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REMARKS ON COMPACTNESS CONDITIONS AND THEIR

APPLICATIONS

DAVID G. COSTA

In memory of Prof. John W. Neuberger and his legacy to mathematics

Abstract. We review typical compactness conditions used in variational tech-

niques and some of their properties, and the relationships between them. In

particular, we provide some new insights into results related to the Palais-
Smale and Cerami conditions, and their comparison.

1. Introduction

Let H be a Hilbert space with inner-product 〈·, ·〉 and J : H → R a C1 func-
tional defined on H. Researchers in variational techniques and their applications to
differential equations (ODEs or PDEs) are familiar with the following compactness
conditions, where (un) is a sequence in H:

• Palais-Smale condition at level c, (PS)c: If (un) is such that J(un) → c
and J ′(un)→ 0, then (un) has a convergent subsequence (see [10]);
• Cerami condition at level c, (Ce)c: If (un) is such that J(un) → c and

(1 + ‖un‖)J ′(un)→ 0, then (un) has a convergent subsequence (see [5]);
• Brézis-Coron-Nirenberg condition at level c, (BCN)c: If (un) is such that
J(un)→ c and J ′(un)→ 0, then c ∈ R is a critical value of J (see [4]).

Researchers familiar with the above conditions know and it is also easy to show
that

(PS)c ⇒ (Ce)c ⇒ (BCN)c .

Indeed, (PS)c ⇒ (Ce)c as (1 + ‖un‖)J ′(un) ≥ J ′(un), and either (PS)c or (Ce)c
implies that c ∈ R is a critical value of J , since the limit ū of the convergence
subsequence (still denoted (un)) satisfies J(ū) = c, J ′(ū) = 0.

As a side remark, one should notice that (BCN)c simply says that c is a critical
value of J , a result that might be applicable in situations where J is periodic with
period (say) p > 0. Indeed, one could use ûn with J(ûn) belonging to the closed
interval [0, p] and note that J(ûn)→ c and J ′(ûn)→ 0.
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2. Two results

Now we state and prove two new and simple results involving the Palais-Smale
as well as the Cerami condition (inspired by results in [6, 7]). Let us start by
recalling the notion of Strong Resonant problems, as was introduced by Benci-
Bartolo-Fortunato [3] in 1983 for Dirichlet problems in bounded domains Ω ⊂ RN ,
N ≥ 3 (cf. also [2]). Such problems were also used in the context of unbounded
domains (e.g. see [8, 12] and references therein).

In [3] the authors considered the “strong” resonant problem below in a bounded
domain Ω, with λk denoting the kth eigenvalue of −∆ under Dirichlet condition on
∂Ω,

−∆u− λku+ g(u) = 0, u = 0 on H1
0 (Ω) , (2.1)

and assumed the conditions

(A1) tg(t)→ 0 as |t| → ∞;

(A2) G(t) :=
∫ t
−∞ g(s) ds well-defined and such that G(t)→ 0 as t→∞;

(A3) G(t) ≥ 0 for all t ∈ R
Then they proved the following three theorems:

Theorem 2.1. If (A1)–(A3) hold, then problem (2.1) has at least one solution.

Theorem 2.2. If g(0) = 0, g′(0) = sup{g′(t) : t ∈ R} and (A1)–(A3) hold, then
problem (2.1) has at least one nontrivial solution.

Theorem 2.3. Assume (A2) and (A3) with g odd and G(0) ≥ 0. Moreover, suppose
that there exists an eigenvalue λh ≤ λk such that g′(0)+λh−λk > 0. Then problem
(2.2) possesses at least

m := dimension(Mh ⊕ · · · ⊕Nk)

distinct pairs of nontrivial solutions, where Mi denotes the eigenspace corresponding
to λi.

As pointed out by the authors, the definition of “strong” resonant problem ap-
plies to the situation in Theorem 2.1 where the conditions (A1)–(A3) hold (with
(A1) weakened to g(t) → 0 as |t| → ∞). In fact, as stated by the authors, con-
dition (A1) is simply a technical condition in case g has a “good” behavior at ∞.
In addition, in their approach, the authors show that the Cerami condition (Ce)c
holds for all c ∈ (0,∞), by making use of “linking” results.

In our approach, we plan to show that the stronger (PS)c hods for all c ∈ R
except for a finite set of values that can be found explicitly. In particular, given
that the authors use linking arguments, another alternative one could have is to
use the stronger Palais-Smale condition (PS)c by avoiding the exceptional finite
set of values that we shall find in our approach. We may assume, without loss
of generality, that the eigenvalues of −∆ under Dirichlet boundary condition are
simple; see Remark 2.5.

