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Abstract:
Noise sensitivity of functions on the leaves of a binary tree is studied, and a hypercontractive
inequality is obtained. We deduce that the spider walk is not noise stable.

Introduction

For the simplest random walk (Fig. 1a), the set Ωsimp
n of all n-step trajectories may be thought

of either as (the set of leaves of) a binary tree, or (the vertices of) a binary cube {−1, +1}n.
However, consider another random walk (Fig. 1b); call it the simplest spider walk, since it
is a discrete counterpart of a spider martingale, see [2]. The corresponding Ωspider

n is the set
of leaves of a binary tree. It is not quite appropriate to think of such n-step “spider walks”
as the vertices of a binary cube, since for different i and j in {1, 2, . . . , n} it is not necessary
that the j’th step has the same or opposite direction from the i’th step. Of course, one may
choose to ignore this point, and use the n bits given by a point in {−1, 1}n to describe a
spider walk, in such a way that for each j = 1, 2, . . . , n, the first j bits determine the first
j steps of the walk. Such a correspondence would not be unique. To put it differently, the
vertices of the cube have a natural associated partial order. When you consider two walks on
Z, the associated partial ordering has a natural interpretation, one trajectory is (weakly) larger
than the other if whenever the latter moved to the right, the former also moved to the right.
However, this interpretation does not make sense for the spider walk in Fig. 1b, and even less
to more complicated “spider webs” with several “roundabouts”, such as that of Fig. 1c.
Noise sensitivity and stability are introduced and studied in [3] for functions on cubes. Different
cube structures on a binary tree are non-equivalent in that respect. It is shown here that a
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Figure 1: (a) simple walk; (b) spider walk; (c) a spider web. At each point, there are two
equiprobable moves.

natural function on Ωspider
n is non-stable under every cube structure. One of the tools used is

a new hypercontractive inequality, which hopefully may find uses elsewhere.

1 Stability and sensitivity on cubes, revisited

A function f : {−1, +1}n → C has its Fourier-Walsh expansion,

f(τ1, . . . , τn) =

= f̂0 +
∑

k

f̂1(k)τk +
∑
k<l

f̂2(k, l)τkτl + · · · + f̂n(1, . . . , n)τ1 . . . τn .

Set

f̃j(τ1, . . . , τn) =
∑

i1<i2<···<ij

f̂j(i1, . . . , ij)τi1τi2 . . . τij .

Since the transform f 7→ f̂ is isometric, we have ‖f‖2 =
∑n

0 ‖f̃m‖2, where

‖f‖2 = 2−n
∑

τ1,...,τn

|f(τ1, . . . , τn)|2 .(1.1)

The quantities

Sm
1 (f) =

m∑
i=1

‖f̃i‖2 , S∞
m (f) =

n∑
i=m

‖f̃i‖2

are used for describing low-frequency and high-frequency parts of the spectrum of f .
Given a sequence of functions F =

(
fn

)∞
n=1, fn : {−1, +1}n → C , satisfying 0 < lim infn→∞ ‖fn‖ ≤

lim supn→∞ ‖fn‖ < ∞, we consider numbers

Sm
1 (F ) = lim sup

n→∞
Sm

1 (fn) ,

S∞
m (F ) = lim sup

n→∞
S∞

m (fn) .
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Here is one of equivalent definitions of stability and sensitivity for such F , according to [3,
Th. 1.8] (indicator functions are considered there):

F is stable iff S∞
m (F ) → 0 for m → ∞ ,

F is sensitive iff Sm
1 (F ) = 0 for all m .

