prove the existence of infinitely many sign-changing radial

solutions for a Dirichlet problem in a ball defined by the p-Laplacian operator
perturbed by a nonlinearity of the form W (|x|)g(u), where the weight function

W changes sign exactly once, W (0) < 0, W (1) > 0, and function g is p-

superlinear at infinity. Standard phase plane analysis arguments do not apply
here because the solutions to the corresponding initial value problem may blow

up in the region where the weight function is negative. Our result extend those

in [2], where W is assumed to be positive at 0 and negative at 1.

1. Introduction

We study the quasilinear Dirichlet problem

∆p u+W (|x|)g(u) = 0 in B1(0) ⊂ RN ,
u = 0 on ∂B1(0),

(1.1)

where N ≥ 2, p > 1, ∆pu = div(|∇u|p−2∇u) denotes the p-Laplacian operator, and
B1(0) denotes the unit ball in RN centered at the origin.

We assume that g is a non-decreasing function which is also locally Lipschitz
continuous and satisfies

sg(s) > 0 for s 6= 0, lim
|s|→∞

g(s)

s|s|p−2
=∞. (1.2)

We also assume that there exists C > 0 such that

|g(s)| 6 C |s|p−1, for all s ∈ [−1, 1]. (1.3)

Note that the inequality in (1.2) implies g(0) = 0 and G(s) :=
∫ s

0
g(t)dt > 0 for all

s ∈ Rr {0}. The function W is assumed to be of class C1[0, 1] and such that there
exists 0 < X < 1 with

W (s) < 0 for s ∈ [0, X),

W (X) = 0, W ′(X) > 0, W (s) > 0 for s ∈ (X, 1].
(1.4)
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The solutions to(
|u′|p−2 u′

)′
(r) +

N − 1

r
|u′(r)|p−2u′(r) +W (r)g

(
u(r)

)
= 0, 0 < r < 1, (1.5)

subject to

u′(0) = 0, u(1) = 0, (1.6)

give the radial solutions to (1.1) in the sense of distributions. More exactly, if

v : B1(0) → R is a radial function and the function u : [0, 1] → R defined by

u(
√
x2

1 + · · ·+ x2
N ) := v(x1, . . . , xN ) satisfies (1.5)-(1.6), then v is a solution to (1.1)

in the sense of distributions, see Theorem 2.10 below. Because of the singularity
given by the zeros of u′ the solutions to (1.1) need not be of class C2. In fact,
regularity theory for quasilinear problems indicates that the distributional solutions
to (1.1) may only be expected to be in the Holder space C1,µ for some µ ∈ (0, 1),
see [9, 14]. Thus, from now on, solution stands for distributional solution. Our
main result is the following theorem.

Theorem 1.1. If p 6 N , (1.2), (1.3) and (1.4) hold, then for each odd positive
integer k problem (1.1) has a radial solution with k zeros. In particular, (1.1) has
infinitely many radial solutions.

For p = 2, W a positive constant, and g satisfying a growth condition such as

(subcritical): lim
|u|→+∞

g(u))

|u|q−1u
∈ (0,∞) with q ∈

(
1,
N + 2

N − 2

)
, or

(subcritical on (0,+∞)) : lim
u→+∞

g(u))

|u|q−1u
∈ (0,∞) with q ∈

(
1,

N

N − 2

)
,

(1.7)

Theorem 1.1 was proven in [4]. This result was extended to all p > 1 in [10]. In [5]
the existence of infinitely many solutions with W constant and p = 2 was extended
to sub-supercritical nonlinearities; that is, nonlinearities satisfying

(subcritical in (0,+∞)) : lim
u→+∞

g(u))

|u|q1−1u
∈ (0,∞) with q1 ∈

(
1,
N + 2

N − 2

)
, or

(supercritical in (−∞, 0)) : lim
u→+∞

g(u))

|u|q2−1u
∈ (0,∞) with q2 ∈

(N + 2

N − 2
,+∞

)
.

(1.8)
In turn, the results in [5] were extended in [3] to all p > 1. The approach in
[4, 10, 5, 3] combines the continuous dependence of solutions to (1.5) with initial
value at r = 0 with phase plane analysis in order to apply the intermediate value
theorem. More recently, in [2], the authors considered the case where W is positive
at zero, negative at 1 and changes sign only once. In this case, the approach in
[4, 10, 5, 3] fails because the solutions to (1.5) with initial value at r = 0 may blow
up in (X, 1]. Such a difficulty was overcome in [2] by figuring out a subclass of
initial conditions at X such that the solutions to the corresponding initial value
problems do not blow up and depend continuously on those initial conditions.

Our assumption W < 0 in [0, X) causes some solutions to (1.5) with initial
condition at r = 0 to blow up in that interval. We bypass this difficulty by figuring
out initial conditions at X for which the solutions to initial value problems are
defined in [0, X], depend continuously on such initial conditions, and yield solutions
to (1.1). In establishing that such solutions exist the additional assumption p ≤ N
is needed due to the singularity at r = 0, see Lemma 2.7. On the other hand, since
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the coefficient (N − 1)/r is bounded away from zero in [X, 1], shooting from r = 1
towards X allows for g not to have growth restrictions of the type (1.7) or (1.8).

