# EXISTENCE OF POSITIVE GLOBAL RADIAL SOLUTIONS TO NONLINEAR ELLIPTIC SYSTEMS 

SESHADEV PADHI, JULIO G. DIX<br>Dedicated to the memory of John W. Nueberger


#### Abstract

In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$
\operatorname{div}\left(\phi_{j}(|\nabla u|) \nabla u\right)+a_{j}(x) \phi_{j}(|\nabla u|)|\nabla u|=p_{j}(x) f_{j}\left(u_{1}(x), \ldots, u_{k}(x)\right)
$$ and in particular to Laplace's equation $$
\Delta u_{j}(x)=p_{j}(x) f_{j}\left(u_{1}(x), \ldots, u_{k}(x)\right)
$$ where $j=1, \ldots, k, x \in \mathbb{R}^{N}, N \geq 3, \Delta$ is the Laplacian operator, and $\nabla$ is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results.


## 1. Introduction

In this article we study the existence and asymptotic behavior of positive radial solutions to the system

$$
\begin{equation*}
\operatorname{div}\left(\phi_{j}(|\nabla u|) \nabla u\right)+a_{j}(x) \phi_{j}(|\nabla u|)|\nabla u|=p_{j}(x) f_{j}\left(u_{1}(x), \ldots, u_{k}(x)\right) \tag{1.1}
\end{equation*}
$$

and in particular to the system

$$
\begin{equation*}
\Delta u_{j}(x)=p_{j}(x) f_{j}\left(u_{1}(x), \ldots, u_{k}(x)\right) \tag{1.2}
\end{equation*}
$$

for $x \in \mathbb{R}^{N}, N \geq 3$, and $j=1, \ldots, k$. Here $\Delta$ is the Laplacian operator, $\nabla$ is the gradient, $a_{j}, p_{j}$ are radially symmetric functions, and $\phi_{j}$ is a continuously differentiable function. Let $r=|x|$ be the Euclidean norm of $x$ in $\mathbb{R}^{N}$. We use the same symbol to indicate a radial function in terms of $x \in \mathbb{R}^{N}$ and in terms of $r$.

We prove that (1.1) has positive solutions which are global and radially symmetric. See Theorem 2.4 below. By doing this, we extend the existing results from 2 equations to $k$ equations. The main difficulty is finding the proper function $h$ that allows us bounding the iterated solutions, see inequality 2.5 and hypothesis (A5). Also we provide a small improvement in the solution estimates which allows us stating conditions in a much simpler way than in the references; see Remarks 2.3 and 2.7 below.

[^0]The motivation for this article comes the following references: Lair [8, 7] considered the system

$$
\begin{aligned}
\Delta u & =p_{1}(|x|) v^{\alpha} \\
\Delta v & =p_{2}(|x|) u^{\beta}
\end{aligned}
$$

for $x \in \mathbb{R}^{N}$. Li, Zhang, and Zhang [9], and Zhang [14] studied the system

$$
\begin{gathered}
\Delta u=p_{1}(|x|) f(v) \\
\Delta v=p_{2}(|x|) g(u)
\end{gathered}
$$

for $x \in \mathbb{R}^{N}$. Covei [2] considered the system

$$
\begin{gather*}
\Delta u=p_{1}(|x|) f(u, v) \\
\Delta v=p_{2}(|x|) g(u) \tag{1.3}
\end{gather*}
$$

for $x \in \mathbb{R}^{N}$. Othman and Chemman [10] used a fixed point approach by assuming the existence of subsolution and supersolution to study the existence of a large solution to the system $\Delta_{p} u=f_{1}(x, u, v), \Delta_{q} v=f_{2}(x, u, v)$. This is done in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}, N \geq 2, u, v>0$ in $\Omega,\left.u\right|_{\partial \Omega}=+\infty$ and $\left.v\right|_{\partial \Omega}=+\infty$, where $1<p, q<\infty$ and $\Delta_{t} w=\operatorname{div}\left(|\nabla w|^{t-2} \nabla w\right)$ for any $1<t<\infty$. In an another work, Alves and de Holanda [1] studied the system $\Delta u=F_{u}(x, u, v), \Delta v=F_{v}(x, u, v)$ from a variational point of view. However this approach does not apply to 1.2 . Zhou [15] considered the system

