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Abstract. We consider the periodic problem for a 2nd order ODE with non-

invertible linear part, and mild nonlinear dissipation term. The motivation for

this study is a paper by Lazer [9]. We add a bounded restoring force g(u) and
show that the sufficient condition (of Landesman-Lazer type) given in [9] still

implies the existence of a periodic solution in our case. We also comment on

some variants of the problem and on the existence of bounded solutions.

1. Introduction

Lazer [9] gave a simple proof of necessary and sufficient conditions for the exis-
tence of a 2π-periodic solution to the second order ordinary equation with a non-
linear dissipative term

u′′(t) + u(t) +
d

dt
F (u(t)) = e(t) (1.1)

where F is a bounded C1 function, and e is continuous and 2π-periodic function.
The conditions include an inequality involving the size of the projection of e onto
the kernel of the linear operator u′′ + u in the space of 2π-periodic functions, and
the gap between the limits of F at ±∞, namely

2(F (∞)− F (−∞)) >
√
e2s + e2c (1.2)

where

ec =

∫ 2π

0

cosx e(x) dx, es =

∫ 2π

0

sin(x) e(x) dx. (1.3)

Among other features, the proof in [9] invokes the Brouwer fixed point theorem for
a disk in the plane.

Inequality (1.2) is a condition of Landesman-Lazer type; see [7] for the original
paper of Landesman and Lazer. As stated in [9], the applicability of that condition
to the resonant periodic problem had appeared in articles by Lazer and Leach [10],
and Frederickson and Lazer [4].
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In this note we consider the slightly more general problem

u′′(t) + u(t) + g(u) +
d

dt
F (u(t)) = e(t) (1.4)

where g is continuous and bounded. That is, we are interested in a bounded pertur-
bation of equation (1.1). Basically, we intend to show that (1.2) remains applicable
to (1.4) and we propose an alternative, although basically equivalent, method of
proof.

We stress that, beyond the papers already mentioned, there exists an extensive
and rich literature concerning equations similar to (1.1), covering existence and
stability of periodic, almost periodic or bounded solutions, under a variety of as-
sumptions. A handful of material, which is significant and representative of the
research about these problems can be found in works by Ahmad [1], Ezeilo [3],
Mawhin [11], Ortega [13], Ortega and Tineo [14], Fonda and Zanolin [5], Mawhin
and Ward [12], and, of course, in their references.

In this note, as in [9], our arguments use a shooting method and continuity with
respect to parameters. They are as simple as possible if we assume that g is a locally
Lipschitz function, although weaker conditions may be considered via approximate
problems.

On the other hand, in our proof the Brouwer fixed point theorem is naturally re-
placed with the particular version of the following Brouwer-Bohl existence principle
(see e.g. [11]).

Theorem 1.1. Let Bn = {x ∈ Rn : ‖x‖ ≤ 1}. If V : Bn → Rn is a continuous
vector field such that for all x ∈ ∂Bn, V (x) · x > 0, then the equation V (x) = 0 has
a solution in Bn.

To deal with the perturbation g we need in addition the following property of
sequences of oscillatory integrands.

Lemma 1.2. Let T = 2nπ, n ∈ N, {WR,φ(t)} (R > 0, φ ∈ R) be a family of C1

functions in [0, T ], bounded independently of R; φ, with their derivatives and g be
a continuous bounded function. Then∫ T

0

g(R sin(t+ φ) +WR,φ(t)) cos(t+ φ)dt −→ 0

as R→∞ uniformly with respect to φ ∈ R.

Proof. Let G be an antiderivative of g. We have

G(R sin(φ) +WR,φ(2nπ))−G(R sin(φ) +WR,φ(0))

=

∫ 2nπ

0

d

dt
(G(R sin(t+ φ) +WR,φ(t)))dt

= R

∫ 2nπ

0

g(R sin(t+ φ) +WR,φ(t)) cos(t+ φ)dt

+

∫ 2nπ

0

g(R sin(t+ φ) +WR,φ(t))W ′R,φ(t)dt

From our assumptions and the mean-value theorem we can conclude that

R

∫ 2nπ

0

g(R sin(t+ φ) +WR,φ(t)) cos(t+ φ)dt
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is bounded, and therefore

lim
R→∞

∫ T

0

g(R sin(t+ φ) +WR,φ(t)) cos(t+ φ)dt = 0.

�

In section 2 we present the main result of this note with some remarks on the
analogous (simpler) problem where the term u is dropped in (1.4) (that is, the case
of resonance at the eigenvalue zero). In the final section, following mainly [4], we
refer to the existence of bounded solutions.

