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Abstract
We consider a continuous time random walk on the d-dimensional lattice Zd: the jump rates
are time dependent, but symmetric and strongly elliptic with ellipticity constants independent of
time. We investigate the implications of heat kernel estimates on recurrence-transience properties
of the walk and we give conditions for recurrence as well as for transience: we give applications of
these conditions and discuss them in relation with the (optimal) Wiener test available in the time
independent context. Our approach relies on estimates on the time spent by the walk in a set and
on a 0− 1 law. We show also that, still via heat kernel estimates, one can avoid using a 0− 1 law,
achieving this way quantitative estimates on more general hitting probabilities.

1 Introduction and Results

Let X = {X(t)}t≥s be the random walk on Z
d, d ∈ N which, starting from x ∈ Z

d at time
s ≥ 0 performs nearest–neighbor jumps with time and space dependent rates c(x, y; t), but with
the following restrictions:

Conditions 1.1.

1. Nearest–neighbor: c(x, y; t) = 0 for any t ≥ s if ‖x − y‖ 6= 1;

2. Symmetry: c(x, y; t) = c(y, x; t) for any x, y ∈ Zd and t ≥ s;

3. Smoothness: c(x, y; ·) is a continuous function for any x, y ∈ Zd;

4. Uniform ellipticity: there are two constants C− and C+ such that 0 < C− ≤ c(x, y; t) ≤
C+ < +∞ for any x, y ∈ Zd and t ≥ s.

39



40 Electronic Communications in Probability

Here and hereafter for x ∈ Zd we denote with ‖x‖ the Euclidean norm ‖x‖ :=
√∑d

i=1 x2
i and with

|x| the norm |x| := maxi=1,...,d |xi|. The existence of such a time inhomogeneous Markov process
is standard (see e.g. [EK]), but we will give some details later on in the text.

We will investigate the problem of identifying recurrent and transient sets for X. We want to
stress that in absence of time dependence (in this case the jump rates will be denoted by c(x, y))
this problem has been intensively studied: one can exploit the strength of potential theory and
an optimal criterion for recurrence (transience) of arbitrary sets is available (Wiener test: see
e.g. [DY], [IMK]). This criterion is formulated in terms of capacities: the Dirichlet form of the
semigroup of X is defined as

D(f) =
1
2

∑
x,y

c(x, y) [f(x) − f(y)]2 , f ∈ L2(Zd), (1.1)

and the capacity of the set S ⊂ Z
d is defined as

Cap(S) = inf
{D(f) : f ∈ L2(Zd), f(x) ≥ 1 if x ∈ S

}
. (1.2)

The Wiener test then says that S ⊂ Z
d is recurrent if and only if∑

k∈N

Cap (S ∩ Qk)
2(d−2)k

= +∞, (1.3)

