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Abstract

The purpose of this note is to make available a reasonably complete and straightforward proof
of Strassen’s theorem on stochastic domination, and to draw attention to the original paper.
We also point out that the maximal possible value of P(Z = Z ′) is actually not reduced by the
requirement Z � Z ′. Here, Z,Z ′ are stochastic elements that Strassen’s theorem states exist
under a stochastic domination condition. The consequence of that observation to stochastically
monotone Markov chains is pointed out. Usually the theorem is formulated with the assumption
that � is a partial ordering; the proof reveals that a pre-ordering suffices.

1 Introduction, preliminaries

Strassen’s theorem on stochastic domination is now established as a canonical result in prob-
ability: it is a crucial tool in the theory of interacting particle systems, cf. Liggett (1985),
and has also found many interesting applications in other areas, cf. Preston (1976), Kamae,
Krengel and O’Brien (1977), and Lindvall (1992). But there seems to be no proof of it easily
available. The one in Liggett (1985) and Lindvall (1992) treats only the compact space case,
and in Strassen (1965) the result is rather implicit, only briefly mentioned as a special case
of a general theorem. This makes a straightforward proof worth our while, considering the
importance of the theorem.

Strassen (1965) works in a Polish space, i.e., it is (homeomorphic to) a complete and separable
metric space. This condition has later been relaxed in several steps, cf. Skala (1993), but the
main arguments of the original proof have not been altered. This gives a reason to draw at-
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tention to the natural and beautiful strand of ideas that leads to the domination result. Polish
spaces suffice for most purposes in probability theory, and the proof is not more complicated
than that in Liggett (1985) for the compact space case. Due to the lack of highlighting of the
domination result in Strassen (1965), there is a risk that too few have cared to consult the
original paper. Indeed: a sample among some competent and honest colleagues revealed that
the word “risk” is not really the right one...

This section continues with the preliminaries and proof of the theorem; the proof of a crucial
supporting result is, however, deferred to Section 4.

The new observation offered by this note, presented in Section 2, is that the maximal possible
value of P(Z = Z ′) is actually not reduced by the requirement Z � Z ′. Here, Z,Z ′ are stochas-
tic elements that Strassen’s theorem states exist under a stochastic domination condition. The
consequence of that observation to stochastically monotone Markov chains is pointed out in
Section 3.

Let E be a Polish space endowed with a partial ordering �, i.e., a relation satisfying

(i) x � x for all x ∈ E, (1)
(ii) x � y, y � z ⇒ x � z, and
(iii) x � y, y � x ⇒ x = y.

When (iii) is dropped, the relation � is called a pre-ordering; from now on, we assume � to
be such an ordering.

A real-valued function f on E is said to be increasing if

x � y ⇒ f(x) ≤ f(y).

We let E denote the Borel σ-field on E as well as the class of real-valued functions measurable
w.r.t. that σ-field; ibE is the class of functions ∈ E which are increasing and bounded.

For probability measures P and P ′ on (E, E), P is stochastically dominated by P ′ if
∫
fdP ≤

∫
fdP ′ for all f ∈ ibE .

We write that P
D
� P ′. The meaning of Y

D
� Y ′ for random elements in (E, E) is that the

distributions P, P ′ of Y, Y ′ satisfy P
D
� P ′.

We assume that the partial ordering � is closed, i.e., the set

M = {(x, x′); x � x′}
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is closed in the product topology on E2; we abbreviate E × E, E × E to E2 and E2, as is
standard. Strassen’s theorem on stochastic domination states that

if P and P ′ satisfy P
D
� P ′, then there exists a (2)

probability measure P̂ on (E2, E2) with marginals
P and P ′ such that P̂ (M) = 1.

The random element version is the following: under the assumption of (2),

there exist random elements Z,Z ′ in (E, E) (3)
with distribution P, P ′ respectively, on some
probability space, such that Z � Z ′ a.s.

The result (2) is often referred to as “Strassen’s Theorem”, which is formally misleading: in
Strassen (1965) it is only briefly mentioned as one possible application of Theorem 11 in that

paper, and the condition P
D
� P ′ does not appear explicitly. The crucial result of Strassen

(1965), that leads to the mentioned Theorem 11 among other things, is his Theorem 7. It
states that if P and P ′ are probability measures on (E, E), Π is the class of such measures
on (E2, E2), and Λ a convex subset of Π closed with respect to weak convergence, then there
exists a P̂ ∈ Λ with marginals P, P ′ if and only if

∫
fdP +

∫
gdP ′ ≤ sup

Q∈Λ
{
∫

(f(x) + g(x′))dQ(x, x′)} (4)

for all continuous functions f, g on E satisfying 0 ≤ f, g ≤ 1.

To prove this theorem, which certainly has a strong appeal to intuition, it is inevitable to rely
on some functional analysis. The proof, a version of Strassen’s original one, is deferred to
Section 4.

Let

Λ = {Q ∈ Π;Q(M) = 1}.