$$
\begin{aligned}
& \operatorname{div}\left(\phi_{1}(|\nabla u|)|\nabla u|\right)+a_{1}(|x|) \phi_{1}(|\nabla u|)|\nabla u|=p_{1}(|x|) f_{1}(u, v) \\
& \operatorname{div}\left(\phi_{2}(|\nabla v|)|\nabla v|\right)+a_{2}(|x|) \phi_{2}(|\nabla v|)|\nabla v|=p_{2}(|x|) f_{2}(u, v)
\end{aligned}
$$

for $x \in \mathbb{R}^{N}$. By using a monotone iterative technique and the Arzela-Ascoli theorem, Yang et al. [13], studied the positive entire bounded radial solutions of the Schrödinger elliptic system

$$
\begin{gathered}
\operatorname{div}\left(\mathcal{G}\left(|\nabla y|^{p-2}\right) \nabla y\right)=b_{1}(|x|) \psi(y)+h_{1}(|x|) \varphi(z), \quad x \in \mathbb{R}^{n}(n \geq 3) \\
\quad \operatorname{div}\left(\mathcal{G}\left(|\nabla z|^{p-2}\right) \nabla z\right)=b_{2}(|x|) \psi(z)+h_{2}(|x|) \varphi(y), \quad x \in \mathbb{R}^{n}
\end{gathered}
$$

where $\mathcal{G}$ is a nonlinear operator. García-Melián [4] studied the system

$$
\begin{aligned}
\Delta u & =p_{1}(|x|) u^{\alpha} v^{\beta} \\
\Delta v & =p_{2}(|x|) u^{\gamma} v^{\eta}
\end{aligned}
$$

for $x \in \Omega \subset \mathbb{R}^{N}$. For more results on elliptic boundary value problems see [3, 5, 6, 9, 12 and the references therein.

## 2. Results

To obtain a solution to (1.1), we build a sequence of functions, and then show that the sequence converges to a solution. First using the integrating factor $r^{N-1} \mu_{j}(r)$, we obtain a radial version of 1.1 ,

$$
\begin{gather*}
\left(r^{N-1} \mu_{j}(r) \phi_{j}\left(u_{j}^{\prime}(r)\right) u_{j}^{\prime}(r)\right)^{\prime}=r^{N-1} \mu_{j}(r) p_{j}(r) f_{j}\left(u_{1}(r), \ldots, u_{k}(r)\right)  \tag{2.1}\\
u_{j}(0)=\alpha_{j} \geq 0, \quad u_{j}^{\prime}(0)=0, \quad j=1, \ldots, k
\end{gather*}
$$

where

$$
\mu_{j}(r)=\exp \left(\int_{0}^{r} a_{j}(s) d s\right)
$$

To study this problem we use the following assumptions:
(A1) $p_{j}:[0, \infty) \rightarrow[0, \infty)$ are continuous and radially symmetric functions. The initial values satisfy $\alpha_{j} \geq 0$ with $\alpha_{j}>0$ for at least one index $j$.
(A2) $f_{j}:[0, \infty)^{k} \rightarrow[0, \infty)$ are continuous and non-decreasing with respect to each one of their arguments.
(A3) $\phi_{j} \in C^{1}([0, \infty),[0, \infty))$ for each $j$, and

$$
\psi_{j}(r):=r \phi_{j}(r) \quad \text { satisfies } \quad \psi_{j}^{\prime}(r)>0 \quad \text { for } r>0
$$