where Qk = {x : 2k ≤ ‖x‖ < 2k+1}. Note that by Condition 1.1(4) the Dirichlet form (1.1) of the
general walk is directly comparable with the Dirichlet form of the simple symmetric random walk
(c(·, ·) ≡ 1). So a set is recurrent (transient) for a strongly elliptic homogeneous symmetric walk if
and only if it is recurrent (transient) for the simple symmetric walk.
The ensemble of tools available for the time independent case shrinks sensibly in the time dependent
case: in particular the potential theory for elliptic operators seems to be of little help in the time
inhomogeneous context (and the potential theory for parabolic operators is by far not as developed,
besides addressing more general questions than the ones we are interested in, see [FU] for a detailed
study of the simple random walk case and for further references). Note that also in the time
inhomogeneous case the time dependent Dirichlet form is controlled, uniformly in time, by the
Dirichlet form of the simple random walk, and therefore the validity of the Wiener test (1.3) is
possibly a reasonable conjecture in the time inhomogeneous case too. However there does not seem
to be an argument to corroborate this conjecture and, as a matter of fact, much of our intuition
and essentially every basic estimate on time inhomogeneous symmetric walks arise from a very
robust non probabilistic approach, initiated by the celebrated works of E. De Giorgi and J. Nash.
This approach gives upper and lower bounds on the transition probabilities of the process. In the
standard set–up (Rd and the walk is a diffusion generated by a strongly elliptic divergence form
operator) these upper and lower bounds are of Gaussian type, see e.g. [FS]: in our discrete set–up
the situation is, in practice, not much different (see subsection 1.2 below). We will investigate the
consequences of these bounds on recurrence–transience issues.
We will give conditions for recurrence and transience and, though they are not optimal, they are
sufficient to cover a variety of situations. In trying to understand the limitations of our approach,
work by R. S. Bucy [Bu] turned out to be very relevant: reference [Bu] presents results obtained
in the context of an active line of research in the sixties that concentrated on finding sufficient
conditions for recurrence which can be handled more easily than the Wiener test. Bucy, for
example, gave conditions which request to test geometrical properties similar to the ones that we
propose in Theorem 1.2. As remarked in [Bu], in spite of looking like extreme simplification of
(1.3), these more user friendly tests are, in a sense, almost sharp and certainly very useful for
practical purposes.
Finally we remark that we have chosen to deal with the continuous time case for two reasons:
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• These type of random walks appear in the Helffer–Sjöstrand representation for random in-
terfaces [DGI], [GOS], and this has been the original motivation of our work. As a matter
of fact some estimates in the spirit of the present work, Section 4, are already present in the
analysis on non harmonic entropic repulsion [DG].

• To our knowledge, heat kernel estimates like the ones presented in Subsection 1.2 do not
appear for the moment in the literature for the discrete time case. However we stress that
if estimates like those in Subsection 1.2 hold in the discrete time contest, our arguments go
through, with fewer technical difficulties.

1.1 Construction of the process I

The existence of the process X is classical, but it is simple and useful construct X explicitly in the
following way (see Subsection 5.1 for a more formal construction).
Attach to each bond of Zd a Poisson process with constant jump rate C+: all these processes are
chosen to be independent. Place a particle in x = x0 at time T0 = s0 then:

1. the particle remains in x until one of the Poisson processes attached to one of the bonds
exiting from x, say b = (x, y), has a transition and call the transition time T̃ ;

2. now flip a coin with probability to obtain a head equal to c(x, y; T̃ )/C+, then

• if we obtain head the particle jumps to y and we restart the procedure from point 1
with x = y;

• if we obtain tail the particle remains in x and we restart the procedure point 1.

We denote with Ex,s and Px,s respectively the mean and the probability with respect to the process
X started at time s in x, and with Lt its pseudo–generator :

(Ltf)(x) =
∑

y:‖x−y‖=1

c(x, y; t) [f(y) − f(x)] f : Zd → R, (1.4)

in the sense that the transition kernel p(x, s; y, t) = Px,s(X(t) = y) satisfies

d

dt
p(x, s; y, t) = Ltp(x, s; y, t), (1.5)

where the action of the operator in the last term is on the y variable.

1.2 Heat Kernel estimates.

Symmetric walks fall in the realm of the De Giorgi–Nash–Moser Theory. In particular we will
make use of the following:

Theorem 1.1 (Aronson estimates). Let p(x, s; y, t) be the heat kernel of a random walk on Zd

with pseudo-generator L· of the form (1.4), with coefficients satisfying conditions 1.1. Then there
exist K1, K2, K3 > 0, depending only on d, C− and C+, such that

p(x, s; y, t) ≥ K1

1 ∨ (t − s)d/2
(1.6)

for every t > s ≥ 0 and every x, y ∈ Zd such that ‖x − y‖ ≤ √
t − s, furthermore

p(x, s; y, t) ≤ K2

1 ∨ (t − s)d/2
exp

(
−K3

‖x − y‖
1 ∨√

t − s

)
, (1.7)

for every x, y ∈ Zd and every t ≥ s ≥ 0.

Since in the literature we find the time independent case on Zd treated in detail [CKS], [SZ], and
since the time dependent case is very well understood for diffusions on R

d [FS], it is a matter of
following the scheme of these proofs to get to the stated results (see Appendix B of [GOS]).
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1.3 Recurrence and Transience.