First result.

Theorem 2.4. Consider the Dirichlet problem

−∆u = λku+ g(u), u = 0 on H1
0 (Ω) , (2.2)

and assume the conditions

(A4) g(t)→ 0 as |t| → ∞, with g continuous;
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(A5) G(t) :=
∫ t

0
g(s) ds is such that limt→±∞G(t) := G± ∈ (−∞,+∞) ,

where λk is a given eigenvalue of −∆ under Dirichlet boundary condition. Then
there exist a finite set Γk ⊂ R such that the functional

J(u) =
1

2

∫
Ω

(|∇u|2 − λku2) dx−
∫

Ω

G(u) dx := Q(u)−
∫

Ω

G(u) dx ,

for u ∈ H1
0 (Ω), satisfies (PS)c if and only if c /∈ Γk, where

Γk := {−measure([v > 0])G+ −measure([v < 0])G− : v ∈ Nk, ‖v‖ = 1} ,
and [v > 0] (resp. [v < 0]) denotes the set {x | v(x) > 0} (resp. {x : v(x) < 0}).

Proof. Recall we are denoting ‖u‖ = (
∫

Ω
|∇u|2 dx)1/2 the usual norm in H1

0 (Ω), and
Nk = Rφk is the one-dimensional eigenspace associated with λk, with ‖φk‖ = 1.
Let us also denote by X+, X− the subspaces of H1

0 (Ω) where Q is positive definite,
negative definite, respectively, and set X 0 = Nk, so that

H1
0 (Ω) = X+ ⊕X− ⊕X 0 .

Since g has subcritical growth by (A4), the functional J satisfies (PS)c if and only
if any sequence (un) in H1

0 (Ω) satisfying

(i) J(un)→ c, and
(ii) J ′(un)→ 0,

must have a bounded subsequence. So, let us assume that J satisfies (i), (ii), but

‖un‖ → ∞ ,

and prove that c ∈ Γk.

Claim: Assuming (A4) and (A5), the functional J satisfies (PS)c if and only if
c /∈ Γk, where we recall that

Γk := {−measure([v > 0])G+ −measure([v < 0])G− : v ∈ Nk, ‖v‖ = 1} ,
and [v > 0] (resp. [v < 0]) denotes the set {x | v(x) > 0} (resp. {x | v(x) < 0}).

Proof. Since we are denoting by X+, X− the subspaces of X := H1
0 (Ω) where Q

is positive definite, negative definite, respectively, and X 0 = Nk, we shall write
u ∈ H1

0 as un = u+
n + u−n + u0

n, where u+
n ∈ X+, u−n ∈ X−, u0

n ∈ X 0 = Nk. And,
since g has subcritical growth, the functional J satisfies (PS)c if and only if any
sequence (un) in H1

0 verifying

(i) J(un)→ c, and
(ii) ‖J ′(un)‖H−1 → 0,

must have a bounded subsequence. So, by negation, let us then assume that J
satisfies (i), (ii), but

(iii) ‖un‖ → ∞.

and show in this case that c ∈ Γk.
Indeed, (ii) implies that

|〈∇J(un), u+
n 〉| = |‖u+

n ‖2 − λk‖u+
n ‖2L2 −

∫
Ω

g(un)u+
n dx| ≤ C‖u+

n ‖ , (2.3)

where C = supn∈N ‖J ′(un)‖H−1 . Also, in view of Holder’s and Sobolev’s inequality,
we have that C2‖u+

n ‖L2 ≤ ‖u+
n ‖, where we may replace C2 by a smaller 0 < C0

with
1− C2

0λk > 0 . (2.4)
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On the other hand, note by (A4) that if q′ ≤ 2N/(N − 2), N ≥ 3 (where q′ =
q/(q − 1) denotes the conjugate exponent of q), we can estimate the integral term
in (2.3) as ∣∣ ∫

Ω

g(un)u+
n dx

∣∣ ≤ ‖g(un)‖Lq‖u+
n ‖Lq′ ≤ C‖g(un)‖Lq‖u+

n ‖ . (2.5)

Therefore, using Holder’s inequality and Sobolev’s embedding, it follows from (2.3),
(2.4), and (2.5), that