For examples of applications to problems with indefinite weight the reader is
referred to [11]. For recent results on quasilinear problems with weight see [1, 2, 7,
13, 16]. For related results on the existence of infinitely many radial solutions to
quasilinear problems see [3, 8, 12].

This article is organized as follows: in Section 2 we show that all solutions to
(2.1) below are defined in [X, 1] and figure out the initial conditions at r = X for
which the solutions to (1.5) do not blow up in [0, X]. More precisely, we find initial
conditions (a, ηa), a > 0, for the initial value problem (2.9) such that u ≡ ua,η(a)

is defined on [0, X], positive, increasing, and u′(0) = 0 (see Lemmas 2.6 and 2.7
below). In Section 3 we prove that, for any T ∈ (X, 1), if u(r, d) is the solution to
(2.1) below then limd→−∞(u2(r, d)+(u′(r, d))2) = +∞ uniformly for r ∈ [T, 1]. We
also present in Section 3 the phase plane analysis of the solutions to (2.1) in [X, 1].
The arguments in Section 3 may be traced back to work by Professor Alan C. Lazer
and one the authors in [6]. In Section 4 we prove the main result by connecting
at X solutions to the regular initial value problem at r = 1 with those that do
not blow up in [0, X]. Namely, we prove the existence of infinitely many values of
d such that the solution to (2.1) satisfies u(X) = a, u′(X) = ηa, for some a > 0.
Hence, by Theorem 2.10, they give infinitely many solutions to (1.1).

2. Initial value problem and preliminaries

We consider the initial value problem(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, 0 < r < 1,

u(1) = 0, u′(1) = d.
(2.1)

Let Φp(x) = x|x|p−2 for x ∈ R. We observe that, for each d ∈ R, a continuous
function u satisfies the integral equation

u(r) = −
∫ 1

r

Φ−1
p

(
Φp(d)t1−N +

∫ 1

t

(s
t

)N−1
W (s)g(u(s))ds

)
dt (2.2)

if and only if it is a solution to (2.1). In general, for any r0 ∈ (0, 1], a ∈ R, b ∈ R, a
continuous function u satisfies

u(r) = a−
∫ r0

r

Φ−1
p

((r0

t

)N−1
Φp(b) +

∫ r0

t

(s
t

)N−1
W (s)g(u(s))ds

)
dt, (2.3)

if and only if it satisfies(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, 0 < r < r0,

u(r0) = a, u′(r0) = b.
(2.4)

For d0 ∈ R− {0}, using the Contraction Mapping Principle and the fact that g
is a locally Lipschitzian function, we see there exists γ ∈ (0, 1] such that for each
d ∈ [d0 − γ, d0 + γ], equation (2.2) has a unique solution u(·, d) in the space of
continuous functions defined on [1−γ, 1]. This and the continuity of the right hand
side in (2.2) on (d, u) imply the continuous dependence of u(·, d) on d. When γ = 1
such a solution is a solution to (2.1). If γ ∈ (0, 1) the solution may be extended to
[1−γ1, 1] for some γ1 > γ by applying a similar argument to (2.3) with a = u(1−γ, d)
and b = u′(1 − γ, d). Hence, the function u(·, d) may be extended to a maximal
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interval which is either [0, 1] or (θ̂(d), 1] with limt→θ̂(d)+ [u2(t)+(u′(t))2] = +∞. We

remark that from the results in [15], because of hypothesis (1.3), no solution to (2.4)
satisfies limt→θ̂(d)+ [u2(t) + (u′(t))2] = 0 when (a, b) 6= (0, 0). For a comprehensive

study of existence, uniqueness and continuous dependence, we refer the reader to
[15].

In our next lemma we prove that θ̂(d) ≤ X. Since d0 ∈ R−{0} is arbitrary, this
shows the existence of a unique solution to (2.1) on [X, 1] that depends continuously
on d.

Lemma 2.1. For each d 6= 0, the solution to (2.1) is defined in [X, 1].

Proof. Let u(r) := u(r, d) be a solution to (2.1) and

E(r, d) ≡ E(r) :=
p− 1

p
|u′(r)|p +W (r)G

(
u(r)

)
. (2.5)

Let C1 = p(N − 1)/(p− 1). Since W ′(X) > 0, limr→X+ W ′(r)/W (r) = +∞. Thus,
there exists C2 > 0 such that W ′(r)/W (r) ≥ −C2 for r ∈ (X, 1]. We also let

C3 = C1/X + C2. Assuming that θ̂(d) ≥ X, there exists s ∈ (X, 1) such that

E(s) > eC3E(1). (2.6)

Since |x|p, x|x|p−2 and |x|p/(p−1) are differentiable functions, and

(|x|p/(p−1))′ =
p

p− 1
|x|(2−p)/(p−1)x,

the function |u′|p−2u′ is differentiable in (s, 1] (see (2.1)). Therefore, E is differen-
tiable on (s, 1] and for each r ∈ (s, 1],

E ′(r) =
(p− 1

p

∣∣|u′(r)|p−2u′(r)
∣∣p/(p−1)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r)

=
∣∣|u′(r)|p−2u′(r)

∣∣(2−p)/(p−1) |u′(r)|p−2u′(r)
(
|u′(r)|p−2u′(r)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r)

= |u′(r)|2−p|u′(r)|p−2u′(r)
(
|u′(r)|p−2u′(r)

)′
+W ′(r)G(u(r)) +W (r)g(u(r))u′(r).