We now give the definition of recurrence for a set S ⊂ Z
d.

Definition 1.1 (Recurrence). Let S ⊂ Z
d be a set. We say that S is recurrent for the process

X if
Px,s (diam{t ≥ s : X(t) ∈ S} = +∞) = 1 (1.8)

for any (x, s) ∈ Zd × R+ , otherwise we say that S is transient.

The diameter “diam” here and hereafter is taken with respect to the | · | norm.
For recurrence we have the following characterization:

Proposition 1.1. Consider S ⊂ Z
d and define

T S
s = “time spent by X in S after s” =

∫ +∞

s

1(X(u) ∈ S) du, (1.9)

DS
s = diam {t ≥ s : X(t) ∈ S} ; (1.10)

then Px,s(DS
s = +∞) = Px,s(T S

s = +∞) ∈ {0, 1} and the value does not depend on (x, s) ∈
Z

d × R+ . Furthermore Px,s(DS
s = +∞) = 1 ⇔ Px,s(X hits S after s) = 1.

1.4 Results and Applications

Set S̃n = {x ∈ S : |x| ≤ n} and θd(x) = 1/(1 + |x|d−2). Our main result is:

Theorem 1.2. Any non empty set S ⊂ Z
d is recurrent for d = 1, 2. For d ≥ 3 and n ∈ N define

σ1(n) ≡
∑

x∈S̃n

θd(x), (1.11)

σ2
2(n) ≡

∑
x,y∈S̃n

θd(x)θd(y)
[
2 + |x|d−2 + |y|d−2

1 + |x − y|d−2

]
= 2

∑
x,y∈S̃n

θd(x)θd(y − x). (1.12)

Then:

1. if limn→+∞ σ1(n) < +∞ the set S is transient;

2. if limn→+∞ σ1(n) = +∞ and lim supn→+∞ σ1(n)/σ2(n) > 0 then the set S is recurrent.

We delay to Section 3 the application of this result to specific sets. Here we just list informally
some of the outcomes and we make some considerations:

• In Corollary 3.1 we derive that any infinite connected cluster S ⊂ Z
3 is recurrent, as a

consequence of a stronger statement in d = 3.

• This implies that a line (or a half line) in d = 3 is recurrent: we will show that this fact is
true even in higher dimension in the sense that a codimension 2 affine subspace is recurrent.

• Clearly the problem left open by Theorem 1.2 is: what happens if limn→+∞ σ1(n) = +∞
and limn→+∞ σ1(n)/σ2(n) = 0? In section 3, with the help of the simple random walk, we
will consider how this may happen with both recurrent and transient sets.
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Finally, we concentrate some attention on explicit estimates: as it will be clear from the sequel, our
proof of the recurrence part of Theorem 1.2 relies on explicit bounds up to the last step, when a
0–1 law (proposition 1.1) is applied. Therefore the approach does not yield interesting quantitative
estimates on what we may call approximate recurrence, that is finding an explicit lower bound of
the type 1 − ε(n) (ε(n) → 0 as n → ∞) on the probability that X, starting (say) from the origin,
hits a recurrent set before exiting Z̃d

n.

2 Proof of Main Result

The strategy of the proof of theorem 1.2 is conceptually simple: consider the case d ≥ 3 (the cases
d = 1, 2 are simpler). Estimates (1.6) and (1.7) enable us to estimate the expectation of the time
T spent by X in an arbitrary set S ⊂ Z

d. It is easy to see that this expectation is finite if the set is
finite and that it can be infinite, if the set is infinite. If it is finite necessarily X spends an almost
surely finite amount of time in S, so that S is transient. If the expected value of T is infinite the
time T spent by the process X in S can be infinite but also almost surely finite. To investigate
if the latter is the case a crude approach is to perform a second moment calculation on T and
compare it with the first moment. To compare the two first moments of T we need to truncate
in some way the variable T , because its moments are not finite. We make this by considering the
random variables T̃n defined as the “time spent by X in S̃n. Theorem 1.1 enables us to estimate
the expectation of T̃n with σ1(n) and to estimate from below the second moment of T̃n with σ2

2(n),
then we can perform our moment comparison, namely Lemma 2.1. Proposition 1.1 completes the
proof.

