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Abstract
We consider ballistic diffusion limited aggregation on a finite strip [0, L − 1] × Z+ in Z

2 for
some L ∈ Z+. We provide numerical bounds on the growth in the height process.

1 Model Dynamics and main result

Diffusion limited aggregation (DLA) is a model for crystal growth in Z2 starting from an initial
seed placed at the origin. A particle is released from “infinity” and performs a simple random
walk until it hits a neighbor of the existing cluster where it attaches itself. Then another
particle is released and the procedure repeats itself with the crystal growing at each stage.
The problem is very hard to analyze and variants of the model have been studied in [5], [3],
[2], [4]. For a survey and discussion see [1].
We study a simplification of this model. We consider the strip of width L with its bottom
placed on the x-axis. The particles do not perform random walk but choose one of the L
columns and slide down. On their slide downwards they attach themselves to the existing
cluster as and when they encounter its neighborhood. This seems to be the simplest variation
of the DLA model that preserves the attachment mechanism. It turns out that it is simple
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enough in that it can be described by a Markov process on ZL and yet involved enough to be
interesting. Recently, law of large numbers and central limit theorems have been established
[6] for a rich family of models that includes the one studied here.
Our purpose is to provide numerical bounds on growth rate of this model. We also enunciate
some connections with other problems by indicating some alternative representations of the
model. We proceed to define the model rigorously.
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Figure 1: The cluster S6 and its boundary.

We consider the L-strip D = [0, L − 1] × Z+. We denote the columns by Dl = {l} × Z+,
l ∈ {0, . . . , L− 1}. The symbols ⊕ and 	 stand for addition and subtraction modL. For each
point x = (l, m) ∈ D we say that (l 	 1, m + 1), (l, m + 1) and (l ⊕ 1, m + 1) are the neighbors
of x, and write ∂x for this set of neighbors. For a cluster S (namely, a finite subset of D),
which intersects all columns Dl, l ∈ {0, . . . , L − 1}, we define the neighborhood ∂S of S as

∂S = {(l, m) : m is the greatest number m′ for which (l, m′) ∈ ∂x for some x ∈ S}.
Note that, in each column there is exactly one element of ∂S.
We begin with an initial cluster of particles S0 = {0, . . . , L − 1} × {0} and for each n define
recursively Sn as follows. Let (Ω,F ,P) be a probability space on which L independent rate 1
Poisson proceses M0, M1, . . . ML−1 are defined. Assume that Ω is given in a canonical form,
i.e ω(t) = (M0(t, ω), M1(t, ω), . . . ML−1(t, ω)) . The shift by s operators {θs, s ≥ 0} act on Ω
in the usual way. Let τn, n = 0, 1, . . . be the nth jump time of any of these processes. Namely,
let τ0 = 0 and for n ≥ 1 let

τn = inf{t > τn−1 : Ml(t) > Ml(τn−1), for some l}.
Let ln be the index of the Poisson process jumping at τn, namely the unique l satisfying
Ml(τn) = Ml(τn−1) + 1. We let yn denote the point where the column Dln intersects ∂Sn−1,
and then let Sn = {yn} ∪ Sn−1. For t ∈ [τn, τn+1) we denote S(t) = Sn. See figure 1.
We say that h is the height of a cluster S at column Dl if h is the greatest number m for
which (l, m) ∈ S. We will denote the height of S(t) at column Dl by hl(t). The height process
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(hl(t), l ∈ {0, . . . , L − 1}), t ≥ 0 is a Markov process which can be described as follows. It
changes only at the times τn and according to

hl(τn) =




1 + hl	1(τn−1) ∨ hl(τn−1) ∨ hl⊕1(τn−1) l = ln,

hl(τn−1) l 6= ln,
(1)

for n = 1, 2, . . .. The initial condition is hl(0) = 0, l = 0, . . . , L − 1. We also let the maximal
height at time t be defined as

H(t) = max
0≤l≤L−1

hl(t) (2)

Define for 0 ≤ s ≤ t, H(s, t) = H(t − s) ◦ θs. In words, H(s, t) is the maximal height at time
t− s, obtained when the model is driven by the processes M̃i(t) = Mi(t + s), i = 0, . . . , L− 1,
t ≥ 0, rather than the processes Mi(t), i = 0, . . . , L − 1, t ≥ 0. It is easy to see that
H(0, s + t) ≤ H(0, s) + H(s, t) and that EH(0, 1) < ∞. By Kingman’s Sub-additive Ergodic
Theorem [7] it follows that a.s.,

lim
t→∞ t−1H(t) = lim

t→∞ t−1EH(t) = inf
t>0

t−1EH(t) =: CL. (3)

One can express the constant CL as a function of the invariant measure of the process {hj⊕1−
hj , 0 ≤ j ≤ L − 1}. However, this measure is not known in an explicit form. We are able to
provide bounds on CL.