(2.7)

This and (2.1) yield

E ′(r) = u′(r)
(
− N − 1

r
|u′(r)|p−2u′(r)−W (r)g(u(r))

)
+W ′(r)G(u(r))

+W (r)g(u(r))u′(r)

= −N − 1

r
|u′(r)|p +W ′(r)G(u(r))

= −p(N − 1)

(p− 1)r
E(r) +G

(
u(r)

)[p(N − 1)

(p− 1)r
W (r) +W ′(r)

]
≤W ′(r)G(u(r)),

(2.8)

where we used (2.5). Hence, from (2.7),

E ′(r) ≥ −p(N − 1)

(p− 1)r
E(r) +G

(
u(r)

)
W ′(r)
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≥ −p(N − 1)

(p− 1)r
E(r) + [W (r)G

(
u(r)

)
]W ′(r)/W (r)

≥ −p(N − 1)

(p− 1)r
E(r)− C2W (r)G

(
u(r)

)
≥ −p(N − 1)

(p− 1)r
E(r)− C2E(r)

=
(
− C1

r
− C2

)
E(r)

≥
(
− C1

X
− C2

)
E(r) := −C3E(r).

Integrating on [s, 1], we have eC3E(1)− eC3sE(s) ≥ 0. Since this inequality contra-

dicts (2.6) we have proven that θ̂(d) ≤ X, and hence the lemma follows. �

For a > 0 and b ∈ R, we consider the initial value problem

(
rN−1|u′(r)|p−2u′(r)

)′
+ rN−1W (r)g

(
u(r)

)
= 0, 0 < r < X

u(X) = a, u′(X) = b.
(2.9)

Because of our assumptions on g, the initial value problem (2.9) has a unique
solution ua,b on a maximal interval (ra,b, X].

Lemma 2.2. Let r0 ∈ (ra,b, X]. If ua,b(r0) > 0 and u′a,b(r0) ≤ 0, then u′a,b < 0 in

(ra,b, r0).

Proof. Let u := ua,b. Let ε > 0 be such that u(r) > u(r0)/2 for all r ∈ (r0 − ε, r0].
From (2.9), for r ∈ (r0 − ε, r0] we have

rN−1|u′(r)|p−2u′(r)

= rN−1
0 |u′(r0)|p−2u′(r0) +

∫ r0

r

sN−1W (s)g(u(s))ds < 0.
(2.10)

Let r̂ = inf{r ∈ (ra,b, r0) : u′ < 0 in (r, r0)}. Hence r̂ ≤ r0 − ε. Assuming that
r̂ > ra,b we have u(r̂) > 0 and, by (2.10), u′(r̂) < 0. Arguing as before, there exists
δ > 0 such that u′ < 0 in (r̂− δ, r̂) which contradicts the definition of r̂ and proves
that u′ < 0 in (ra,b, r0). �

Lemma 2.3. If 0 < b < b̃, y > max{ra,b, ra,b̃}, then ua,b(r) > ua,b̃(r) for all

r ∈ [y,X). Moreover, u′a,b(r) < u′
a,b̃

(r) for all r ∈ [y,X).

Proof. Let u = ua,b and v = ua,b̃. Since b < b̃ there exists ε > 0 such that

u(r) > v(r) for all r ∈ (X − ε,X). Assuming that u(r) 6> v(r) for all r ∈ [y,X),
due to the continuity of u and v there exists z ∈ [y,X) such that u(z) = v(z) and
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u(r) > v(r) for all r ∈ (z,X). On the other hand,

zN−1|u′(z)|p−2u′(z)

= XN−1|u′(X)|p−2u′(X) +

∫ X

z

sN−1W (s)g(u(s))ds

6 XN−1|u′(X)|p−2u′(X) +

∫ X

z

sN−1W (s)g(v(s))ds

< XN−1|v′(X)|p−2v′(X) +

∫ X

z

sN−1W (s)g(v(s))ds

= zN−1|v′(z)|p−2v′(z),

(2.11)

contradicting that v′(z) ≤ u′(z) since v(r) < u(r) for all r ∈ (z,X). A similar
argument proves the second assertion of the lemma. Thus, the lemma is proven. �

Lemma 2.4. For each a > 0 there exists ε > 0 such that if b ∈ (0, ε) then there
exists rb ∈ (ra,b, X] such that u′a,b(rb) = 0 and u′a,b(r) > 0 for all r ∈ [rb, X].