Constant components are irrelevant; that is, if gn = fn + cn, cn ∈ C , then Sm
1 (fn) = Sm

1 (gm)
and S∞

m+1(fn) = S∞
m+1(gn), therefore stability of

(
fn

)∞
n=1 is equivalent to stability of

(
gn

)∞
n=1;

the same for sensitivity. If
(
fn

)∞
n=1 is both stable and sensitive, then (and only then) S∞

1 (fn) →
0, that is, ‖fn − cn‖ → 0 for some cn ∈ C .
A random variable τ will be called a random sign, if P(τ = −1) = 1/2 and P(τ = +1) = 1/2.
A joint distribution for two random signs τ ′, τ ′′ is determined by their correlation coefficient
ρ = E(τ ′τ ′′) = 1 − 2P(τ ′ 6= τ ′′). Given n independent pairs (τ ′

1, τ
′′
1 ), . . . , (τ ′

n, τ ′′
n ) of random

signs with the same correlation ρ for each pair, we call (τ ′
1, . . . , τ

′
n) and (τ ′′

1 , . . . , τ ′′
n ) a ρ-

correlated pair of random points of the cube {−1, +1}n. (In terms of [3] it is
(
x, Nε(x)

)
with

ε = (1 − ρ)/2.) It is easy to see that

E
(
f(τ ′)f(τ ′′)

)
=

n∑
m=0

ρm‖f̃m‖2

for a ρ-correlated pair (τ ′, τ ′′). We may write it as a scalar product in the space L2

({−1, +1}n
)

with the norm (1.1),

E
(
f(τ ′)f(τ ′′)

)
= (ρNf, f) ;(1.2)

here ρN is the operator ρNf =
∑

n ρnf̃n. Similarly, E
(
g(τ ′)f(τ ′′)

)
= (ρNf, g). On the other

hand,

E
(
g(τ ′)f(τ ′′)

)
= E

(
g(τ ′) · E(

f(τ ′′)|τ ′)) =
(
τ ′ 7→ E

(
f(τ ′′)|τ ′), g)

;

thus,

E
(
f(τ ′′)|τ ′) = (ρNf)(τ ′) .(1.3)

(Our ρN is Tη = Qε of [3] with η = ρ, ε = (1 − ρ)/2.) (In fact, let Nf =
∑

n nf̃n, then
−N is the generator of a Markov process on {−1, +1}n; exp(−tN) is its semigroup; note
that ρN is of the form exp(−tN). The Markov process is quite simple: during dt, each
coordinate flips with the probability 1

2dt + o(dt). However, we do not need it.) Note also that
E
(|fn(τ ′′) − (ρNfn)(τ ′)|2 ∣∣ τ ′) is the conditional variance Var

(
fn(τ ′′)

∣∣τ ′), and its mean value
(over all τ ′) is

E Var
(
fn(τ ′′)

∣∣τ ′) = ‖fn‖2 − ‖ρNfn‖2 =
(
(1− ρ2N)fn, fn

)
.(1.4)

Note also that the operator 0N = limρ→0 ρN is the projection onto the one-dimensional space
of constants, f 7→ (Ef) · 1.
Stability of F =

(
fn

)∞
n=1 is equivalent to:

• ‖ρNfn − fn‖ −−−→
ρ→1

0 uniformly in n;

• (ρNfn, fn) −−−→
ρ→1

‖f‖2 uniformly in n;
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• ‖fn‖2 − ‖ρNfn‖2 −−−→
ρ→1

0 uniformly in n.

Sensitivity of F is equivalent to:

• ‖(ρN − 0N)fn‖ −−−→
n→∞ 0 for some (or every) ρ ∈ (0, 1);

• (
(ρN − 0N)fn, fn

) −−−→
n→∞ 0 for some (or every) ρ ∈ (0, 1).

Combining these facts with the probabilistic interpretation (1.2), (1.3), (1.4) of ρN we see that

• F is stable iff E
(
fn(τ ′)fn(τ ′′)

) −−−→
ρ→1

E |fn (τ)|2 uniformly in n

or, equivalently, E
(
Var (fn(τ ′′)|τ ′)

) −−−→
ρ→1

0 uniformly in n;

• F is sensitive iff E
(
fn(τ ′)fn(τ ′′)

) − ∣∣Efn (τ)
∣∣2 −−−→

n→∞ 0 for some (or every) ρ ∈ (0, 1) or,

equivalently, E
∣∣E(f(τ ′ ′)|τ ′) − Ef

∣∣2 −−−→
n→∞ 0 for some (or every) ρ ∈ (0, 1).