2. Main result

Theorem 2.1. Let e(t) be continuous and 2π-periodic, F : R → R a bounded
C1 function such that F (∞), F (−∞) exist, and g : R → R a locally Lipschitz
continuous, bounded function. Defining ec, es as in (1.3), the condition (1.2) is
sufficient for the existence of a 2π-periodic solution of (1.4).

Proof. We want to prove the existence of a solution to the problem

u′′(t) + u(t) +
d

dt
F (u(t)) + g(u(t)) = e(t)

u(0) = u(2π), u′(0) = u′(2π)
(2.1)

Let u be a function of class C2. Consider the decomposition

u(x) = A cos(x) +B sin(x) +W (x,A,B),

where A = u(0) and B = u′(0), so that W (0) = W ′(0) = 0. Hence u is a solution
of (2.1) if, and only if W is a solution of

W ′′(t, A,B) +W (t, A,B) + F (u(t))′ + g(u(t)) = e(t), (2.2)

W (2π) = 0, W ′(2π) = 0. (2.3)

By an elementary formula, the solution of (2.2) such that W (0) = W ′(0) = 0 is
given by

W (t, A,B) =

∫ t

0

sin(t− x)(e(x)− F (u(x))′ − g(u(x)) dx (2.4)

Integrating by parts and using well known results on integral equations with
parameters (see e.g. [16]) we see that there exists in fact a unique solutionW (t, A,B)
of (2.4), continuous with respect to A, B, and (2.4) shows that it is bounded in
[0, 2π] independently of A and B.

We now prove the existence of a point (A,B) in the plane which is a solution of
(2.2)-(2.3). We have

W ′(t, A,B) =

∫ t

0

cos(t− x)(e(x)− F (u(x))′ − g(u(x)) dx

and we look for a solution of the system

W (2π,A,B) = 0,

W ′(2π,A,B) = 0

which is equivalent to∫ 2π

0

sin(2π − x)(e(x)− F (u(x))′ − g(u(x)) dx = 0,
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0

cos(2π − x)(e(x)− F (u(x))′ − g(u(x)) dx = 0

which is equivalent to∫ 2π

0

sin(x)(F (u(x))′ + g(u(x)) dx− es = 0,

−
∫ 2π

0

cos(x)(F (u(x))′ + g(u(x)) dx+ ec = 0 .

Using integration by parts we obtain the system

es +

∫ 2π

0

cos(x)F (u(x)) dx−
∫ 2π

0

sin(x)g(u(x)) = 0,

ec −
∫ 2π

0

sin(x)F (u(x)) dx−
∫ 2π

0

cos(x)g(u(x)) dx = 0 .

(2.5)

We define the vector field (X(A,B), Y (A,B)):

X(A,B) = ec −
∫ 2π

0

sin(x)F (u(x)) dx−
∫ 2π

0

cos(x)g(u(x)) dx,

Y (A,B) = es +

∫ 2π

0

cos(x)F (u(x)) dx−
∫ 2π

0

sin(x)g(u(x)) .

Let (A,B) ∈ R2, R =
√
A2 +B2 and φ ∈ R, such that

cos(φ) =
B√

A2 +B2
, sin(φ) =

A√
A2 +B2

.

Then we consider the dot product

(−Y (A,B), X(A,B)) · (A,B)

= Bec −Aes −
∫ 2π

0

(A cos(x) +B sin(x))F (A cos(x) +B sin(x) +W (x,A,B)) dx

+

∫ 2π

0

(A sin(x)−B cos(x))g(A cos(x) +B sin(x) +W (x,A,B)) dx

= Bec −Aes −
∫ 2π

0

R sin(x+ φ)F (R sin(x+ φ) +W (x,A,B)) dx

+

∫ 2π

0

R cos(x+ φ)g(R sin(x+ φ) +W (x,A,B)) dx

≤ ‖(A,B)‖ · ‖(es, ec)‖ −
∫ 2π

0

R sin(x+ φ)F (R sin(x+ φ) +W (x,A,B)) dx

+

∫ 2π

0

R cos(x+ φ)g(R sin(x+ φ) +W (x,A,B)) dx

= R
√
e2c + e2s −

∫ 2π

0

R sin(x+ φ)F (R sin(x+ φ) +W (x,A,B)) dx

+

∫ 2π

0

R cos(x+ φ)g(R sin(x+ φ) +W (x,A,B)) dx

= R
(√

e2c + e2s −
∫ 2π

0

sin(x+ φ)F (R sin(x+ φ) +W (x,A,B)) dx
)