Proof. Let y = ra,0 and u = ua,0. By Lemma 2.2 we have u′((y + X)/2)) < 0.
This and continuous dependence on initial conditions imply the existence of ε > 0
such that if b ∈ (0, ε) then u′a,b((y + X)/2) < 0. Hence, by the intermediate value

theorem, for each b ∈ (0, ε) there exists rb ∈ ((y + X)/2, X) such that u′a,b(rb) =

0. By Lemma 2.2, rb is unique. Hence u′a,b(r) does not change sign in (rb, X].

Since u′a,b(X) > 0, it follows that u′a,b(r) > 0 for all r ∈ (rb, X]. This proves the
lemma. �

Lemma 2.5. For each a > 0 there exists b > 0 such that ua,b(r1) = 0 for some
r1 ∈ (ra,b, X].

Proof. Let b > 0 be such that

bp−1 > max{− inf{W (r); r ∈ (0, X]}2g(a), 2pap−1/Xp−1}

and u := ua,b. Since b > 0 there exists ε > 0 such that 0 < u(s) ≤ a for all
s ∈ (X − ε,X]. Let r ∈ (0, X) be such that 0 < u(s) ≤ a for s ∈ (r,X]. Hence

|u′(r)|p−2u′(r) = r1−N
(
XN−1bp−1 +

∫ X

r

sN−1W (s)g(u(s))ds
)

> r1−N
(
XN−1bp−1 +

XN

N
· inf{W (r); r ∈ (0, X]}g(a)

)
≥ bp−1 + inf{W (r); r ∈ (0, X]}g(a)

X

N

>
bp−1

2
>

2p−1ap−1

Xp−1
> 0.

(2.12)

Therefore, u′(r) > 2a/X. Let

r1 = inf{r ∈ (0, X); 0 < u(s) ≤ a for all s ∈ (r,X]} ≤ X − ε.

By the Mean Value Theorem, a ≥ a− u(r1) > (X − r1) 2a
X . Hence

r1 >
X

2
. (2.13)
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Since u′ > 0 on [r1, X], we have u(r1) < a. If u(r1) > 0, by the continuity of u,
there exists r2 < r1 such that u(s) ∈ (0, a] for all s ∈ [r1, X] contradicting the
definition of r1. Thus u(r1) = 0 and the lemma is proven. �

For a > 0 we define

b̂ = b̂(a) = sup{b > 0;ua,c(r) > 0 for all r ∈ (ra,c, X] and all c ∈ (0, b)}
≡ supBa.

(2.14)

From Lemma 2.4 and Lemma 2.5, 0 < b̂ < +∞.

Lemma 2.6. For all a > 0, ra,b̂ = 0, ua,b̂(r) > 0 for all r ∈ (0, X], and ua,b̂(r) is

monotonically increasing.

Proof. Let z = ua,b̂. First we prove that z(r) > 0 for all r ∈ (ra,b̂, X]. Suppose

there exists r1 ∈ (0, X] such that z(r1) = 0. Without loss of generality, we may
assume that z(r) > 0 for all r ∈ (r1, X]. By uniqueness of solutions to initial
value problems z′(r1) > 0. Hence there exists δ > 0 such that z(r) < 0 for
all r ∈ (r1 − δ, r1). Let {bj}j be an increasing sequence in Ba converging to

b̂. By existence of solutions to initial value problems, there exists J such that
if j ≥ J then ra,bj < r1 − δ/2. By continuous dependence on initial conditions,
limj→+∞ ua,bj (r1 − δ/2) = z(r1 − δ/2) < 0 contradicting that ua,bj (r) > 0 for all
r ∈ (ra,bj , X]. Hence z(r) > 0 for all r ∈ (ra,b̂, X].

Now we prove that z′(r) > 0 in (ra,b̂, X]. Assuming that z is not monotonically

increasing, there exists r2 ∈ (ra,b̂, X) such that z′(r) > 0 for r ∈ (r2, X] and z′(r) <

0 for all r ∈ (ra,b̂, r2). By continuous dependence on initial conditions, there exists

η > 0 such that if |b̂− b| < η then ra,b < (r2 + ra,b̂)/2. Also, there exists ρ ∈ (0, η)

such that if |b̂ − b| < ρ then ua,b((r2 + ra,b̂)/2) > 0 and u′a,b((r2 + ra,b̂)/2) < 0.

Hence ua,b(r) > 0 for all b < b̂ + ρ and all r ∈ (ra,b, X]. Since this contradicts the

definition of b̂ we conclude that z = ua,b̂ is a monotonically increasing function.

Since z is monotonically increasing and positive, if ra,b̂ > 0 then z may be

extended to an interval of the form (ra,b̂− ε,X] contradicting the definition of ra,b̂.

This proves that ra,b̂ = 0. �

Lemma 2.7. If p ≤ N , u ∈ C1(0, 1] satisfies(
rN−1

∣∣u′∣∣p−2
u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, 0 < r < 1, (2.15)

and u > 0 and bounded in (0, X), then

ζ(r) := |u′(1)|p−2u′(1) +

∫ 1

r

sN−1W (s)g(u(s))ds = rN−1|u′(r)|p−2u′(r) (2.16)

is non-negative and non-decreasing. Moreover,

lim
r→0+

ζ(r) = lim
r→0+

u′(r) = 0. (2.17)

Proof. For s ∈ (0, X), sN−1W (s)g(u(s)) < 0. Hence ζ increases on (0, X) and
limr→0+ ζ(r) exists. Assuming there is r0 ∈ (0, X) such that

rN−1
0 |u′(r0)|p−2u′(r0) =: c < 0,
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from the monotonicity of ζ, we have rN−1|u′(r)|p−2u′(r) < c for all r ∈ (0, r0).
Therefore, since p ≤ N , we have −u′(r) ≥ (−c)1/(p−1)r−1 for all r ∈ (0, r0]. Inte-
grating −u′ in [r, r0] we see that limr→0+ u(r) = +∞ which contradicts that u is
bounded. Hence ζ(r) ≥ 0 for all r ∈ (0, X].