(A4) There exist positive constants $\tilde{B}_{1}, \tilde{B}_{2}$ and $\beta_{2} \geq \beta_{1} \geq 1$ such that $\tilde{B}_{1} t^{\beta_{1}} \leq$ $\psi(t) \leq \tilde{B}_{2} t^{\beta_{2}}$ for $t>0$. By a contradiction argument we can show that that there are positive constants $B_{1}$ and $B_{2}$ such that

$$
B_{2} y^{1 / \beta_{2}} \leq \psi_{j}^{-1}(y) \leq B_{1} y^{1 / \beta_{1}} \quad \text { for } y>0, j=1, \ldots, k
$$

(A5) There exists a continuous function $h:[0, \infty) \rightarrow[0, \infty)$ such that

$$
f_{j}\left(u_{1}, \ldots, u_{k}\right) \leq h\left(u_{1}+\cdots+u_{k}\right), \quad \text { for } 1 \leq j \leq k
$$

for the $\beta_{1}$ in (A4),

$$
\int_{1}^{\infty} \frac{1}{h^{1 / \beta_{1}}(t)} d t=\infty
$$

and for each positive $t_{0}$, there is positive constant $h_{0}$, such that $h_{0} \leq h(t)$ for all $t \geq t_{0}$.
Examples of functions satisfying (A3) include $\phi_{j}(t)=1$ which yields the Laplacian operator, and $\phi_{j}(t)=t^{p-2}$ which yields the $p$-Laplacian operator. See more examples in [15]. We do not need to define $\phi_{j}$ for negative values because we show later that $u_{j, n}^{\prime} \geq 0$. Assumption (A4) was stated as $\beta_{1} \leq \frac{t \psi^{\prime}(t)}{\psi(t)} \leq \beta_{2}$ in [15]. As an example of a functions satisfying (A2) and (A5) we have $f_{j}\left(u_{1}, \ldots, u_{k}\right)=u_{1}^{\delta_{1}} \cdots u_{k}^{\delta_{k}}$ with $\max \left\{\delta_{i}: 1 \leq i \leq k\right\} \leq \beta_{1}$, and $h(t)=\max \left\{1,\left(\sum_{i}^{k} u_{i}\right)^{\max \left\{\delta_{i}: 1 \leq i \leq k\right\}}\right\}$.

We define a sequence of functions converging to a solution of 2.1) as follows. First we integrate (2.1) to obtain

$$
\begin{gather*}
u_{j}^{\prime}(r)=\psi_{j}^{-1}\left(\frac{r^{1-N}}{\mu_{j}(r)} \int_{0}^{r} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1}(s), \ldots, u_{k}(s)\right) d s\right) \\
u_{j}(r)=\alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1}(s), \ldots, u_{k}(s)\right) d s\right) d t \tag{2.2}
\end{gather*}
$$

For $n=0$, we define $u_{1,0}=\alpha_{1}, u_{2,0}=\alpha_{2}, \ldots, u_{k, 0}=\alpha_{k}$. And for $n \geq 1$, we define $u_{j, n}(r)=\alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1, n-1}(s), \ldots, u_{k, n-1}(s)\right) d s\right) d t$.

We use a simultaneous iteration. To compute $u_{j, n}$ we use $u_{j, n-1}$ for $j=1 \ldots, k$ (all $u_{j, n-1}$ are replaced by $u_{j, n}$ at the same time). However it is possible to use successive iterations: the $u_{j, n}$ are used as they become available. Compute $u_{j, n}$ in ascending order of $j$, and for computing $u_{j+1, n}$ use $u_{j, n}$, instead of $u_{j, n-1}$. This technique called the Gauss-Seidel method when doing numerical approximations.

Lemma 2.1. Under assumptions (A1)-(A3), the sequence of functions $\left\{u_{j, n}\right\}$ is non-decreasing with respect to $n$, and each function is non-decreasing.