EJDE-2021/SI/01 REMARKS ON PERIODIC RESONANT PROBLEMS 207

+R

∫ 2π

0

cos(x+ φ)g(R sin(x+ φ) +W (x,A,B)) dx

Using the assumptions on F and g and using Lemma 1.2, we obtain

lim
R→∞

(√
e2c + e2s −

∫ 2π

0

sin(x+ φ)F (R sin(x+ φ) +W (x,A,B)) dx

+

∫ 2π

0

cos(x+ φ)g(R sin(x+ φ) +W (x,A,B)) dx
)

=
√
e2c + e2s − 2(F (∞)− F (−∞)) < 0,

uniformly with respect to φ ∈ R. Note that by (2.4) and since F and g are bounded,
W is a bounded function in [0, 2π], independently of A and B.

Therefore there is R0 ∈ R+ such that for all (A,B) ∈ R2 with ‖(A,B)‖ ≥ R0,
we have (−Y (A,B), X(A,B)) · (A,B) < 0. So that by Theorem 2.1 there is a
(A∗, B∗) ∈ R2 with ‖(A∗, B∗)‖ < R0 such that X(A∗, B∗) = Y (A∗, B∗) = 0.
Hence we have a solution of (2.5). �

It is interesting to note that in the above theorem we did not use asymptotic
assumptions on g; the condition involving the gap of F is sufficient, precisely as in
the case where g is absent as in [9]. However, in the absence of F , the argument of
the above proof may be repeated (with slightly simpler calculations) to obtain the
Lipschitz case of [10, Theorem 1.1]

Theorem 2.2. Let e be a 2π-periodic continuous function, and g a bounded con-
tinuous function in R such that g(∞) and g(−∞) exist. By setting

ec =

∫ 2π

0

cos(x)e(x) dx, es =

∫ 2π

0

sin(x)e(x) dx,

we have that 2(g(∞)−g(−∞)) >
√
e2c + e2s is a sufficient condition for the existence

of a 2π-periodic solution of the differential equation u′′(t) + u(t) + g(u(t)) = e(t).

Remark 2.3. Korman and Li [6] studied 2π-periodic solutions to the equation
that is analogous to (1.1) when resonance occurs at the nth eigenvalue, that is

u′′(t) + n2u(t) +
d

dt
F (u(t)) = e(t) (2.6)

where n ∈ N. Setting

ec,n =

∫ 2π

0

cos(nx) e(x) dx, es,n =

∫ 2π

0

sin(nx) e(x) dx. (2.7)

they found the condition

2n(F (∞)− F (−∞)) >
√
e2c,n + e2s,n (2.8)

for the existence of a solution. Following our procedure in the proof of Theorem
2.1 it may be seen that the condition (2.8) still implies existence when a bounded
nonlinear term g(u) is included in the equation (2.6). Without going to the details,
let us mention that it suffices to use the decomposition

u(x) = A cos(nx) +
B

n
sin(nx) +W (x,A,B),
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where A = u(0), B = u′(0), so that W satisfies

W (t, A,B) =
1

n

∫ t

0

sin n(t− x)(e(x)− F (u(x))′ − g(u(x)) dx (2.9)

and in the final estimate we choose R and φ so that A = R sin φ, B = nR cos φ.

Remark 2.4. In [9] it is mentioned that in a previous paper [8] the case where the
linear operator reduces to u′′ (that is, when the zero eigenvalue is considered) and
the dissipative term is of the form cu′, c > 0, was discussed.

Let us then consider

u′′(t) + g(u) +
d

dt
F (u(t)) = e(t) (2.10)

where e is continuous and T -periodic. First, it is obvious that if (2.10) has a
T -periodic solution and m ≤ g ≤M for some constants m ≤M and setting

ē =
1

T

∫ T

0

e(t) dt

for the mean value of e, it turns out that m ≤ ē ≤ M . Moreover, letting g± =
lims→±∞ g(s) the condition

g− < ē < g+ (2.11)

is sufficient to the existence of a T -periodic solution of the differential equation
(2.10).

This has been observed in [11] (even with less demanding inequalities). We note
that in the special case where F and g are locally Lipschitz functions, the outline
of our proof in section 2 may be followed to yield the partial converse; the situation
here is simpler and the argument relies on the Poincaré-Miranda theorem.