These are versions of definitions introduced in [3, Sect. 1.1, 1.4].

2 Stability and sensitivity on trees

A branch of the n-level binary tree can be written as a sequence of sequences (), (τ1), (τ1, τ2),
(τ1, τ2, τ3), . . . , (τ1, . . . , τn). Branches correspond to leaves (τ1, . . . , τn) ∈ {−1, +1}n. Auto-
morphisms of the tree can be described as maps A : {−1, +1}n → {−1, +1}n of the form

A(τ1, . . . , τn) =
(
a()τ1, a(τ1)τ2, a(τ1, τ2)τ3, . . . , a(τ1, . . . , τn−1)τn

)

for arbitrary functions a : ∪n
m=1{−1, +1}m−1 → {−1, +1}. (Thus, the tree has 21 · 22 · 24 · . . . ·

22n−1
= 22n−1 automorphisms, while the cube {−1, +1}n has only 2nn! automorphisms.)

Here is an example of a tree automorphism (far from being a cube automorphism):

(τ1, . . . , τn) 7→ (
τ1, τ1τ2, . . . , τ1 . . . τn

)
.

The function fn(τ1, . . . , τn) = 1√
n
(τ1 + · · · + τn) satisfies S1

1(fn) = 1, S∞
2 (fn) = 0. However,

the function gn(τ1, . . . , τn) = 1√
n

(
τ1 + τ1τ2 + · · · + τ1 . . . τn

)
satisfies Sm

1 (gn) = min
(

m
n , 1

)
,

S∞
m (gn) = max

(
n−m+1

n , 0
)
. According to the definitions of Sect. 1, (fn)∞n=1 is stable, but

(gn)∞n=1 is sensitive. We see that the definitions are not tree-invariant. A straightforward way
to tree-invariance is used in the following definition of “tree stability” and “tree sensitivity”.
From now on, stability and sensitivity of Sect. 1 will be called “cube stability” and “cube
sensitivity”.

2.1 Definition (a) A sequence (fn)∞n=1 of functions fn : {−1, +1}n → C is tree stable, if there
exists a sequence of tree automorphisms An : {−1, +1}n → {−1, +1}n such that the sequence(
fn ◦ An

)∞
n=1 is cube stable.

(b) The sequence (fn)∞n=1 is tree sensitive, if
(
fn ◦An

)∞
n=1 is cube sensitive for every sequence

(An) of tree automorphisms.
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The definition can be formulated in terms of fn(An(τ ′)) and fn(An(τ ′′)) where (τ ′, τ ′′) is a
ρ-correlated pair of random points of the cube {−1, +1}n. Equivalently, we may consider
fn(τ ′) and fn(τ ′′) where τ ′, τ ′′ are such that for some An, (Anτ ′, Anτ ′′) is a ρ-correlated pair.
That is,

E
(
τ ′
m

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m−1, τ
′′
m−1

)
= E

(
τ ′′
m

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m−1, τ
′′
m−1

)
= 0 ,(2.2)

E
(
τ ′
mτ ′′

m

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m−1, τ
′′
m−1

)
= a(τ ′

1, . . . , τ
′
m−1)a(τ ′′

1 , . . . , τ ′′
m−1)ρ ,(2.3)

where a : ∪n
m=1{−1, +1}m−1 → {−1, +1}. On the other hand, consider an arbitrary {−1, +1}n×

{−1, +1}n-valued random variable (τ ′, τ ′′) satisfying (2.2) (which implies that each one of τ ′, τ ′′

is uniform on {−1, +1}n), but maybe not (2.3), and define

ρmax(τ ′, τ ′′) = max
m=1,...,n

max
∣∣E(

τ ′
mτ ′′

m

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m−1, τ
′′
m−1

)∣∣ ,(2.4)

where the internal maximum is taken over all possible values of (τ ′
1, τ

′′
1 , . . . , τ ′

m−1, τ
′′
m−1). The

joint distribution of τ ′ and τ ′′ is a probability measure µ on {−1, +1}n × {−1, +1}n, and
we denote ρmax(τ ′, τ ′′) by ρmax(µ). Given f, g : {−1, +1}n → C , we denote Ef(τ ′ )g(τ ′′) by
〈f |µ|g〉.