Proof. To show that the sequence is non-decreasing we use induction on $n$. Since $f_{j}, p_{j}, \mu_{j}$, and $\psi_{j}$ are non-negative, we have

$$
u_{j, 0}(r) \leq \alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(\alpha_{1}, \ldots, \alpha_{k}\right) d s\right) d t=u_{j, 1}(r)
$$

for all $r \geq 0$, which is the base step for induction. Now we assume that $u_{j, n-1}(s) \leq$ $u_{j, n}(s)$ for $s \geq 0$. As $f_{j}$ is non-decreasing in each argument, $\psi_{j}$ is increasing, and $\mu_{j}>0$, we have

$$
\begin{aligned}
u_{j, n}(r) & =\alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1, n-1}(s), \ldots, u_{k, n-1}(s)\right) d s\right) d t \\
& \leq \alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1, n}(s), \ldots, u_{k, n}(s)\right) d s\right) d t
\end{aligned}
$$

for all $r \geq 0$, which completes the induction step.
To show that these functions are non-decreasing, we use

$$
u_{j, n}^{\prime}(r)=\psi_{j}^{-1}\left(\frac{r^{1-N}}{\mu_{j}(r)} \int_{0}^{r} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1, n}(s), \ldots, u_{k, n}(s)\right) d s\right) \geq 0
$$

which indicates that $u_{j, n}(r)$ is non-decreasing with respect to $r$.
Lemma 2.2. Under assumptions (A1)-(A5), the sequence $\left\{u_{j, n}(r)\right\}$ is uniformly bounded on each interval $0 \leq r \leq r_{1}$.
Proof. Using 2.2), (A4), and that $h\left(\sum \alpha_{i}\right) \geq f_{j}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, we have

$$
\begin{align*}
u_{j}^{\prime}(r) & \leq \psi_{j}^{-1}\left(h\left(u_{1, n}(r)+\cdots+u_{k, n}(r)\right) \frac{r^{1-N}}{\mu_{j}(r)} \int_{0}^{r} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)  \tag{2.4}\\
& \leq B_{1}\left(h\left(u_{1, n}(r)+\cdots+u_{k, n}(r)\right) \frac{r^{1-N}}{\mu_{j}(r)} \int_{0}^{r} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}}
\end{align*}
$$

Dividing by $B_{1} h^{1 / \beta_{1}}$, and summing over $j$, we have

$$
\begin{align*}
& \frac{1}{B_{1} h^{1 / \beta_{1}}\left(u_{1, n}(r)+\cdots+u_{k, n}(r)\right)} \sum_{j=1}^{k} u_{j, n}^{\prime}(r)  \tag{2.5}\\
& \leq \sum_{j=1}^{k}\left(\frac{r^{1-N}}{\mu_{j}(r)} \int_{0}^{r} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}}
\end{align*}
$$

Integrating from $r=0$ to $r=r_{1}$ yields

$$
\begin{equation*}
\int_{\sum \alpha_{i}}^{\sum u_{i, n}\left(r_{1}\right)} \frac{1}{B_{1} h^{1 / \beta_{1}}(t)} d t \leq \sum_{j=1}^{k} \int_{0}^{r}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}} d t \tag{2.6}
\end{equation*}
$$

Note that the right-hand side is independent of $n$, and finite as long as $r_{1}<\infty$. Recall that by (A5), $h\left(\sum \alpha_{i}\right)$ is bounded below by a positive constant because $\alpha_{i}>0$ at least one index $i$. Then we can find a constant $M\left(r_{1}\right)$ such that the upper limit of integration satisfies

$$
\begin{equation*}
\sum_{j=1}^{k} u_{j, n}\left(r_{1}\right) \leq M\left(r_{1}\right), \quad \forall n \geq 1 \tag{2.7}
\end{equation*}
$$

Since $0 \leq \alpha_{j}=u_{j, 0}(r) \leq u_{j, n}(r) \leq u_{j, n}\left(r_{1}\right)$ for all $r \in\left[0, r_{1}\right]$, the sequence $\left\{u_{j, n}(\cdot)\right\}$ is uniformly bounded for $1 \leq j \leq k$ and $1 \leq n$ on [ $0, r_{1}$ ].