Lemma 2.1. Let 0 < Y1 ≤ Y2 ≤ · · · be an increasing sequence of positive random variables, such
that E(Yn) < +∞ and E(Y 2

n ) < +∞ for any n = 1, 2, . . .. Define Y = limn→+∞ Yn,

1. if limn→+∞ E(Yn) < +∞ then E(Y ) < +∞ and P(Y = +∞) = 0;

2. if limn→+∞ E(Yn) = +∞ then E(Y ) = +∞, furthermore if

lim sup
n→∞

E(Yn)√
E(Y 2

n )
> 0

then P(Y = +∞) > 0.

Proof. The proof of (1) is immediate. (2) is essentially the Paley–Zygmund inequality: first of all
observe that, by the monotone convergence theorem, E(Y ) = limn→+∞ E(Yn) = +∞. By passing
to a subsequence, we can assume that E(Yn)/

√
E(Y 2

n ) ≥ ε > 0 for any n ∈ N. Now fix c ∈ [0, 1),
then:

E(Yn) = E(Yn; Yn ≤ cE(Yn)) + E(Yn; Yn > cE(Yn))

≤ cE(Yn) +
√

E(Y 2
n )P(Yn > cE(Yn)),

(2.1)

which implies that:

P(Yn > cE(Yn)) ≥ (1 − c)2
E(Yn)2

E(Y 2
n )

≥ (1 − c)2ε2, (2.2)

and finally

P(Y > cE(Yn)) = P((Y − Yn) + Yn > cE(Yn)) ≥ P(Yn > cE(Yn)) > ε, (2.3)

for any n ∈ N, from which, because limn→+∞ E(Yn) = +∞, clearly follows P(Y = +∞) > 0.
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Proof of Theorem 1.2. We start by proving that any S ⊂ Z
d is recurrent for d = 1, 2. Clearly

this is equivalent to prove that any point x ∈ Zd is recurrent, and because of Proposition 1.1 it is
sufficient to show that for any x ∈ Z

d the process X starting from 0 at time 0 spends an infinite
amount of time in x with positive probability.
Fix x ∈ Zd and n ∈ N, and define the random variables

T = “time spent by X in x” =
∫ +∞

0

1(X(u) = x)du, (2.4)

T n = “time spent by X in x before n” =
∫ n

0

1(X(u) = x)du. (2.5)

Clearly Tn ↑ T as n → +∞. We want to apply Lemma 2.1 to the variables Tn; we start by
estimating from below the first moment of Tn. Assume that n ≥ |x|2, then by (1.6) we have

E0,0(Tn) =
∫ n

0

p(0, 0; x, s)ds ≥
∫ n

|x|2
p(0, 0; x, s)ds ≥ C1

[
1(x = 0) +

∫ n

1∨|x|2
s−d/2ds

]
, (2.6)

and therefore E0,0(Tn) ↑ +∞ for d = 1, 2.
To estimate from above the second moment of Tn first observe that

E0,0(T
2

n) =
∫ n

0

∫ n

0

P0,0(X(s) = x, X(t) = x)ds dt

=
∫ n

0

ds

∫ n

s

dt P0,0(X(s) = x, X(t) = x) +
∫ n

0

dt

∫ n

t

ds P0,0(X(s) = x, X(t) = x)

=
∫ n

0

ds

∫ n

s

dt p(x, s; x, t)p(0, 0; x, s) +
∫ n

0

dt

∫ n

t

ds p(x, t; x, s)p(0, 0; x, t).