2.5 Definition A sequence
(
fn

)∞
n=1 of functions fn : {−1, +1}n → C , satisfying

0 < lim infn→∞ ‖fn‖ ≤ lim supn→∞ ‖fn‖ < ∞, is cosy, if for any ε > 0 there is a sequence
(µn)∞n=1, µn being a probability measure on {−1, +1}n × {−1, +1}n, such that
lim supn→∞ ρmax(µn) < 1 and lim supn→∞

(‖fn‖2 − 〈fn|µn|fn〉
)

< ε.

2.6 Lemma Every tree stable sequence is cosy.

Proof. Let (fn) be tree stable. Take tree automorphisms An such that (fn◦An) is cube stable.
We have E

(
fn(An(τ ′))fn(An(τ ′′))

) −−−→
ρ→1

E |fn (τ)|2 uniformly in n. Here τ ′, τ ′′ are ρ-correlated.

The joint distribution µn(ρ) of An(τ ′) and An(τ ′′) satisfies ρmax(µn(ρ)) ≤ ρ due to (2.3). Also,
〈fn|µn|fn〉 −−−→

ρ→1
‖fn‖2 uniformly in n, which means that supn

(‖fn‖2 − 〈fn|µn|fn〉
) → 0 for

ρ → 1. �

Is there a cosy but not tree stable sequence? We do not know. The conditional correlation
given by (2.3) is not only ±ρ, it is also factorizable (a function of τ ′ times the same function
of τ ′′), which seems to be much stronger than just ρmax(µ) ≤ ρ.

3 Hypercontractivity

Let (τ ′, τ ′′) be a ρ-correlated pair of random points of the cube {−1, +1}n. Then for every
f, g : {−1, +1}n → R

∣∣Ef(τ ′ )g(τ ′′)
∣∣1+ρ ≤ (

E |f(τ ′ )|1+ρ
)(
E |g(τ ′ ′)|1+ρ

)
,(3.1)

which is a discrete version of the celebrated hypercontractivity theorem pioneered by Nelson
(see [7, Sect. 3]). For a proof, see [1]; there, following Gross [6], the inequality is proved for
n = 1 (just two points, {−1, +1}) [1, Prop. 1.5], which is enough due to tensorization [1,
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Lemma 1.3]. (See also [3, Lemma 2.4].) The case of f, g taking on two values 0 and 1 only is
especially important:

P
1+ρ

(
τ ′ ∈ S′ & τ ′′ ∈ S′′) ≤ P(τ ′ ∈ S′)P(τ ′′ ∈ S′′) =

|S′|
2n

· |S
′′|

2n

for any S′, S′′ ⊂ {−1, +1}n. Note that ρ = 0 means independence,1 while ρ = 1 is trivial:
P

2(. . . ) ≤ (
min(P(S′),P(S′′))

)
2 ≤ P(S′)P(S′′).

For a probability measure µ on {−1, +1}n × {−1, +1}n we denote by 〈g|µ|f〉 the value
E
(
f(τ ′)g(τ ′′)

)
, where (τ ′, τ ′′) ∼ µ. The hypercontractivity (3.1) may be written as

∣∣〈g|µ|f〉∣∣ ≤
‖f‖1+ρ‖g‖1+ρ, where µ = µ(ρ) is the distribution of a ρ-correlated pair. The class of µ
that satisfy the inequality (for all f, g) is invariant under transformations of the form A × B,
where A, B : {−1, +1}n → {−1, +1}n are arbitrary invertible maps (since such maps preserve
‖ · ‖1+ρ). In particular, all measures of the form (2.2–2.3) fit.
Can we generalize the statement for all µ such that ρmax(µ) ≤ ρ ? The approach of Gross,
based on tensorization, works on cubes (and other products), not trees. Fortunately, we have
another approach, found by Neveu [8], that works also on trees.