To prove (2.17), we assume to the contrary that there exists κ > 0 such that

rN−1|u′(r)|p−2u′(r) = |u′(1)|p−2u′(1) +

∫ 1

r

sN−1W (s)g(u(s))ds ≥ κ > 0, (2.18)

for all r ∈ (0, 1]. Solving for u′ in (2.18),

u′(s) ≥ κ1/(p−1)

s(N−1)/(p−1)
≥ κ1/(p−1)

s
for all s ∈ (0, 1] and p ≤ N. (2.19)

Therefore,

u(r) = u(1)−
∫ 1

r

u′(s)ds ≤ u(1)−
∫ 1

r

κ1/(p−1)

s
ds = u(1) + κ1/(p−1)(ln r)→ −∞,

as r → 0+. This contradiction proves that limr→0+ ζ(r) = 0.
Finally, by (2.16) and L’Hôspital’s rule we obtain

lim
r→0+

(u′(r))p−1 = lim
r→0+

|u′(1)|p−2u′(1) +
∫ 1

r
sN−1W (s)g(u(s))ds

rN−1

= lim
r→0+

−rW (r)g(u(r))

N − 1
= 0,

(2.20)

and thus the lemma is proven. �

Remark 2.8. The conclusion of Lemma 2.7 remains valid when 1 is replaced
by R ∈ (0, 1), under the assumptions that u ∈ C1(0, R] satisfies the differential
equation in (2.15) on (0, R], u > 0 and bounded on some interval (0, x0) ⊂ (0, R).

Lemma 2.9. If η : [0,+∞)→ [0,+∞) is defined by η(a) = b̂ and η(0) = 0, then η
is a continuous function.

Proof. First we prove that the function η is a non-decreasing function. Let u =
ua0,η(a0) and v = ua,η(a0) with a > a0 ≥ 0. Suppose that there is r1 ∈ (ra,η(a0), X)
such that u(r1) = v(r1). Without loss of generality we may also assume that
u(r) < v(r) for all r ∈ (r1, X]. By the uniqueness of solutions to the initial value
problem (2.9) we have v′(r1) > u′(r1). On the other hand, from (2.9) it follows
that

rN−1
1 (|v′(r1)|p−2v′(r1)− |u′(r1)|p−2u′(r1))

=

∫ X

r1

sN−1W (s)(g(v(s))− g(u(s)))ds < 0.
(2.21)

Therefore v′(r1) ≤ u′(r1), which contradicts v′(r1) > u′(r1). Thus v(r) > u(r) for

all r ∈ (ra,η(a0), X]. This and the definition of b̂(a) prove that η(a) > η(a0). So, we
have proved η is a non decreasing function.

Let {an}n be an increasing sequence that converges to a0 > 0. Hence {η(an)}
is an increasing sequence bounded above by η(a0). Let u = ua0,η(a0) and un =
uan,η(an). Suppose that η(a0) > limn→∞ η(an). For n sufficiently large, there
exists rn ∈ (0, X) such that un(rn) = u(rn), limn→+∞ rn = X, u′n(rn) < u′(rn)
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and u(r) < un(r) for all r ∈ [0, rn]. Therefore, from Lemma 2.7 (see also Remark
2.8), for a fixed n large enough,

0 = lim
r→0+

rN−1|u′n(r)|p−2u′n(r)

= lim
r→0+

(
rN−1
n (u′n(rn))p−1 +

∫ rn

r

sN−1W (s)g(un(s))ds
)

< lim
r→0+

(
rN−1
n (u′(rn))p−1 +

∫ rn

r

sN−1W (s)g(u(s))ds
)

= 0.

(2.22)

This contradiction proves that η is continuous to the left. Similarly it is seen that
η is continuous to the right. Thus the lemma is proven. �

Theorem 2.10. If w : B1(0) → R is a radial function such that w ∈ C1(B1(0) r
{0})∩C(B1(0)), and U(r) = w(r, 0, . . . , 0) satisfies the assumptions of Lemma 2.7,
then w is a solution to (1.1) in the sense of distributions.