In fact, we write any solution u of (2.10) as

u(t) = A+Bt+ w(t)

where A = u(0), B = u′(0) and w satisfies the integral equation

w(t) =

∫ t

0

(t− s)[e(s)− g(A+Bs+ w(s))]− d

ds
F (A+Bs+ w(s))] ds (2.12)

Now there exists a solution w(t, A,B) of (2.12), continuous in the set of its variables.
Therefore we must show that there exist A, B so that u(T ) = A, u′(T ) = B, that
is, w(T ) = −BT and w′(T ) = 0. Since

w′(t) =

∫ t

0

[e(s)− g(A+Bs+ w(s))− d

ds
F (A+Bs+ w(s))] ds

we obtain the following system of equations for A and B,∫ T

0

(T − s)[e(s)− g(A+Bs+ w(s))] ds

−
∫ T

0

F (A+Bs+ w(s)) ds+ TF (A) +BT = 0,

(2.13)

∫ T

0

e(s) ds−
∫ T

0

g(A+Bs+ w(s)) ds = 0. (2.14)

We define a vector field (X,Y ) in the plane such thatX(A,B) (respectively Y (A,B))
is the left-hand side of (2.13) (respectively (2.14)). Invoking the boundedness of g
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and F it is clear that there exists b > 0 such that X(A,B) > 0 (respectively < 0)
if B ≥ b (respectively B ≤ −b), ∀A ∈ R.

On the other hand, using the boundedness of g again, together with (2.11),

± lim
A→±∞

Y (A,B) < 0

uniformly in B ∈ [−b, b]. We infer that we may choose a > 0 so that the field
(X(A,B), Y (A,B)) satisfies the conditions of the Poincaré-Miranda theorem in the
rectangle [−a, a]× [−b, b]. It follows that the vector field (X,Y ) has a zero in this
rectangle and the proof is complete.

Remark 2.5. If g ≡ 0 in equation (2.10), we can be more specific. Namely, it
is not difficult to see that ē = 0 is necessary and sufficient to the existence of a
periodic solution of

u′′(t) +
d

dt
F (u(t)) = e(t) (2.15)

Moreover, the initial value u(0) of the periodic solution can be arbitrarily prescribed.

In fact, let E(t) =
∫ t
0
e(s) ds. The T -periodic solution u of (2.15) with A = u(0),

B = u′(0) solves the parametric first order initial value problem

u′ + F (u) = E(t) +B + F (A), u(0) = A (2.16)

subject to the condition∫ T

0

E(s) ds+BT + F (A)T −
∫ T

0

F (u(s)) ds = 0. (2.17)

Clearly, (2.17) has a solution B for every A ∈ R, but more can be said: if F is C1

and increasing, (2.17) defines a C1 function B = B(A).
To see this, we check that the partial derivative of the left-hand side of (2.17)

with respect to B does not vanish. Setting v = ∂u
∂B and f = F ′, we have

v′ + f(u)v = 1, v(0) = 0 (2.18)

so that

v(T ) +

∫ T

0

f(u(s))v(s) ds = T. (2.19)

Since v(T ) > 0 our claim is proved. It follows that, under the stated conditions, in
addition to the periodic solutions defined by (2.16), the problem (2.15) has a family
of solutions bounded to the right, given by

u′ + F (u) = E(t) +B(A) + F (A), u(0) = C. (2.20)

Moreover, if we denote by zA the periodic solution of (2.15) given by (2.16)-(2.17),
it is easily seen that for each solution u as in (2.20) the function |u(t) − zA(t)| is
decreasing for t ≥ 0; therefore there exists a constant K such that

lim
t→+∞

(u(t)− zA(t)) = K.

Remark 2.6. We can discard the Lipschitz continuity of g in theorem 2.1 or in
the setting of Remark 2.4. Let us briefly describe how to proceed with respect to g
in the simpler case of Remark 2.4.

Let L± = lims→±∞ g(s). For each n ∈ N let ±αn± > 0 be chosen so that
s ≥ αn+ (resp. s ≤ αn−) implies g(s) ≥ L+ − 1

n (resp g(s) ≤ L− + 1
n ). Then

construct a Lipschitz function gn such that gn(s) = g(αn+) (resp. gn(s) = g(αn−))
∀s ≥ αn+ (resp. ∀s ≤ αn−) and max[αn−,αn+] |g− gn| < 1

n . Consider a sequence of
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approximation problems where g is replaced with gn in equation (2.10). Each one
of these problems has a T -periodic solution un whose sequence of initial conditions
(An, Bn) is bounded, as the corresponding systems (2.13)-(2.14) show. Using the
sequence of differential equations it is easy to obtain uniform C1-estimates for
(un). By the Ascoli-Arzelà’s theorem, a subsequence of un converges uniformly to
a function u which, clearly, is a periodic solution of (2.10).