3.2 Lemma For every r ∈ [ 12 , 1], x, y ∈ [0, 1], and ρ ∈ [− 1−r
r , 1−r

r ],

(1 + ρ)(1 − x)r(1 − y)r + (1 − ρ)(1 − x)r(1 + y)r +
+ (1 − ρ)(1 + x)r(1 − y)r + (1 + ρ)(1 + x)r(1 + y)r ≤ 4 .

Proof. The left hand side is linear in ρ with the coefficient
(
(1 + x)r − (1 − x)r

)(
(1 + y)r −

(1 − y)r
) ≥ 0. Therefore, it suffices to prove the inequality for ρ = 1−r

r , r ∈ (1
2 , 1) (the cases

r = 1
2 and r = 1 follow by continuity). Assume the contrary, then the continuous function fr

on [0, 1] × [0, 1], defined by

fr(x, y) =
1
r
(1 − x)r(1 − y)r +

2r − 1
r

(1 − x)r(1 + y)r+

+
2r − 1

r
(1 + x)r(1 − y)r +

1
r
(1 + x)r(1 + y)r ,

has a global maximum fr(x0, y0) > 4 for some r ∈ (1
2 , 1). The case x0 = y0 = 0 is excluded

(since fr(0, 0) = 4). Also, x0 6= 1 (since ∂
∂x

∣∣
x=1−fr(x, y) = −∞) and y0 6= 1. The new

variables

u =
1 + x

1 − x
∈ [1,∞) , v =

1 + y

1 − y
∈ [1,∞)

will be useful. We have

1 + x

(1 − x)r(1 − y)r

∂

∂x
fr(x, y) = urvr − u − (2r − 1)(uvr − ur) .(3.3)

For u = 1, v > 1 the right hand side is 2(1 − r)(vr − 1) > 0; therefore x0 6= 0 (since
(x0, y0) 6= (0, 0)), and similarly y0 6= 0. So, (x0, y0) is an interior point of [0, 1] × [0, 1]. The
corresponding u0, v0 ∈ (1,∞) satisfy ur

0v
r
0 − u0 − (2r − 1)(u0v

r
0 − ur

0) = 0. By subtracting the
same expression with v0 switched with u0, which also vanishes, we get

v0 − u0 + (2r − 1)(ur
0v0 − u0v

r
0 + ur

0 − vr
0) = 0 .

1Equality results from the inequality applied to complementary sets.
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Aiming to conclude that u0 = v0, consider the function u 7→ v0−u+(2r−1)(urv0−uvr
0+ur−vr

0)
on [1,∞). It is concave, and positive when u = 1, since v0 − 1 + (2r − 1)(v0 − 2vr

0 + 1) ≥
v0 − 1 + (2r − 1)(v0 − 2v0 + 1) = (v0 − 1)(2− 2r). Therefore, the function cannot vanish more
than once, and u = v0 is its unique root. So, u0 = v0.
It follows from (3.3) that

1 + x

(1 − x)2r
· 1
2

∂

∂x
f(x, x) = u2r − u − (2r − 1)(ur+1 − ur) ,

therefore u0 is a root of the equation u2r−1 − 1 − (2r − 1)(ur − ur−1) = 0, different from the
evident root u = 1. However, the function u 7→ u2r−1 − 1 − (2r − 1)(ur − ur−1) is strictly
monotone, since

1
2r − 1

∂

∂u
(. . . ) = u2r−2 − rur−1 + (r − 1)ur−2 = ur−2(ur − ru + r − 1) < 0

due to the inequality ur ≤ 1+r(u−1) (which follows from concavity of ur). The contradiction
completes the proof. �

3.4 Theorem Let ρ ∈ [0, 1], and µ be a probability measure on {−1, +1}n ×{−1, +1}n such
that2 ρmax(µ) ≤ ρ. Then for every f, g : {−1, +1}n → C∣∣〈g|µ|f〉∣∣ ≤ ‖f‖1+ρ‖g‖1+ρ .