(1− C2
0λk)‖u+

n ‖2 ≤ (C‖g(un)‖Lq + Ĉ)‖u+
n ‖ , (2.6)

which implies the (u+
n ) is bounded in H1

0 . Similarly, we show that (u−n ) is also
bounded. �

Thus, by (iii), we must have that ‖u0
n‖ → ∞ and, by setting ûn = un/‖u0

n‖ (and
recalling that Nk = Rφk with ‖φk‖ = 1), it follows that ûn → φk ∈ Nk and we may
also assume that ûn(x)→ v(x) a.e. in Ω. Hence,

un(x)→ +∞ a.e. in [φk > 0], (2.7)

un(x)→ −∞ a.e. in [φk < 0] . (2.8)

Next, in view of (A4), we apply Lebesgue’s theorem to the sequence G(un(x))
to obtain

lim
n→∞

∫
Ω

G(un(x)) dx =

∫
[φk>0]

G+ dx+

∫
[φk<0]

G− dx ,

which proves the Claim with v = φk.
Therefore, using Holder’s inequality and Sobolev’s embedding as in (2.6), we

obtain (with q ≥ 2N/(N + 2), N ≥ 3)

|
∫

Ω

g(un)u+
n dx| ≤ C(

∫
Ω

|g(un(x))|q dx)
1
q ‖u+

n ‖

and, since g(un(x)) → 0 a.e. in Ω in view of (A4), an application of Lebesgue’s
theorem once again implies the desired conclusion that c ∈ Γk in case (iii) holds.

In other words, assuming (i), (ii) (i.e., that (un) is a Palais-Smale sequence), we
have shown through the negation argument (iii) that any Palais-Smale sequence
(un) has a convergent subsequence. On the other hand, it is clear that if c ∈ Γk
then (PS)c does not hold. �

Remark 2.5. Since we are assuming that λk is a simple eigenvalue, the set

Γk := {−αk.G+ − βkG− , −βkG+ − αkG−}
(where αk := measure([v > 0]), βk := measure([v < 0]) has either one or two
elements.

When λk is not a simple eigenvalue the set Γk has νk or 2νk elements, where νk
is the dimension of the eigenspace (Nk) associated with the eigenvalue λk.

Remark 2.6. We should also note that nonlinear resonant problems were origi-
nally introduced and studied via different methods by Landesman-Lazer [9] in 1970,
and by Ahmad-Lazer-Paul [1] in 1976. Later, in 1986, Rabinowitz [11] published a
CBMS monograph (in AMS Conf. Ser. in Math.) introducing Minimax methods in
critical point theory with applications to differential equations, where his seminal
abstract Saddle-Point Theorem, motivated by the Ahmad-Lazer-Paul paper, pro-
vided yet a third different proof for nonlinear resonant problems. It is illustrating



EJDE-2023/SI/02 COMPACTNESS CONDITIONS AND THEIR APPLICATIONS 105

to contrast the resonant situations in [9, 1, 11], where G± is infinite with the strong
resonant situation in [3] and in the above result, where G± are finite real numbers.
We must mention that there is a large literature on both “resonant” and “strong
resonant” problems (on bounded and unbounded domains), but we tried to restrict
the references to a minimum by only listing those which were related to the very
first results on this subject, or that pertain to the results which we wish to address
in this short paper.

Second result. The next theorem uses the non-quadratic condition at infinity
(A8) that was introduced in [7].

Theorem 2.7. Consider the Dirichlet problem

−∆u = f(x, u), u = 0 on H1
0 (Ω) , (2.9)

where again Ω ⊂ RN , N ≥ 3 is bounded, f is continuous, subcritical, and assume
the conditions

(A6) λk = lim|s|→∞
2F (x,s)
s2 , uniformly for x ∈ Ω,

(A7) λk = lim inf |s|→∞
2F (x,s)
s2 ≤ lim sup|s|→∞

2F (x,s)
s2 = λl, uniformly for x ∈ Ω,

(A8) lim|s|→∞[f(x, s)s− 2F (x, s)] = +∞, uniformly for x ∈ Ω,

where λk < λl are two eigenvalues of −∆ under Dirichlet boundary condition on
∂Ω. Then the functional

J(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx :=
1

2
‖u‖2 −

∫
Ω

F (x, u) dx

satisfies (Ce)c for all c ∈ R.