(2.7)

Then by using (1.7) and (2.6):

∫ n

0

ds

∫ n

s

dt p(x, s; x, t)p(0, 0; x, s) ≤ C2
2

∫ n

0

e−C3
|x|

1∨√
s

1 ∨ sd/2
ds

∫ n

s

1
1 ∨ (t − s)d/2

dt

≤ C2
2

∫ n

0

ds

1 ∨ sd/2

∫ n

s

dt

1 ∨ (t − s)d/2
≤ C2

2

∫ n

0

ds

1 ∨ sd/2

∫ n

0

dt

1 ∨ td/2
≤ C1 E0,0(Tn)2 (2.8)

for n large enough. Thus we can apply the second part of Lemma 2.1 to the variables Tn and
claim that T = limn→+∞ Tn is infinite with positive probability and Proposition 1.1 implies that
any x ∈ Zd is recurrent for d = 1, 2.
We can now consider the case d > 2. Fix S ⊂ Z

d, because of Proposition 1.1 , in order to show
that S is recurrent it is sufficient to show that the process X starting from 0 at time 0 spends an
infinite amount of time in S with positive probability. Define (and recall) the sets

Sn = {x ∈ S : |x| = n} and S̃n = {x ∈ S : |x| ≤ n} =
n⋃

r=0

Sr

for any n ∈ Z+ and the random variables

Tn = “time spent by X in Sn” =
∫ +∞

0

1(X(u) ∈ Sn)du

T̃n = “time spent by X in S̃n” =
∫ +∞

0

1(X(u) ∈ S̃n)du

T = “time spent by X in S” =
∫ +∞

0

1(X(u) ∈ S)du.

(2.9)



Recurrent and Transient Sets 45

We start by estimating the first moment of T̃n. By (1.7), we obtain

E0,0(T̃n) =
∑

x∈S̃n

∫ +∞

0

p(0, 0; x, s)ds ≤
∑

x∈S̃n

∫ +∞

0

C2

1 ∨ sd/2
e−C3

|x|
1∨√

s ds. (2.10)

Note that 1
2 ≤ 1∨s

1+s ≤ 1, thus

∫ +∞

0

C2

1 ∨ sd/2
e−C3

|x|
1∨√

s ds ≤
∫ +∞

0

C2,1

(1 + s)d/2
e−C3,1

|x|√
1+s ds = C2,1

∫ +∞

1

e−C3,1
|x|√

s

sd/2
ds, (2.11)

and one can find C4 such that∫ +∞

0

C2,1

1 ∨ sd/2
e−C3,1

|x|
1∨√

s ds ≤ C4

1 + |x|d−2
. (2.12)

Recalling (2.10) we have

E0,0(T̃n) ≤
∑

x∈S̃n

C4

1 + |x|d−2
= C4σ1(n), (2.13)

so if limn→+∞ σ1(n) < +∞ (see (1.11)) then, by lemma 2.1, P0,0(T = +∞) = 0.
By (1.6) instead we obtain

E0,0(T̃n) =
∑

x∈S̃n

∫ +∞

0

p(0, 0; x, s)ds ≥
∑

x∈S̃n

∫ +∞

|x|2
C1

1 ∨ sd/2
ds ≥

∑
x∈S̃n

C5

1 + |x|d−2
= C5σ1(n),

(2.14)
so if limn→+∞ σ1(n) = +∞ then by lemma 2.1 E0,0(T ) = +∞.
In order to apply lemma 2.1 and understand if T is almost surely finite or not, we need to estimate
the second moment of T̃n; first notice that

E0,0(T̃ 2
n) =

∑
x,y∈S̃n

∫ +∞

0

∫ +∞

0

P0,0(X(t) = x, X(s) = y)dt ds

=
∑

x,y∈S̃n

∫ +∞

0

p(0, 0; s, y)ds

∫ +∞

s

p(s, x; t, y)dt

+
∑

x,y∈S̃n

∫ +∞

0

p(0, 0; t, x)dt

∫ +∞

t

p(t, y; s, x)ds. (2.15)

Then we use (1.7) to bound the integrals in the last lines, obtaining:

∫ +∞

0

p(0, 0; s, y)ds

∫ +∞

s

p(s, x; t, y)dt ≤ C2
2

∫ +∞

0

e−C3
|y|

1∨√
s

1 ∨ sd/2
ds

∫ +∞

s

e−C3
|x−y|

1∨√
t−s

1 ∨ (t − s)d/2
dt

= C2
2

∫ +∞

0

e−C3
|y|

1∨√
s

1 ∨ sd/2
ds

∫ +∞

0

e−C3
|x−y|
1∨√

t

1 ∨ td/2
dt ≤ C6

(1 + |x|d−2)(1 + |x − y|d−2)
, (2.16)

where we used (2.12) in the last step. Since we have a similar estimate (exchange x and y) for the
last term in (2.15), we obtain

E0,0(T̃ 2
n) ≤ 2C6

∑
x,y∈S̃n

1
1 + |x − y|d−2

(
1

1 + |x|d−2
+

1
1 + |y|d−2

)
= 2C6σ2(n) (2.17)
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Equations (2.14) and (2.17) together imply

E0,0(T̃n)√
E0,0(T̃ 2

n)
≥ C7

σ1(n)
σ2(n)

, (2.18)

so that lim supn→+∞ σ1(n)/σ2(n) > 0 and, by lemma 2.1, P0,0(T = +∞) > 0 and, recalling
Proposition 1.1, S is recurrent.

3 Applications and Counterexamples

3.1 Examples

We give now some applications of Theorem 1.2: they can be extended in several natural ways.

Proposition 3.1. Let S ⊂ Z
3 and assume that there exists r0 ≥ 0 such that |Sr| ≥ 1 for any

r > r0, then S is recurrent.

Proof. It is clear that if we prove that a set S ⊂ Z
3 such that |Sr| = 1 for any r ≥ r0 ≥ 0 is

recurrent then we have done. So let S ⊂ Z
3 be such that |Sr| = 1 for any r large enough then:

σ1(n) =
n∑

j=0

∑
x∈Sj

1
1 + |x| ≥

n∑
j=r0

1
1 + j

−−−−−→
n→+∞ +∞. (3.1)

Furthermore

σ2
2(n) =

n∑
i,j=1

2 + i + j

(i + 1)(1 + j)

∑
x∈Si
y∈Sj

1
1 + |x − y|

≤
n∑

i,j=1

2 + i + j

(i + 1)(1 + j)(1 + |i − j|) ≤ 2
∑

1≤i≤j≤n

2 + i + j

(i + 1)(1 + j)(1 + j − i)

≤ 2
∑

1≤i≤j≤n

2 + 2j

(i + 1)(1 + j)(1 + j − i)
= 4

n∑
i=1

1
i + 1

n∑
j=i

1
1 + j − i

≤ 4
n∑

i=1

1
i + 1

n∑
j=1

1
1 + j

= O(σ2
1(n)), (3.2)

this implies that condition 2 of Theorem 1.2 is satisfied and S is recurrent.
As an immediate consequence we have:

Corollary 3.1. Any infinite connected cluster S ⊂ Z
3 is recurrent.

This corollary implies that the straight line π1 := {(x1, x2, x3) ∈ Z
3 : x2 = x3 = 0} is recurrent.

This is a general property, in fact we have:

Proposition 3.2. The (d − 2)-dimensional “affine variety”

πd−2 :=
{
(x1, . . . , xd) ∈ Zd : xd−1 = xd = 0

}
(3.3)

is recurrent for any integer d ≥ 3.
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Proof. Express σ2(n) as discrete convolution restricted to S̃n:

(σ2(n))2 = 2
∑

x∈S̃n

1
1 + |x|

∑
y∈S̃n

1
1 + |y − x| , (3.4)

and specializing to S = πd−2 we see that

(σ2(n))2 ≤ 2
∑

x∈S̃n

1
1 + |x|

∑
y∈S̃2n

1
1 + |y| = 2σ1(n)σ1(2n). (3.5)

By direct computation we have that σ1(n) = O(log n) and therefore lim infn→∞ σ1(n)/σ2(n) ≥ 1/2.
In other words, recurrence is established.