Proof. Consider random points τ ′, τ ′′ of {−1, +1}n such that (τ ′, τ ′′) ∼ µ. We have two
(correlated) random processes τ ′

1, . . . , τ
′
n and τ ′′

1 , . . . , τ ′′
n . Consider the random variables

M ′
n = |f(τ ′

1, . . . , τ
′
n)|1/r , M ′′

n = |g(τ ′′
1 , . . . , τ ′′

n )|1/r ,

and the corresponding martingales

M ′
m = E

(
M ′

n

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m, τ ′′
m

)
= E

(
M ′

n

∣∣τ ′
1, . . . , τ

′
m

)
,

M ′′
m = E

(
M ′′

n

∣∣τ ′
1, τ

′′
1 , . . . , τ ′

m, τ ′′
m

)
= E

(
M ′′

n

∣∣τ ′′
1 , . . . , τ ′′

m

)
for m = 0, 1, . . . , n; the equalities for conditional expectations follow from (2.2). For any
m = 1, . . . , n and any values of τ ′

1, τ
′′
1 , . . . , τ ′

m−1, τ
′′
m−1 consider the conditional distribution of

the pair (M ′
m, M ′′

m). It is concentrated at four points that can be written as3
(
(1±x)M ′

m−1, (1±
y)M ′′

m−1

)
. The first “±” depends only on τ ′

m, the second on τ ′′
m (given the past); each of them

is “−” or “+” equiprobably. They have some correlation coefficient lying between (−ρ) and
ρ. Lemma 3.2 gives

4E
((

M ′
m

M ′
m−1

M ′′
m

M ′′
m−1

)r∣∣∣∣ . . .

)
≤ 4 ,

where r = 1
1+ρ . Thus, E

(
(M ′

mM ′′
m)r

∣∣ . . .) ≤ (M ′
m−1M

′′
m−1)

r, which means that the process
(M ′

mM ′′
m)r is a supermartingale. Therefore, E(M ′

nM ′′
n )r ≤ (M ′

0M
′′
0 )r, that is,

E |f(τ ′
1 , . . . , τ ′

n)g(τ ′′
1 , . . . , τ ′′

n )| ≤ (
E |f(τ ′

1 , . . . , τ ′
n)|1/r

)
r · (E |g(τ ′ ′

1 , . . . , τ ′′
n )|1/r

)
r

= ‖f‖1+ρ‖g‖1+ρ .

�

2It is assumed that µ satisfies (2.2); ρmax was defined only for such measures.
3Of course, x and y depend on τ ′

1, τ ′′
1 , . . . , τ ′

m−1, τ ′′
m−1.
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4 The main result

Return to the spider walk (Fig. 1b). It may be treated as a complex-valued martingale Z
(Fig. 2a), starting at the origin. Take each step to have length 1. The set Ωspider

n of all n-
step trajectories of Z can be identified with the set of leaves of a binary tree. The endpoint
Zn = Zn(ω) of a trajectory ω ∈ Ωspider

n is a complex-valued function on Ωspider
n . Taking into

account that E |Zn |2 = n, we ask about tree stability of the sequence
(
Zn/

√
n
)∞
n=1.

1

i

(a)

A
B

C

D E

F

dist (A;B)=1
dist (A;C)=1
dist (A;E)=2
dist (B;F )=2
dist (E;F )=4

(b)

Figure 2: (a) the spider walk as a complex-valued martingale; (b) combinatorial distance.