Theorem 1.1 For all L ≥ 4, 3.21 < CL < 5.35.

One can dominate the height by that of a model that possesses the same transition law as the
above model, except that at each time the maximal height hits a multiple of L, say kL, the
heights at all sites j = 0, . . . , L − 1 are reset to kL. This model gives us the upper bound (in
Section 2.1). The lower bound is obtained by analyzing a “slower” model, one for which the
growth rate is smaller. The simplest example of a slower model is one in which only events
(i.e., particle attachments) that immediately increase the maximal height H are accepted, and
all other events are ignored. This model easily yields a lower bound of 3 on CL. We construct
a slightly more complicated model than the one just described. We discuss it in detail in
Section 2.2.
Finally in Section 3, we conclude the paper with remarks detailing interesting connections of
this model to some other problems.

2 Proof of Theorem 1.1

2.1 An upper bound

Let m ∈ Z+ be fixed. We define a sequence of stopping times as follows. Let T0 = 0 and
for n = 0, 1, . . . let Tn+1 = inf{t > Tn : H(Tn, t) = m}. Then T1 is simply the first time the
maximal height H(·) is equal to m, and Tn+1 −Tn is the first time the height H(Tn, ·) is equal
to m. By subadditivity we have that H(Tn) ≤ nm. Taking limit on a subsequence in (3)
shows that a.s.,

CL ≤ lim
n→∞

nm

Tn
=

m

ET1
(4)
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where the last equality follows from the facts that Tn+1 −Tn are i.i.d., ET1 < ∞ and the Law
of Large Numbers. We will show that a lower bound on ET1 of the order of m holds.
For a > 0 one has

ET1 ≥ am(1 − P (T1 < am)). (5)
Let Bn be the set of all sequences b0, . . . , bn with values in {0, . . . , L − 1} and such that for
i = 1, . . . , n, |bi 	 bi−1| ≤ 1. We say that “a sequence b0, . . . , bn in Bn is a backbone at time
t” if b0 is any number in {0, . . . , L− 1} and there exists a sequence 0 = t0 ≤ t1 ≤ . . . ≤ tn ≤ t
for which hbk

(tk) = 1 + hbk−1(tk−1). Using the fact that having a backbone in Bn at time t is
necessary and sufficient for having H(t) ≥ n, we have

P (T1 < am) = P (
⋃

b∈Bm

b is a backbone at time am)

≤
∑

b∈Bm

P (b is a backbone at time am). (6)

A naive estimate on each term in this sum, not depending on b, is referred to in an aside
at the end of this proof. We proceed with a more involved argument. Fix a b ∈ Bm. Let
β = β(b) ⊂ {1, . . . , m} be the set of i for which bi = bi−1. Similarly let β+ [resp., β−] be the
set of i for which bi = bi−1⊕1 [bi = bi−1	1]. Note that β, β+, β− form a partition of {1, . . . , m}.
Define σ0 = inf{t > 0 : Mb0(t) > 0} and for k ≥ 1 σk = inf{t > σk−1 : Mbk

(t) > Mbk
(σk−1)}.

Let ∆σk = σk − σk−1, γ =
∑

k∈β ∆σk and δ =
∑

k∈β+∪β− ∆σk = σm − γ. Define the events

Nk
i = {Mi(σk) = Mi(σk−1)}. (7)

For b to be a backbone at time am, it is necessary that the following hold: σm < am; occurrence
of the events Nk

bk	1 and Nk
bk⊕1 for k ∈ β; occurrence of the event Nk

bk⊕1 for k ∈ β−; occurrence
of the event Nk

bk	1 for k ∈ β+. Therefore

P (b is a backbone at time am)

≤ E{P [Nk
bk	1, N

k
bk⊕1, k ∈ β; Nk

bk⊕1, k ∈ β−; Nk
bk	1, k ∈ β+ σ0, . . . , σm]1(σm<am)}(8)