Proof. Let ϕ be a function of class C∞ and compact support in B1(0) and A the
(N−1)-dimensional Lebesgue measure of the unit sphere in RN . Lemma 2.7 implies

|U ′(1)|p−2U ′(1) = −
∫ 1

0

sN−1g(U(s))W (s)ds. (2.23)

Using that ∇w(x) = (U ′(|x|)/|x|)x and (2.23), we have∫
B1(0)

‖∇w(x)‖p−2∇w(x) · ∇ϕ(x)dx

=

∫
B1(0)

‖∇w(x)‖p−2∇w(x) · (∇ϕ(x) · x)x/|x|2dx

=

∫ 1

0

rN−1|U ′(r)|p−2U ′(r)

∫
‖θ‖=1

(∇ϕ(rθ) · θ)dθ dr

=

∫ 1

0

rN−1|U ′(r)|p−2U ′(r)
( d
dr

∫
‖θ‖=1

ϕ(rθ)dθ
)
dr

=

∫ 1

0

|U ′(1)|p−2U ′(1)
( d
dr

∫
‖θ‖=1

ϕ(rθ)dθ
)
dr

+

∫ 1

0

(∫ 1

r

sN−1W (s)g(U(s))ds
)( d

dr

∫
‖θ‖=1

ϕ(rθ)dθ
)
dr

= −A
[
|U ′(1)|p−2U ′(1) +

(∫ 1

0

rN−1W (r)g(U(r))dr
)]
ϕ(0)

+

∫
‖θ‖=1

∫ 1

0

rN−1W (r)g(U(r))ϕ(rθ)drdθ

=

∫
B1(0)

W (|x|)g(U(|x|))ϕ(x)dx,

(2.24)

which proves the theorem. �

3. Energy and phase plane analysis

Let T ∈ (X, 1]. Since W > 0 on (X, 1], there exists W0 = W0(T ) > 0 such that
W (r) ≥W0 for each r ∈ [T, 1].



110 A. CASTRO, J. COSSIO, S. HERRÓN, C. VÉLEZ EJDE/SI/01

We recall that, from Lemma 2.1, given d < 0 there is a unique solution u(r, d)
to (

rN−1
∣∣u′∣∣p−2

u′
)′

+ rN−1W (r)g
(
u(r)

)
= 0, X ≤ r ≤ 1,

u(1) = 0, u′(1) = d.
(3.1)

Lemma 3.1. Let T ∈ (X, 1) and E be as defined in (2.5). Then E(r) → +∞ as
|d| → +∞, uniformly for r ∈ [T, 1].

Proof. From (2.7) we have

E ′(r) ≤W ′(r)G
(
u(r)

)
=
W ′(r)

W (r)
W (r)G

(
u(r)

)
≤ max{|W ′(s)| : s ∈ [T, 1]}

min{W (s) : s ∈ [T, 1]}
W (r)G

(
u(r)

)
≤ C̃W (r)G

(
u(r)

)
≤ C̃E(r),

for all r ∈ [T, 1]. Thus,
(
e−C̃rE(r)

)′ ≤ 0 for every r ∈ [T, 1]. Therefore,

E(r) ≥ p− 1

p
eC̃(T−1)|d|p−1 for all r ∈ [T, 1].

Thus, E(r)→ +∞ as |d| → +∞, uniformly for r ∈ [T, 1]. �

Since g(0) = 0, by uniqueness of solutions to the initial value problem with initial
data (0, 0), we have

(u(r, d), u′(r, d)) 6= (0, 0)

for all r ∈ [X, 1]. Hence, there exists a continuous function φ(r, d), for r ∈ [X, 1],
such that φ(1, d) = −π/2, and

u(r, d) = −ρ(r, d) cosφ(r, d),

u′(r, d) = ρ(r, d) sinφ(r, d),
(3.2)

where ρ(r, d) =

√(
u(r, d)

)2
+
(
u′(r, d)

)2
. Moreover, φ(·, d) is differentiable at r ∈

[X, 1] provided u′(r) 6= 0.
Differentiating the first equation in (3.2) with respect to r, for u′(r) 6= 0,

u′(r) = −ρ′(r, d) cos
(
φ(r, d)

)
+ ρ(r, d) sin

(
φ(r, d)

)
· φ′(r, d). (3.3)

Since W is a continuous function, there exists T ∈ (X, 1) such that

W (r) ≥ W (1)

2
=:

m

2
, for all r ∈ [T, 1]. (3.4)

Combining (3.2) and (3.1), for r ∈ [X, 1] with u′(r) 6= 0, we have

φ′(r, d) =
(u′(r, d))2

ρ2(r, d)
+

W (r)u(r)g(u(r))

(p− 1)ρ2(r, d)|u′(r)|p−2
+

(N − 1)u(r)u′(r)

r(p− 1)ρ2(r, d)
. (3.5)

Remark 3.2.

(i) By Lemma 3.1, E(r, d) → +∞ as |d| → +∞ uniformly for r ∈ [T, 1], and
therefore ρ(r, d)→ +∞ as |d| → +∞ uniformly for r ∈ [T, 1].

(ii) If u(R, d) = 0 with R ∈ (X, 1), then u′(R, d) 6= 0. In addition, from (3.3)
and the second equation in (3.2) it follows that φ′(R, d) = 1.
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(iii) If u(R, d) = 0 then φ(r, d) < φ(R, d) for every r ∈ [X,R]. Suppose, by
contradiction, there exists R1 ∈ [X,R] such that φ(R1, d) = φ(R, d). By
the continuity of φ(·, d) we can assume φ(r, d) < φ(R, d) for all r ∈ (R1, R)
(suffices choosing R1 = inf{r ∈ [X,R] : φ(r, d) < φ(R, d)}). Since φ(r, d) <
φ(R1, d) for each r ∈ (R1, R), then φ′(R1, d) ≤ 0. On the other hand,
φ(R1, d) = φ(R, d) = jπ + π/2, for some j ∈ Z. Thus φ′(R1, d) = 1, which
is a contradiction.