4.1 Theorem The sequence
(
Zn/

√
n
)∞
n=1 is non-cosy.

By Lemma 2.6 it follows that the sequence
(
Zn/

√
n
)∞
n=1 is not tree stable. Recently, M. Emery

and J. Warren found that some tree sensitive sequences result naturally from their construc-
tions.
In contrast to the spider walk, the simple walk (Fig. 1a) produces a sequence

(
(τ1 + · · · +

τn)/
√

n
)∞
n=1 that evidently is cube stable, therefore tree stable, therefore cosy.

4.2 Lemma (a) lim supn→∞
√

nP(Zn = 0) < ∞.
(b) lim infn→∞

(
n−1/2

∑n
k=1 P(Zk = 0)

)
> 0.

The proof is left to the reader. Both (a) and (b) hold for each node of our graph, not just 0.
In fact, the limit exists,

lim
n→∞

(
n1/2

P(Zn = 0)
)

=
1
2

lim
n→∞

(
n−1/2

n∑
k=1

P(Zk = 0)
) ∈ (0,∞) ,

but we do not need it.

Proof of the theorem. Let µn be a probability measure on Ωspider
n × Ωspider

n such that4

ρmax(µ) ≤ ρ, ρ ∈ (0, 1); we’ll estimate 〈Zn|µn|Zn〉 from above in terms of ρ. We have two
(correlated) copies

(
Z ′

k

)
n
k=1,

(
Z ′′

k

)
n
k=1 of the martingale

(
Zk

)
n
k=1. Consider the combinatorial

distance (see Fig. 2b)

Dk = dist (Z ′
k, Z ′′

k ) .

Conditionally, given the past (Z ′
1, Z

′′
1 , . . . , Z ′

m−1, Z
′′
m−1), we have two equiprobable values for

Z ′
m, and two equiprobable values for Z ′′

m; the two binary choices are correlated, their correlation
4It is assumed that µ satisfies (2.2); ρmax was defined only for such measures.
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lying in [−ρ, ρ]. The four possible values for (Z ′
m, Z ′′

m) lead usually to three possible values
Dm−1 − 2, Dm−1, Dm−1 +2 for Dm, see Fig. 3a; their probabilities depend on the correlation,
but the (conditional) expectation of Dm is equal to Dm−1 irrespective of the correlation.
Sometimes, however, a different situation appears, see Fig. 3b; here the conditional expectation
of Dm is equal to Dm−1 +1/2 rather than Dm−1. That happens when Z ′′

m−1 is situated at the
beginning of a ray (any one of our three rays) and Z ′

m−1 is on the same ray, outside the central
triangle ∆ (ABC on Fig. 2b). In that case5 we set Lm−1 = 1, otherwise Lm−1 = 0. We do
not care about the case when Z ′

m−1, Z
′′
m−1 are both on ∆; this case may be neglected due to

hypercontractivity, as we’ll see soon. Also, the situation where Z ′
m−1 = Z ′′

m−1 may occur, and
then E

(
Dm

∣∣Dm−1

) ≥ Dm−1.

Z
0

m�1
Z
00

m�1

(a)

Z
0

m�1

Z
00

m�1

(b)

Figure 3: (a) the usual case, L = 0: in the mean, D remains the same; (b) the case of L = 1:
in the mean, D increase by 1/2. More cases exist, but D never decreases in the mean.