Proof. Recall that the functional J satisfies (Ce)c if any sequence (un) in H1
0 (Ω)

such that

(i) J(un)→ c, and
(ii) ‖J ′(un)‖‖un‖ → 0,

has a bounded subsequence. Let us assume by negation that J does not satisfy
(Ce)c for some c ∈ R. Then there exists a sequence (un) which satisfies (i) and (ii)
above, but

‖un‖ → ∞ .

It follows that

lim
n→∞

∫
Ω

[f(x, un)un − 2F (x, un)] dx = lim
n→∞

[2J(un)− J ′(un) · un] = 2c , (2.10)

and we shall obtain a contradiction by showing that the left-hand side of (2.10)
must go to infinity. Indeed, we make the following claim.

Claim: There exists a subset Ω̂ ⊂ Ω with measure(Ω̂) > 0 such that |un(x)| → ∞
a.e. x ∈ Ω̂. Using the Claim, the subcritical growth of f and the assumption (A8),
we conclude that the left-hand side of (2.10) goes to infinity. In fact, in this case,
the subcritical growth of f and (A8) imply that

f(x, un(x))un(x)− 2F (x, un(x))) ≥ −C, for a.e. x ∈ Ω and some C ∈ R ,
lim
n→∞

[f(x, un(x))un(x)− 2F (x, un(x)))] = +∞, for a.e. x ∈ Ω ,

while Fatou’s lemma with Qn := f(x, un)un − 2F (x, un) gives∫
Ω

lim inf
n→∞

Qn dx ≥ lim inf
n→∞

∫
Ω̂

Qn dx− C measure(Ω\Ω̂) = +∞
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for some C ∈ R, which contradicts (2.10).

Now, it remains to prove the claim. To that end, we note that that (A6) and
(A7) imply

lim sup
|n|→∞

1

‖un‖2

∫
Ω

[F (x, un)− 1

2
λlu

2
n] dx ≤ 0 . (2.11)

And, setting ûn = un/‖un‖, we may assume that ûn converges weakly to some û in

H1
0 Ω, and strongly to û in L2(Ω). We shall then define our subset Ω̂ to complete

the proof. Indeed, passing to the limit in the equality

1

‖ûn‖2
J(un) =

1

2
(1− λl‖ûn‖2L2)− 1

‖un‖2

∫
Ω

[F (x, un)− 1

2
λlu

2
n] dx ,

and using (2.11), we obtain

0 ≥ 1

2
(1− λl‖û‖2L2)

which shows that û 6= 0. The claim is proved by taking Ω̂ = {x ∈ Ω : û(x) 6= 0}. �

Remark 2.8. As a final remark, we shall exhibit various possibilities of Γk (indi-
cated in Remark 2.5) in terms of the measures of the sets [φk > 0] (denoted αk)
and [φk < 0] (denoted βk), as well as the relative signs of the limits G+ and G−.
Indeed, let us define the parameters

γ ∈ [0, 1] and δ ∈ [−1, 1] ,

and set βk = γαk, G− = δG+. Then, an easy calculation shows that the finite set
Γk can be rewritten as

Γk = {−(1 + γδ)αk.G+,−(γ + δ)αkG+} . (2.12)

Note that the set Γk has 2 elements (or 1 element, if the above elements coin-
cide). Indeed, recall that in Remark 2.5 we assumed λk to be a simple eigenvalue.
Clearly, when λk has multiplicity νk (i.e., dimension(Nk) = νk), we’ll get 2νk (or νk)
elements in Γk.

Finally, we consider some special cases of γ and δ (assuming λk is a simple
eigenvalue) where the situation described in Remark 2.8 arises by using Γk in (2.12)
.

Special cases.

Case 1: If γ = 0, then Γk = {−αk.G+,−δαkG+}, and

(i) Γk has 1 element if δ = 1,
(ii) Γk has 2 elements if δ < 1;

Case 2: If γ > 0, then Γk, and

(i) Γk has has 1 element if δ = 0, and γ = 1,
(ii) Γk has 2 elements if γ < 1 [see (2.12)];

Case 3: If δ < 1, then

(i) Γk has (i) 1 element if γ = 1, and
(ii) Γk has 2 elements if γ < 1;

Indeed, δ < 1, γ = 1⇒ −1− δ = −1− γ, so Γk has 1 element,
whereas δ < 1, γ < 1 ⇒ −1 − δγ 6= −γ − δ, so Γk has 2 elements; on the
other hand,
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Case 4: If δ = 1 [i.e. G+ = G−] and γ = 1 [i.e. βk = αk], then βk = αk =
measure(Ω)/2, which is equivalent to γ = 1 .
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