That Λ is indeed convex and weakly closed in Π (throughout, we use the term “weak” in
the standard way of probability theory). Now assume P � P ′. To verify (4), we pick the
relevant ideas from the proof of the mentioned Theorem 11 in Strassen (1965). Let f and g
be continuous functions on E, with 0 ≤ f, g ≤ 1.
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We have

∫
gdP ′ ≤

∫
g∗dP ′ ≤

∫
g∗dP

where g∗(x) = sup{g(y);x � y}; this is due the facts that g ≤ g∗ and that g∗ is decreasing.

We get

∫
fdP +

∫
gdP ′ ≤

∫
(f + g∗)dP

≤ sup
x

(f(x) + g∗(x)) ≤ sup{f(x) + g(x′); x � x′}

= sup{
∫

(f(x) + g(x′))dQ(x, x′); Q ∈ Λ}.

Hence (4) holds.

2 The maximal diagonal probability

For probability measures Q and Q′ on (E, E), we know that

‖Q−Q′‖ ≤ 2 · P(Y 6= Y ′) (5)

for any random elements Y and Y ′ such that Y D= Q and Y ′ D= Q′, defined on some space
with probability measure P; here ‖ · ‖ denotes the total variation norm for signed bounded
measures on (E, E). For the difference of two probability measures, we have ‖Q − Q′‖ =
2 · supA∈E(Q(A) −Q′(A)). The inequality (5) is the well-known basic coupling inequality, cf.,
e.g., Lindvall (1992), §I.2. Hence we always have

P(Y = Y ′) ≤ 1 − ‖Q−Q′‖/2. (6)

But equality may be achieved in (5)-(6) using the so-called γ-coupling; cf. Lindvall (1992), §I.5.
The idea is the following. Let Q0 have density g ∧ g′ with respect to a reference measure λ
relative to which both Q and Q′ are absolutely continuous, with densities g and g′ respectively
(we may take λ = Q + Q′). Lift the sub-probability Q0 to the diagonal ∆ = {(x, x) ∈ E2}
using the mapping ψ : E → E2 defined by

ψ(x) = (x, x), x ∈ E.

With Q∗ = Q0ψ−1 we have

Q∗(∆) = Q0(E) =
∫
g ∧ g′dλ. (7)

Now

‖Q−Q′‖ = 2 · (1 −
∫
g ∧ g′dλ ) (8)
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since we indeed have supA∈E(Q(A) −Q′(A)) = supA∈E(
∫

A
gdλ−

∫
A
g′dλ)

= 1−
∫
g∧g′dλ; cf. Lindvall (1992), p. 19. So (6), (7) and (8) yield that if (Y, Y ′) takes values

on ∆ according to Q∗, we have maximized P((Y, Y ′) ∈ ∆). Denote the maximal possible value
(=

∫
g ∧ g′dλ) by γ.

Now the question is: if we know that Q
D
� Q′, is it possible to sharpen (2) to the effect that

the coupling has mass γ on ∆? To that end, assume γ < 1 (the case γ = 1 is trivial), and let

Q0 = Q−Q0 and Q′
0 = Q′ −Q0.

Then

Q1 = Q0/(1 − γ) and Q′
1 = Q′

0/(1 − γ)

are probability measures.

The crucial observation is that

if Q
D
� Q′ then Q1

D
� Q′

1.

To prove this, let f ∈ ibE . We get
∫
fdQ′

0 −
∫
fdQ0 =

∫
fdQ′ −

∫
fdQ ≥ 0,

and division by (1 − γ) renders
∫
fdQ1 ≤

∫
fdQ′

1.

Now let Q̂1 be a coupling of Q1 and Q′
1 according to (2), and

Q̃ = Q∗ + (1 − γ)Q̂1. (9)

Then Q̃ is indeed a coupling of Q and Q′, Q̃(M) = 1, and we have maximized the probability
of ∆.

There is a theorem to formulate. We return to the setting of Section 1; the meaning of γ and P̃
is the obvious one.

Theorem. For a P̂ satisfying (2)we have P̂ (∆) ≤ γ. By choosing P̂ = P̃ we achieve
P̃ (∆) = γ. �

What we have achieved so far may be summed up in terms of random elements as follows. If
Z

D= P and Z ′ D= P ′, we always have that P(Z = Z ′) ≤ γ, and equality is obtained using γ-

coupling. That equality may be retained for a sharpening of (3): if we also have P
D
� P ′, (Z,Z ′)

may actually be constructed such that

Z � Z ′ a.s., and P(Z = Z ′) = γ. (10)
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3 An application to Markov chains

An application of Theorem 2 in Kamae et. al. (1977) to time-homogeneous Markov chains
is the following. Let the assumptions established above be at force, with E endowed with a
closed partial ordering �. Let us assume that the Markov kernel P (x,A), x ∈ E,A ∈ E , on
(E, E) is monotone in the sense that

P (x, ·)
D
� P (x′, ·) whenever x � x′. (11)

Then, for initial distribution λ and λ′ satisfying λ
D
� λ′, we may produce Markov chains

X = (Xn)∞0 and X ′ = (X ′
n)∞0 , both governed by P (·, ·), such that (Xn, X

′
n),

n = 0, . . . is a Markov chain and

Xn � X ′
n for all n ≥ 0 (12)

and X0
D= λ,X ′

0
D= λ′. The method is the natural one: use Strassen’s theorem first to get

X0 and X ′
0 satisfying X0 � X ′

0 and with distributions λ, λ′ respectively, then repeatedly for
n = 0, 1, . . . That is, after n steps, n = 0, . . . , we have obtained

X0 � X ′
0, . . . , Xn � X ′

n .