Remark 2.3. In [2] and [11, the quantity $u_{i, n}(s)$ in the integrand in 2.2) is substituted using the inequality

$$
\begin{aligned}
u_{i, n}(r) & \leq \alpha_{i}+\int_{0}^{r} s^{1-N} \int_{0}^{t} s^{N-1} p_{i}(s) f_{i}\left(u_{1, n}(s), \ldots, u_{k, n}(s)\right) d s d t \\
& \leq M_{i} f_{i}\left(u_{1, n}(r), \ldots, u_{k, n}(r)\right)\left(1+\int_{0}^{r} s^{1-N} \int_{0}^{t} s^{N-1} p_{i}(s)\right)
\end{aligned}
$$

where $M_{i}=\max \left\{1, \alpha_{i} / f_{i}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right\}$. This inequality comes from Lemma 2.1 with $\psi_{j}(r)=r$, and $\mu_{j}=1$. This substitution does not improve estimate 2.2); on the contrary it makes the estimate less accurate. By avoiding this substitution, our estimates yield a small improvement and make our estimates simpler than theirs. Also we use the upper bound $h$ in (A5), while [2] and 11 used the estimate

$$
f_{j}\left(u_{1, n}, \ldots, u_{k, n}\right) \leq f_{j}\left(u_{1, n}+\cdots+u_{k, n}, \ldots, u_{1, n}+\cdots+u_{k, n}\right)
$$

which can be larger than the $h\left(u_{1, n}+\cdots+u_{k, n}\right)$ used in (A5). Therefore, our estimates provide another small improvement.

Theorem 2.4. Under assumptions (A1)-(A5) there is a positive solution to (2.1) for all $r \geq 0$, and hence a global radially symmetric solution to (1.1).

Proof. First we show that $\left\{u_{j, n}\right\}$ is equi-continuous, by finding a uniform bound for $\left\{u_{j, n}^{\prime}(\cdot)\right\}$ on an interval $\left[0, r_{1}\right]$. From the continuity of $f_{j}, p_{j}$, and $\psi_{j}$, we have that the bound for $\left\{u_{j, n}\right\}$ in Lemma 2.2 provides a bound for the right-hand side of 2.4 . Therefore, $\left\{u_{j, n}^{\prime}(\cdot)\right\}$ is uniformly bounded on $\left[0, r_{1}\right]$. By (1.1) and the continuity of $h$, from (2.5), there exists a constant $\tilde{M}\left(r_{1}\right)$ such that $0 \leq u_{j, n}^{\prime}(r) \leq \tilde{M}\left(r_{1}\right)$ for all $r$ in $\left[0, r_{1}\right]$; i.e., $u_{j, n}^{\prime}$ is uniformly bounded on $\left[0, r_{1}\right]$. For $x, y \in\left[0, r_{1}\right]$, by the mean value theorem,

$$
\left|u_{j, n}(y)-u_{j, n}(x)\right| \leq \tilde{M}\left(r_{1}\right)|y-x| \quad \text { for } 1 \leq j \leq k, 1 \leq n .
$$

Given $\epsilon>0$, we select $\delta \leq \epsilon / \tilde{M}\left(r_{1}\right)$. If $|x-y|<\delta$, then $\left|u_{j, n}(y)-u_{j, n}(x)\right|<\epsilon$ which shows the equi-continuity of $u_{j, n}$ for $1 \leq j \leq k$ and $1 \leq n$.