Let k be a positive integer. For x0 > 0, let us define

m̃(x0) = min
{ g(x)

|x|p−2x
: |x| ≥ x0

}
.

From the p-superlinearity of g we have m̃(x0) → +∞ as x0 → +∞. For ρ >
0 and η > 0 we define ω(ρ, η) := m̃(ρ sin(η))M1(η)/(p − 1), where M1(η) :=
min{sinp(η), sin2(η)}. Let T be as in (3.4), let ρ0(k) := ρ0 > 0 and δ(k) :=
δ ∈ (0, π/4) be such that

(i) 0 < δ < min
{ (p− 1)T

16(N − 1)
,
( (1− T )(p− 1)

2

)1/(p−1)}
,

(ii) ω(ρ0, δ) >
2(N − 1)

m(p− 1)T
,

(iii) m̃(ρ0/
√

2) ≥ 2(p/2)+5k(p− 1)

m
,

(iv) 16δ +
8π

mω(ρ0, δ)
≤ 1− T

2k
.

(3.6)

By Remark 3.2-(i), there exists d0 < 0 such that

if d < d0, then ρ(r, d) ≥ ρ0 for every r ∈ [T, 1]. (3.7)

Lemma 3.3. If T ≤ r ≤ 1 and φ(r, d) ∈ [−jπ/2− δ,−jπ/2 + δ] with j > 0 an odd
integer, then φ′(r, d) > 1/4.

Proof. From (3.5),

φ′(r, d) ≥ sin2 φ+
W (r)u(r, d)g(u(r, d))

(p− 1)ρ2(r, d)|u′(r, d)|p−2
− (N − 1)| cosφ sinφ|

r(p− 1)
.

From (1.2) and (1.4), W (r)u(r, d)g(u(r, d)) ≥ 0 for all r ∈ [X, 1]. This, the inequal-
ities | sin(φ(r, d))| ≥ cos δ, | cos(φ(r, d))| ≤ sin δ ≤ δ and (3.6)-(i) give

φ′(r, d) ≥ cos2 δ − (N − 1)δ

(p− 1)T
≥ cos2(π/4)− 1

16
≥ 7

16
>

1

4
.

Thus, the lemma is proven. �

Lemma 3.4. If T ≤ r ≤ 1 and φ(r, d) ∈ [−(j + 1)π/2 + δ,−jπ/2− δ] with j > 0
an integer, then φ′(r, d) > mω(ρ0, δ)/4.

Proof. From (3.5),

φ′(r, d) >
W (r)u(r, d)g(u(r, d))

(p− 1)ρ2(r, d)|u′(r, d)|p−2
− (N − 1)

2r(p− 1)

≥ W (r)

p− 1

g(u(r, d))

|u(r, d)|p−2u(r, d)

|u(r, d)|p

ρ2(r, d)|u′(r, d)|p−2
− N − 1

2(p− 1)T
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≥ W (r)

p− 1

g(u(r, d))

|u(r, d)|p−2u(r, d)

| cosφ(r, d)|p

| sinφ(r, d)|p−2
− N − 1

2(p− 1)T
.

From | cosφ(r, d)| ≥ sin δ, | sinφ(r, d)| ≥ sin δ, and ω(ρ0, δ) >
2(N−1)
m(p−1)T (see (3.6)-

(ii)), it follows that

φ′(r, d) >
W (r)

p− 1

g(u(r, d))

|u(r, d)|p−2u(r, d)
M1(δ)− mω(ρ0, δ)

4
.

Since |u(r, d)| = ρ(r, d)| cosφ(r, d)| ≥ ρ0 sin δ we obtain

g(u(r, d))/(|u(r, d)|p−2u(r, d)) ≥ m̃(ρ0 sin δ).

This and the definition of ω(ρ0, δ) yield

φ′(r, d) > W (r)ω(ρ0, δ)−
mω(ρ0, δ)

4
≥ mω(ρ0, δ)

4
. (3.8)

In the latter inequality we have used W (r) ≥ m/2 for any r ∈ [T, 1]. Thus, (3.8)
proves the lemma. �

Lemma 3.5. If T ≤ r ≤ 1 and φ(r, d) ∈ (−jπ,−jπ+ δ]∪ [−jπ− δ,−jπ) for some
positive integer j, then

φ′(r, d) ≥ 8k| sin(φ(r, d))|2−p. (3.9)

Proof. From δ < π/4 and | cosφ(r, d)| ≥ cos δ, it follows that

u2(r, d) = ρ2(r, d)(1− sin2(δ)) ≥ ρ2(r, d)/2.