Theorem 3.4, applied to appropriate indicators, gives P1+ρ
(
Z ′

k ∈ ∆& Z ′′
k ∈ ∆

) ≤ P
(
Z ′

k ∈
∆

) · P(
Z ′′

k ∈ ∆
)
, that is,

P
(
Z ′

k ∈ ∆& Z ′′
k ∈ ∆

) ≤ (
P(Zk ∈ ∆)

) 2
1+ρ

for all k = 0, . . . , n. Combining it with Lemma 4.2 (a) we get

n∑
k=0

P
(
Z ′

k ∈ ∆& Z ′′
k ∈ ∆) ≤ εn(ρ) · √n(4.3)

for some εn(ρ) such that εn(ρ) −−−→
n→∞ 0 for every ρ ∈ (0, 1), and εn(ρ) does not depend on µ

as long as ρmax(µ) ≤ ρ.
Now we are in position to show that

n∑
k=0

P
(
Lk = 1

) ≥ c0

√
n(4.4)

for n ≥ n0(ρ); here n0(ρ) and c0 > 0 do not depend on µ. First, Lemma 4.2 (b) shows that
P(Z ′′

k = 0) is large enough. Second, (4.3) shows that P(Z ′′
k = 0 & Z ′

k /∈ ∆) is still large enough.
The same holds for P(Z ′′

k = 0 & Z ′
k /∈ ∆+2), where ∆+2 is the (combinatorial) 2-neighborhood

of ∆. Last, given that Z ′′
k = 0 and Z ′

k /∈ ∆+2, we have a not-so-small (in fact, ≥ 1/4)
conditional probability that Lk + Lk+1 + Lk+2 > 0. This proves (4.4).

5There is a symmetric case (Z′
m−1 at the beginning . . . ), but we do not use it.
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The process
(
Dm− 1

2

∑m−1
k=0 Lk

)
n
m=0 is a submartingale (that is, increases in the mean). There-

fore, using (4.4),

EDn ≥ 1
2

n−1∑
k=0

P(Lk = 1) ≥ 1
2
c0

√
n

for n ≥ n0(ρ). Note that Dn = dist (Z ′
n, Z ′′

n) ≤ C1|Z ′
n − Z ′′

n | for some absolute constant C1.
We have

(
E |Z ′

n − Z ′′
n |2

)
1/2 ≥ E |Z ′

n − Z ′′
n | ≥ C−1

1 EDn ≥ 1
2
C−1

1 c0

√
n

and

‖Zn‖2 − 〈Zn|µn|Zn〉 =
1
2
E |Z ′

n − Z ′′
n |2 ≥ 1

4
C−2

1 c2
0n

for n ≥ n0(ρ); so,

lim sup
n→∞

(∥∥∥∥ Zn√
n

∥∥∥∥
2

−
〈

Zn√
n

∣∣∣∣µn

∣∣∣∣ Zn√
n

〉)
≥ c2

0

4C2
1

irrespective of ρ, which means non-cosiness. �

5 Connections to continuous models

Theorem 4.1 (non-cosiness) is a discrete counterpart of [9, Th. 4.13]. A continuous complex-
valued martingale Z(t) considered there, so-called Walsh’s Brownian motion, is the limit of
our

(
Znt/

√
n
)

when n → ∞. The constants c0 and C1 used in the proof of Theorem 4.1 can be
improved (in fact, made optimal) by using explicit calculations for Walsh’s Brownian motion.
Cosiness for the simple walk is a discrete counterpart of [9, Lemma 2.5].
Theorem 3.3 (hypercontractivity on trees) is a discrete counterpart of [9, Lemma 6.5]. However,
our use of hypercontractivity when proving non-cosiness follows [2, pp. 278–280]. It is possible
to estimate P(Z ′

k ∈ ∆& Z ′′
k ∈ ∆) without hypercontractivity, following [5] or [9, Sect. 4].

Cosiness, defined in Def. 2.5, is a discrete counterpart of the notion of cosiness introduced in [9,
Def. 2.4]. Different variants of cosiness (called I-cosiness and D-cosiness) are investigated by
Émery, Schachermayer, and Beghdadi-Sakrani, see [4] and references therein. See also Warren
[13].
Noise stability and noise sensitivity, introduced in [3], have their continuous counterparts, see
[10, 11]. Stability corresponds to white noises, sensitivity to black noises. Mixed cases (neither
stable nor sensitive, see [3, end of Sect. 1.4]) correspond to noises that are neither white nor
black (as in [14]).

References
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