Then by the Arzela-Ascoli theorem, there exists a subsequence of $\left\{u_{j, n}\right\}$ that converges uniformly to a function $u_{j}$. Since $\left\{u_{j, n}\right\}$ is non-decreasing in $n$, the whole sequence converges uniformly to $u_{j}$. Therefore,

$$
u_{j}(r)=\alpha_{j}+\int_{0}^{r} \psi_{j}^{-1}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) f_{j}\left(u_{1}(s), \ldots, u_{k}(s)\right) d s\right) d t
$$

which provides a solution to 2.2 on $\left[0, r_{1}\right]$. Noting that $r_{1}$ can be arbitrarily large, we complete the proof.

Regarding the asymptotic behavior of solutions we have the following result.
Theorem 2.5. The solution obtained in Theorem 2.4 satisfies the following: (1) if

$$
\begin{equation*}
\sum_{j=1}^{k} \int_{a}^{\infty}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{a}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}} d t<\infty \quad \text { for some } a>0 \tag{2.8}
\end{equation*}
$$

then $\lim _{r \rightarrow \infty} u_{j}(r)<\infty$ for each $j \in\{1, \ldots, k\}$.
(2) If for an index $j, \int_{0}^{\infty}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}} d t<\infty$, and $f_{j}(\ldots)$ is bounded, then $\lim _{r \rightarrow \infty} u_{j}(r)<\infty$.
(3) If for an index $j$,

$$
\begin{equation*}
\int_{a}^{\infty}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{a}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{2}} d t=\infty \tag{2.9}
\end{equation*}
$$

then $\lim _{t \rightarrow \infty} u_{j}(t)=\infty$.
Proof. (1) Under assumption (2.8), the right-hand side of 2.6) remains bounded when $r \rightarrow \infty$, so the bound in 2.7) can be made independent of $n$ and $r_{1}$. That is there exists a constant $M$ such that

$$
\sum_{j=1}^{k} u_{j}(r) \leq M, \quad \forall r \geq 0
$$

Using that $u_{j}(\cdot)$ is non-decreasing, we have the result in part (1).
(2) From the assumptions, we define two bounds: $f_{j}(\ldots) \leq D_{j}$ and

$$
\int_{0}^{r}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{1}} d r \leq \tilde{D}_{j}, r \geq 0
$$

Then from 2.2), (A2), and (A4), we have

$$
u_{j}(r) \leq \alpha_{j}+B_{1}\left(D_{j}\right)^{1 / \beta_{1}} \tilde{D}_{j} \quad \text { for } r \geq 0
$$

Then (2) follows from $u_{j}$ begin non-decreasing.
(3) From 2.2), (A2), and (A4), we have

$$
u_{j}(r) \geq \alpha_{j}+B_{2}\left(f_{j}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)^{1 / \beta_{2}} \int_{0}^{r}\left(\frac{t^{1-N}}{\mu_{j}(t)} \int_{0}^{t} s^{N-1} \mu_{j}(s) p_{j}(s) d s\right)^{1 / \beta_{2}} d t
$$

Because at least one $\alpha_{i}$ is positive, $f_{j}\left(\alpha_{1}, \ldots, \alpha_{k}\right)>0$. Then the right-hand side increases to infinity as $r \rightarrow \infty$, and conclusion (3) follows.

Remark 2.6. The results from Theorems 2.4 and 2.5 apply to 1.2 , by setting $\phi_{j}(r)=1, a_{j}=0$, and $B_{1}=B_{2}=\beta_{1}=\beta_{2}=1$.
Remark 2.7. Conditions $\bar{P}(\infty)<\infty$ and $\bar{Q}(\infty)<\infty$ on [2, page 88] are equivalent to (2.8) with $j=1,2, \psi(r)=r, \mu_{j}=1$ and $\beta_{1}=1$. Also condition [11, ineq. (22)] is equivalent to 2.8 . However our assumption (2.8) is much easier to verify than theirs.