Another application of Strassen’s theorem using (11) renders Xn+1 � X ′
n+1, and (12) is set

by induction.

Using the theorem of Section 2, we find that X and X ′ may be constructed, in addition to
having the property (12), such that

P(Xn+1 = X ′
n+1|Xn = x,X ′

n = x′) = 1 − ‖P (x, ·) − P (x′, ·)‖/2 (13)

for all x � x′ and for all n = 0, . . . , and that probability can never be strictly larger, under
the condition that (Xn, X

′
n), n = 0, . . . is a Markov chain.

Also: we noticed in Section 2 that (12)-(13) hold just as well in a pre-ordered space.

We content ourselves with this sketchy account. At the side of Kamae et. al. (1977), see also
Lindvall (1992), §IV.2, for Markov chain domination.

4 The proof of Strassen’s Theorem 7

For a Banach space B with norm ‖ · ‖, the dual space B∗ is the set of continuous linear
functionals on B. The weak∗ topology on B∗ is defined as the weakest one such that for all
z ∈ B the mapping L → Lz is continuous. The weak∗-topology renders the linear space B∗

locally convex.

For our purposes, let

B = {(f, g); f, g are bounded continuous functions on E}.
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We may use ‖(f, g)‖ = |f | + |g| as norm on B, where | · | is the supremum norm for functions
on E.

In (4), the restrictions 0 ≤ f, g ≤ 1 were introduced to facilitate the estimates that followed;
they are now dropped without effect on the problem. So from now on, f and g denote any
bounded continuous functions.

Let

H : all pairs [µ, µ′] of probability measures µ, µ′ on (E, E).

Notice that such a pair defines a linear functional ∈ B∗ through the definition

[µ, µ′](f, g) =
∫
fdµ+

∫
gdµ′ for (f, g) ∈ B.

Further, let

HΛ = {[µ, µ′] ∈ H ; ∃λ ∈ Λ with µ and µ′ as marginals}.

Due to the convexity assumption on Λ, we have that HΛ is convex in B∗. The reader is now
deferred to Rudin (1973), Theorems 3.4(b) and 3.10, and §3.14, for proofs of the following:

(i) all weak∗-continuous functionals on B∗ are of the form L→ L(f, g) for some (f, g) ∈ B,

(ii) if B is a closed and convex set ⊂ B∗ and L0 /∈ B, then there exists a weak∗-continuous
linear functional T such that T (L0) > supL∈B T (L).

Now suppose [P, P ′] /∈ H̄Λ. Find a functional T0 according to (ii) such that

T0[P, P ′] > sup
L∈H̄Λ

T0(L).

Then find (f0, g0) representing T0 according to (i). This means

[P, P ′](f0, g0) > sup
L∈H̄Λ

L(f0, g0).

But this is just another formulation of
∫
f0dP +

∫
g0dP

′ > sup
Q∈Λ

{
∫

(f(x) + g(x′))dQ(x, x′)},

violating (4). Hence (4) implies that [P, P ′] ∈ H̄Λ.

It remains to prove that HΛ is closed in B∗. To that end, we first note that the relativized
weak∗ topology on H is metrizable. Indeed, let P denote the probability measures on (E2, E2).
Then the mapping φ : H → P defined by

φ([µ, µ′]) = µ× µ′
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is a homeomorphism from H onto a closed subset of P endowed with the weak topology. But
that topology is metrizable by the Prohorov metric, cf. Billingsley (1968), p. 238.

This means that in order to prove that HΛ is weak∗ closed, it suffices to show that the limit
of a convergent sequence of elements in HΛ still is in HΛ. For that, let [µn, µ

′
n], n ≥ 1, be

a sequence in HΛ which is weak∗ convergent to [P, P ′]. We adopt the ⇒ notation for weak
convergence of sequences of probability measures: cf. Billingsley (1968), where all the standard
theory needed is easily found.

We have µn ⇒ P and µ′
n ⇒ P ′. This implies that any sequence (λn)∞1 such that λn has

marginals µn, µ
′
n for n ≥ 1 is tight. Indeed, take any ε > 0 and let Kε,K

′
ε be compact sets

such that

infn µn(Kε) > 1 − ε/2 and infn µn(K ′
ε) > 1 − ε/2.

It is immediate that infn λn(Kε ×K ′
ε) > 1 − ε, and Kε ×K ′

ε is compact in E2.

Now apply Prohorov’s theorem to find a cluster point λ of (λn)∞1 . Since Λ is closed, we have
λ ∈ Λ; that λ has marginals P and P ′ follows from the continuous mapping theorem, applied
to the mappings (x, x′) → x and (x, x′) → x′.

It seems as Strassen’s domination theorem has an easy proof only when E is either finite or is
a subset of the real line.
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