3. Boundedness of solutions

Following [4, 9] a naturally related problem is the existence of bounded or al-
most periodic solutions when e is a continuous almost periodic function. For such
functions the mean value exists. Let us consider the case where the following limit
exists and is finite, uniformly in a ∈ R+:

P (e) = lim
T→+∞

1

T

((∫ a+T

a

e(t) cos t dt
)2

+
(∫ a+T

a

e(t) sin t dt
)2)1/2

. (3.1)

Lemma 3.1. The condition

F (+∞)− F (−∞) > π P (e)

is sufficient for the existence of a solution of (1.4) which is bounded to the right.

Proof. Following the argument in [4], let us set, for solutions such that u and
u′ + F (u) do not vanish simultaneously,

u = r cosϕ, u′ + F (u) = r sinϕ

(r > 0), and replace (2.1) with the system

r′ = − cosϕF (r, cosϕ)− g(r cosϕ) sinϕ+ e sinϕ (3.2)

ϕ′ = −1− sinϕF (r, cosϕ)

r
− cosϕg(r cosϕ)

r
+
e cosϕ

r
(3.3)

A solution with r(t0) = R and ϕ(t0) = θ is well defined in an arbitrary interval
[t0, t0 + T ] provided that R is sufficiently large, since r′ is bounded. In fact r(t) =
R+α(t) and ϕ(t) = θ− t+β(t)/R where α and β are bounded functions. Fix ε > 0
so that

F (+∞)− F (−∞) > π(P (e) + 2ε). (3.4)

By definition of P (e) there exists T̄ > 0 so that if T > T̄ we have for every t0 ≥ 0
and every α, ∫ t0+T

t0

sin(α− s)e(s) ds < T (P (e) + ε). (3.5)

Next we choose T̄ > 1 so that if T is a multiple of 2π such that T̄ ≤ T ≤ T̄ + 2π,
and then taking R sufficiently large, we have∫ t0+T

t0

cosϕ(s)F (r(s) cosϕ(s)) ds >
T

π
(F (+∞)− F (−∞))

as well as (by Lemma 1.2)∣∣ ∫ t0+T

t0

g(r cosϕ(t)) sinϕ(t)
∣∣ < ε.
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Using the differential equation (3.2), the two preceding inequalities and the assump-
tion of the Lemma we conclude that r(t0 + T ) < R. Since r′ is bounded and t0 is
arbitrary, the proof is complete. �

On the basis of this property, almost periodicity and compactness arguments (see
[2, 4]) allow to obtain a bounded solution of (2.1) in the whole real line, provided
the limit (3.1) is uniform in a ∈ R and e(t) is almost periodic.

Figure 1. Solution of (3.6) with F (u) = arctanu and E(t) =
− cos t− sin(πt).

Remark 3.2. Perhaps the simplest context where the above argument may be
displayed consists in dealing with a first order equation of the type (2.16), say

u′ + F (u) = E(t) (3.6)

where E has a mean value, at least in the sense that

Ē := lim
T→+∞

1

T

∫ a+T

a

E(s) ds

exists uniformly in a ≥ 0. Then it is easy to see that the condition

F (−∞) < Ē < F (+∞)

implies that all the solutions of (3.6) are bounded to the right. In fact, fix ε > 0 so
that

F (−∞) + 2ε < Ē < F (+∞)− 2ε,

and take T > 0 so that for all a ≥ 0,∣∣ 1

T

∫ a+T

a

E(s) ds− Ē
∣∣ < ε,

and R > 0 such that x > R (resp. x < −R) implies F (x) > F (+∞) − ε (resp.
F (x) < F (−∞)+ε). If for some solution u(t) of (3.6) and t0 ≥ 0 we have u(t0) ≥ R
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(resp. u(t0) ≤ −R), then for some s ∈ [t0, t0 + T ] the inequality u(s) ≤ R (resp.
u(s) ≥ −R) must hold. Since u′ is bounded the claim follows.

A little strengthening of the assumptions would lead to the existence of an almost
periodic solution which, in case F is increasing, must be unique.

Figure 1 shows a graphic simulation for a solution of (3.6) with F (u) = arctanu
and E(t) = − cos t− sin(πt). The figure was drawn using the open source software
available at the web address [15].
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