Example 2.8. Consider the system

$$
\begin{gather*}
\left(r^{N-1} r^{0.1}\left(u_{1}^{\prime}(r)\right)^{3}\right)^{\prime}=r^{N-1} r^{0.1} \frac{1}{1+r^{2.1}} u_{1}(r) u_{2}(r), \quad r \geq 0, \\
\left(r^{N-1} r^{0.2}\left(u_{2}^{\prime}(r)\right)^{3}\right)^{\prime}=r^{N-1} r^{0.2} \frac{1}{1+r^{2.2}}\left(u_{1}(r) u_{2}(r)\right)^{1 / 2}, \quad r \geq 0,  \tag{2.10}\\
u_{1}(0)=1, \quad u_{2}(0)=0, \quad u_{1}^{\prime}(0)=u_{2}^{\prime}(0)=0 .
\end{gather*}
$$

First we check that the assumptions in Theorem 2.5 are satisfied. Certainly functions $p_{1}(r)=\frac{1}{1+r^{2.1}}$ and $p_{2}(r)=\frac{1}{1+r^{2.2}}$ satisfy (A1). Also $f_{1}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$ and $f_{1}\left(u_{1}, u_{2}\right)=\left(u_{1} u_{2}\right)^{1 / 2}$ satisfy (A2).

To check (A3), we use $\phi_{1}(r)=\phi_{2}(r)=r^{2}$ so $\psi_{1}(r)=\psi_{2}(r)=r^{3}$, and $\psi_{1}^{\prime}(r)=$ $3 r^{2}>0$ for $r>0$.

To check (A4), we have $\psi_{1}^{-1}(y)=y^{1 / 3}$, thus $y^{1 / 3} \leq \psi_{1}^{-1}(y) \leq y^{1 / 3}$ and $B_{1}=$ $B_{2}=1, \beta_{1}=\beta_{2}=3$.

Now we check (A5). Let us set $h(t)=\max \left\{1, t^{2}\right\}$. Then

$$
f_{1}\left(u_{1}, u_{2}\right)=u_{1} u_{2} \leq\left(u_{1}+u_{2}\right)^{2} \leq \max \left\{1,\left(u_{1}+u_{2}\right)^{2}\right\}=h\left(u_{1}+u_{2}\right)
$$

and

$$
\begin{aligned}
f_{2}\left(u_{1}, u_{2}\right) & =\left(u_{1} u_{2}\right)^{1 / 2} \leq\left(\left(u_{1}+u_{2}\right)^{2}\right)^{1 / 2}=u_{1}+u_{2} \\
& \leq \max \left\{1,\left(u_{1}+u_{2}\right)^{2}\right\}=h\left(u_{1}+u_{2}\right)
\end{aligned}
$$

Moreover,

$$
\int_{1}^{\infty} \frac{1}{h^{1 / \beta_{1}}(t)} d t=\int_{1}^{\infty} \frac{1}{t^{2 / 3}} d t=\infty
$$

and (A5) is satisfied.
Now we check 2.8). For $j=1$, the inner integral is

$$
\int_{a}^{r} s^{N-1} s^{0.1} \frac{1}{1+s^{2.1}} d s \leq \int_{0}^{r} s^{N-1} s^{0.1} \frac{1}{s^{2.1}} d s=\frac{1}{N-2} r^{N-2}
$$

While the outer integral in $\sqrt{2.8}$ is

$$
\int_{a}^{\infty} r^{1-N} \frac{1}{r^{0.1}} \frac{1}{N-2} r^{N-2} d r=\frac{1}{N-2} \int_{a}^{\infty} \frac{1}{r^{1.1}} d r<\infty
$$

For $j=2$, the inner integral in 2.8 is

$$
\int_{a}^{r} s^{N-1} s^{0.2} \frac{1}{1+s^{2.2}} d s \leq \int_{0}^{r} s^{N-1} s^{0.2} \frac{1}{s^{2.2}} d s=\frac{1}{N-2} r^{N-2}
$$

While the outer integral in 2.8 is

$$
\int_{a}^{\infty} r^{1-N} \frac{1}{r^{0.2}} \frac{1}{N-2} r^{N-2} d r=\frac{1}{N-2} \int_{a}^{\infty} \frac{1}{r^{1.2}} d r<\infty
$$

So 2.8 is satisfied. Therefore, by Theorems 2.4 and 2.5 there is a global solution for which both $u_{1}$ and $u_{2}$ remain bounded as $r \rightarrow \infty$.