Conditioned on σ0, . . . , σm, the events Nk
i , i 6= bk are independent. It follows that (8) is equal

to

E[
∏
k∈β

(e−∆σk)2
∏

k∈β+

e−∆σk

∏
k∈β−

e−∆σk 1(σm<am)]

= E[e−γ−σm1(σm<am)]

≤ E[e−γ−σme−νσm+νam] (for any arbitrary ν > 0)
= E[e−(2+ν)γe−(1+ν)δ]eνam

= (Ee−(2+ν)∆σ)|β|(Ee−(1+ν)∆σ)m−|β|eνam

(where ∆σ is an exp(1) random variable)
= (3 + ν)−|β|(2 + ν)−(m−|β|)eνam. (9)

Next, note that in Bm there are
(

m
k

)
2m−k sequences b with |β(b)| = k. Using the bound

obtained in (9) for each b ∈ Bm and from the deduction in (6) we conclude that

P (T1 < am) ≤
m∑

k=0

(m

k

)
2m−k(3 + ν)−k(2 + ν)−(m−k)eνam. (10)



BALLISTIC DEPOSITION ON A PLANAR STRIP 35

Let g(x) = −x log x−(1−x) log(1−x) for x ∈ (0, 1). Using Sterling’s formula it directly follows
that

(
m
k

) ≤ cmc exp(mg(k/m)), where c is a constant independent of m and k. Therefore (10)
along with this inequality imply that

P (T1 < am) ≤ cmc(m + 1) exp(mG(ν, a)), (11)

where

G(ν, a) = sup
0<x<1

[
g(x) − (1 − x) log(

2 + ν

2
) − x log(3 + ν) + νa

]
. (12)

We define
Ḡ(a) = inf

ν>0
G(ν, a), (13)

and
a0 = sup{a > 0 : Ḡ(a) < 0}. (14)

To finish the proof of the upper bound we need the following lemma, proved at the end of this
section.

Lemma 2.1 Let a0 be as defined in (14). Then 1/a0 < 5.35.

Using (11) we can conclude that

lim sup
m→∞

m−1 log P (T1 < am) ≤ Ḡ(a) (15)

and hence for a < a0, P (T1 < am) → 0 as m → ∞. Along with (5) we have that for any ε > 0

ET1 ≥ am(1 − ε), (16)

for sufficiently large m. From (4) we have that CL ≤ 1
a(1−ε) . Sending ε ↓ 0 and a ↑ a0, one

obtains
CL ≤ 1

a0
< 5.35.

�

Proof of Lemma 2.1: One finds from (12) that

G(ν, a) = log
8 + 3ν

(2 + ν)(3 + ν)
+ νa.

Observe that

∂G(ν, a)
∂ν

= −A(ν) + a, where A(ν) =
3ν2 + 16ν + 22

(8 + 3ν)(2 + ν)(3 + ν)
.

One can check that dA
dν < 0 for ν > 0. Hence for any a ∈ (0, 22/48) there is exactly one

ν0 = ν0(a) > 0 such that A(ν0) = a. Let Ḡ be as defined in (13). We have

d

da
Ḡ(a) =

∂

∂ν
G(ν0(a), a)

∂ν0

∂a
+

∂

∂a
G(ν0(a), a) = ν0(a) > 0, 0 < a <

22
48

.

As a result, the equation Ḡ(a) = 0 has at most one solution a0. For ν = 2.477 (by substitution)
we get Ḡ(A(ν)) = G(ν, A(ν)) > 0 and Ḡ(A(ν)) < 0 for ν = 2.478. It follows that a0 >
A(2.478) = 0.1870 and 1/a0 < 5.35. �
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Aside: One can obtain an upper bound, albeit less sharp, for CL via a simpler but rougher
large deviations estimate. Proceed as indicated in the above proof till (6). Then denote by
Sm, the sum of m i.i.d. standard exponential random variables (si), and for λ > 0 arbitrary,
use Chebycheff’s inequality to get

P (T1 < am) ≤ L3mP (Sm < am) = L3mP (
m∑
1

−si > −am) ≤ L3meaλm
(
Ee−λs1

)m

= L3meaλm

(
1

1 + λ

)m

= Le(aλ−log(1+λ)+log 3)m. (17)

Optimizing over λ gives, at λ = (1 − a)/a, the estimate Le(1−a+log 3a)m. Then proceed as
indicated in the proof of Theorem 1.1 after (15) to get a−1

0 < 7.1.