This, (3.6)-(i), (3.5) and (3.6)-(iii) imply that

φ′(r, d)

≥ W (r)u(r, d)g(u(r, d))

(p− 1)ρp(r, d)| sin(φ(r, d))|p−2
− (N − 1)| sin(φ(r, d))|

r(p− 1)

≥ W (r)u(r, d)g(u(r, d))| sin(φ(r, d))|2−p

2p/2(p− 1)|u(r, d)|p
− (N − 1)| sin(φ(r, d))|

T (p− 1)

≥
( m

2 · 2p/2(p− 1)

g(u(r, d))

|u(r, d)|p−2u(r, d)
− N − 1

(p− 1)T
| sin(φ(r, d))|p−1

)
× | sin(φ(r, d))|2−p

≥
( m · m̃(ρ0/

√
2)

2(p/2)+1(p− 1)
− 1

16

)
| sin(φ(r, d))|2−p, (recall | sinφ| ≤ sin δ ≤ δ)

≥ m · m̃(ρ0/
√

2)

2(p/2)+2(p− 1)
| sin(φ(r, d))|2−p

≥ 8k| sin(φ(r, d))|2−p,

(3.10)

which completes the proof of the lemma. �

Proposition 3.6. limd→−∞ φ(X, d) = −∞.

Proof. Let d < d0 be as in (3.7) and k as in (3.6). Because φ(1, d) ∈ [−π/2 −
δ,−π/2 + δ], from Lemma 3.3 and (3.6)-(iv) there exists

r1 ∈ [1− 4δ, 1) ⊂ [1− (1− T )/(8k), 1)

such that φ(r1, d) = −π/2− δ. By Lemma 3.4 and (3.6)-(iv) there exists

r2 ∈ [r1 − 2π/(mω(ρ0, δ)), r1) ⊂ [r1 − (1− T )/(8k), r1)
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such that φ(r2, d) = −π + δ. By Lemma 3.5, if p ≥ 2, there is

r3 ∈ [r2 − δ/(8k), r2) ⊂ [r2 − (1− T )/(8k), r2)

such that φ(r3, d) = −π. On the other hand, if 1 < p < 2, from Lemma 3.5

φ′(r, d) ≥ 8k| sin(φ(r, d))|2−p. (3.11)

We claim that if r < r2 and φ(r, d) > −π then r2 − r < (1 − T )/(8k). Indeed,
let φ(r, d) = −π + θ(r, d); then 0 < θ(r, d) ≤ δ. From (3.11) we obtain θ′(r, d) >
8k(sin θ(r, d))2−p. Since sin(θ)/θ → 1 as θ → 0, we may assume, for δ sufficiently
small, sin(θ(r, d))/θ(r, d) > 1/2. Thus,

θ′(r, d)(θ(r, d))p−2 >
8k

22−p > 4k.

Integrating on [r, r2] we get 4k(p− 1)(r2 − r) < δp−1. By using (3.6)-(i),

r2 − r <
δp−1

4k(p− 1)
<

1− T
8k

.

From this the claim follows. Hence, there exists r3 ∈ [r2 − (1 − T )/(8k), r2) such
that

r3 ∈ [1− 3(1− T )/(8k), 1) ⊂ [1− (1− T )/(2k), 1) and φ(r3, d) = −π.

Observe that 1− r3 ≤ (1− T )/(2k) and φ(r3, d)− φ(1, d) = −π/2. Repeating this
argument 2k times it is shown that there is r̂ ∈ [1− 2k(1− T )/2k, 1) = [T, 1) such
that φ(r̂, d) − φ(1, d) = −kπ, namely φ(r̂, d) = −(2k + 1)π/2. Since 1 > r̂ ≥ T >
X, Remark 3.2-(ii) implies φ(X, d) < φ(r̂, d) = −(2k + 1)π/2. This proves the
proposition. �

4. Proof of main theorem

Let u(r, d) be the solution to (3.1) with d < 0 and φ(r, d) be the argument
function defined by (3.2). By Proposition 3.6 (limd→−∞ φ(X, d) = −∞) and the
continuous dependence of φ(X, d) on d, for each odd positive integer k there exist

real numbers d̂k and d̃k such that

d̃k < d̂k, φ(X, d̂k) = −kπ − π

2
, φ(X, d̃k) = −(k + 1)π.

Since k is odd, u(X, d̂k) = 0 and u′(X, d̂k) > 0; also, u(X, d̃k) > 0 and u′(X, d̃k) = 0.
Because η is a continuous function (see Lemma 2.9) the set {(a, η(a)); a ≥ 0}

separates {(0, y); y > 0} from {(x, 0);x > 0} in {(x, y);x ≥ 0, y ≥ 0} − {(0, 0)},
there exists dk ∈ (d̃k, d̂k) such that (u(X, dk), u′(X, dk)) = (a, η(a)) for some a > 0.
Hence defining Uk(r) = ua,η(a)(r) for r ∈ [0, X] and Uk(r) = u(r, dk) for r ∈ [X, 1]
we have a solution to (1.1) (see Lemmas 2.6-2.7 and Theorem 2.10). Thus, the
sequence {Uk(r)}k gives us infinitely many radially symmetric solutions to (1.1),
which proves the theorem.
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