Acknowledgments. We want to thank the anonymous referee for checking the original manuscript and for giving us valuable suggestions.

## References

[1] Claudianor O Alves, Angelo RF de Holanda; Existence of blow-up solutions for a class of elliptic systems, Differential and Integral Equations 26 (2013), no. 1/2, 105-118.
[2] Dragos-Patru Covei; Solutions with radial symmetry for a semilinear elliptic system with weights, Applied Mathematics Letters 76 (2018), 187-194.
[3] Louis Dupaigne, Marius Ghergu, Olivier Goubet, Guillaume Warnault; Entire large solutions for semilinear elliptic equations, Journal of Differential Equations 253 (2012), no. 7, 22242251.
[4] Jorge García-Melián; A remark on uniqueness of large solutions for elliptic systems of competitive type, Journal of mathematical analysis and applications 331 (2007), no. 1, 608-616.
[5] D. D. Hai, R. Shivaji; On radial solutions for singular combined superlinear elliptic systems on annular domains, Journal of Mathematical Analysis and Applications 446 (2017), no. 1, 335-344.
[6] Takaŝi Kusano, Charles A Swanson; Positive entire solutions of semilinear biharmonic equations, Hiroshima mathematical journal 17 (1987), no. 1, 13-28.
[7] Alan V Lair; A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems, Journal of Mathematical Analysis and Applications 365 (2010), no. 1, 103-108.
[8] Alan V Lair; Entire large solutions to semilinear elliptic systems, Journal of mathematical analysis and applications 382 (2011), no. 1, 324-333.
[9] Hong Li, Pei Zhang, and Zhijun Zhang, A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, Journal of mathematical analysis and applications 365 (2010), no. 1, 338-341.
[10] Sonia Ben Othman, Rym Chemmam, Paul Sauvy; On the existence of boundary blow-up solutions for a general class of quasilinear elliptic systems, Advanced Nonlinear Studies 14 (2014), no. 4, 1013-1035.
[11] Seshadev Padhi, Smita Pati; Entire large positive radial symmetry solutions for combined quasilinear elliptic system, Turkish Journal of Mathematics 44 (2020), no. 6, 2155-2165.
[12] James Serrin, Henghui Zou; Non-existence of positive solutions of lane-emden systems, Differential and Integral Equations 9 (1996), no. 4, 635-653.
[13] Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu; Existence and nonexistence of entire positive radial solutions for a class of schrödinger elliptic systems involving a nonlinear operator, Discrete \& Continuous Dynamical Systems-S 14 (2021), no. 10, 3821.
[14] Zhijun Zhang; Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Differential Equations 2016 (2016), no. 50, 1-9.
[15] Song Zhou; Existence of entire radial solutions to a class of quasilinear elliptic equations and systems, Electronic Journal of Qualitative Theory of Differential Equations 2016 (2016), no. $38,1-10$.

Seshadev Padhi
Department of Mathematics, Birla Institute of Technology, Mesra Ranchi, India
Email address: spadhi@bitmesra.ac.in
Julio G. Dix
Department of Mathematics, Texas State University, 601 University Drive, San Marcos,
TX 78666, USA
Email address: jd01@txstate.edu


[^0]:    2020 Mathematics Subject Classification. 35J25, 45F10, 35B08.
    Key words and phrases. Radial solution; elliptic system.
    (C)2023 This work is licensed under a CC BY 4.0 license.

    Published March 27, 2023.