2.2 A lower bound

We obtain lower bounds by considering models whose height processes are dominated by that
of the model of interest. Recall that the clusters are defined via the recursion

Sn = {yn} ∪ Sn−1,

where yn is where ∂Sn−1 intersects Dln . The idea is to modify the recursive definition and let

S̃n = [{yn} ∪ S̃n−1] ∩ F (ln, Sn−1), (18)

where F is some function taking values in the set of subsets of D. Here yn is where ∂S̃n−1

intersects Dln , and if the intersection is empty, then with an abuse of notation, {yn} is regarded
as the empty set.
The case F ≡ D is equivalent to (1). Suppose we couple our model of interest with the model
(18) so that they are defined on the same probability space and so that {τn} and {ln} come
from the same set of Poisson processes. Then by induction, the height in (1) is greater than
or equal to the height process associated with (18) for all t ≥ 0 a.s.
The advantage of considering (18) is that one can restrict to a recursion within a set of clusters
all of which are vertical shifts of only a finite number of clusters. The simplest example would
arise if all clusters are singletons. This corresponds to taking

F (ln, S̃n−1) =




{yn} ∂S̃n−1 ∩ Dln 6= ∅,

S̃n−1 otherwise,

where yn is defined as before. The height in this model grows by 1 each time Dln intersects
∂S̃n−1 = ∂yn−1. Therefore, the height grows at rate 3, and as a result we get that CL ≥ 3.
Heuristically, the way in which the above model simplifies (1) is by keeping track of one
component and ignoring the events that do not immediately contribute to its growth. In
the next model we consider, less such events are ignored. Here S̃n takes values in the set of
clusters that are vertical and horizontal shifts of the five ‘basic clusters’ depicted at Figure 2.
The precise definition of F for this model is cumbersome, and is therefore skipped. However,
the dynamics of the model should be clear from the following example. Suppose S̃n−1 is a
shifted version of cluster 3 (in Figure 2), located at columns Dl and Dl+1. Then if ln = l − 1,
F = Dln−1 ∪Dln ∪Dln+1, which results with a cluster S̃n that is a shifted version of cluster 4.
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Similarly, if ln = l, l + 1, l + 2, respectively, then Sn will be a shifted version of cluster 1, 2, 3,
respectively.
One obtains a five state Markov process, which is analyzed as follows. The intensity matrix is

G =




−3 1 1 1 0
1 −2 1 0 0
1 1 −3 1 0
1 2 1 −5 1
1 1 1 2 −5




The corresponding invariant distribution is

p =
(

1
4

17
46

1
4

5
46

1
46

)

As a result, the growth rate of this model is

3[p(1) + p(2) + p(3) + p(5)] + 5p(4) = 3.21

and we conclude that CL ≥ 3.21 for L ≥ 4.
A more careful analysis based on a larger number of basic clusters results with a bound of
CL > 3.25. �
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Figure 2: A model with five basic clusters

3 Remarks

We remark on some alternative ways to represent the model.

(a) Longest increasing subsequence problem.
The asymptotic of the longest length of an increasing subsequence of a random permutation of
{1, . . . , n} and that of a sequence of n random drawings from {1, . . . , n} has been the subject
of much research. Although the mathematical structure of the current problem seems rather
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unrelated, we point out that the height in the model discussed here equals the longest length of
a subsequence which changes by −1, 0 or 1 of a sequence of n random drawings from {1, . . . , L}.

(b) Products of random matrices.
There is an equivalent formulation of the problem in terms of products of certain random
matrices. For b ∈ R consider the L × L matrices Al, l = 1, . . . , L with

Al(i, j) =




1 i = j 6= l,
b i = l, j − l = 0 or ± 1 mod L,
0 otherwise.

Let Xn be a sequence of i.i.d. random matrices where the law of X1 is uniform on {Al, l =
1, . . . , L}. Consider Mn = XnXn−1 · · ·X1 and let e denote the column vector of length L with
entries 1. Note that the ith entry Pi(b) of the vector Mne is a polynomial in b. If one considers
a coupling to the model studied in Section 1, in such a way that Xn = Aln for every n, then
one checks that the height hi(tn) of the ith column (where tn is the nth event) is given by the
degree of Pi. Hence the height H(tn) is given by the degree of the polynomial P (b) = e′Mne.
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