3.2 On the limitations of the approach

With some effort, one can build sets S for which σ1(n) → +∞ and σ1(n)/σ2(n) → 0. Theorem
1.2 is of little help in this case: a quick look at the proof however will be sufficient to convince the
reader that σ1(n) → +∞ implies that the expectation of the time spent by X in S is infinite.
The example we present is due to R. S. Bucy [Bu]. Let X be the standard random walk on Z

3

with jump rates c(x, y; t) = 1(|x − y| = 1) and define the set

S =
{
(x, 0, 0) ∈ Z3 : ∃ r ∈ N such that 2r ≤ x < 2r(1 + r−1)

}
. (3.6)

Then it is easy to prove that for this set limn→+∞ σ1(n) = +∞, but the standard Wiener test
states that S is transient for the standard discrete time random walk Y on Z3 (see [Bu, page 543]).
Therefore Theorem 1.2 implies that σ1(n)/σ2(n) → 0, fact which can be verified directly without
much difficulty.
We believe that there exist recurrent sets S such that σ1(n) → +∞ and σ1(n)/σ2(n) → 0. A
promising candidate is the set S = {([n log n], 0, 0) : n = 1, 2, . . .}: in [Bu] it is shown that S is
recurrent for the simple random walk and numerical computations suggest σ1(n)/σ2(n) → 0 (we
have not been able to prove it), while it is easy to verify that σ1(n) → ∞.

4 Explicit estimates

The approach via heat kernel bounds and first–second moment estimates is very direct and con-
structive, but, in order to get recurrence one has to complete it, because by itself it would yield
only recurrence with a positive probability. The completion of the argument via proving a 0–1 law
is very natural. Consider however the following problems:

• If d = 2, what is the probability that X, X(0) = 0, hits the finite set S before hitting the
boundary of Z̃d

n, n very large?

• If d ≥ 3, what is the probability that the walk, starting from the origin, hits a finite but very
large set close to the origin, before setting off to infinity?

While the second moment argument is a good start to answer these questions, it will not suffice
in most of the cases if we want interesting quantitative estimates. For the sake of brevity, we will
address the first of the two questions, as a prototype of several questions (among which the second
one). It will be clear from what we will explain below that this technique could also substitute the
0–1 law in the proof of Theorem 1.2.

Let us set Z̃n = Z̃d
n and let us restrict to d = 2. Choose e = (1, 0) and set τn = inf{t : X(t) /∈ S̃n},

n = 1, 2, . . ., as well as τ0 = inf{t : X(t) = 0}.
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Proposition 4.1. There exists a positive constant c = c(C−, C+) and a natural number n such
that

Pe,0 (τ0 < τn) ≥ 1 − 1
(log n)c , (4.1)

for every n ≥ n.

The computation in the simple random walk case yields c = 1 (with a suitable constant that
multiplies 1/ logn).
The proof is based on recursive estimates and it will be preceded by preparatory lemmas. All the
estimates can be done explicitly, but, to make the argument more fluent, we will not always carry
all the constants explicitly (already from the first lemma...).

Lemma 4.1. For every α > 1 there exists k such that

inf
k>k

inf
|y|=k

Py,0

(
τ0 < k2α

) ≥ K2
1/4K2

2

(
1 − 1

α

)2

≡ 2δ. (4.2)

Proof. Recall notations and basic idea from the proof of the first part of Theorem 1.2. We estimate
from below the expectation of the time spent in zero up to time k2α starting from y, |y| = k:

Ey,0

[
T k2α

]
=
∫ k2α

0

p(y, 0; 0, s)ds ≥
∫ k2α

k2

K1

s
ds = 2K1(α − 1) log k, (4.3)

and we estimate the expectation of the square of the same random variable from above

Ey,0

[
T

2

k2α

]
≤ K2

2

(
1 +

∫ k2α

1

ds

s

)
= K2

2 (1 + 2α log k)2 . (4.4)

Therefore for k sufficiently large

Ey,0

[
T k2α

]√
Ey,0

[
T

2

k2α

] ≥ K1

2K2

(
1 − 1

α

)
, (4.5)

and by using (2.2) we have that

Py,0

(
T k2α > 0

) ≥ K2
1

4K2
2

(
1 − 1

α

)2

. (4.6)

Since Py,0(T k2α > 0) = Py,0(τ0 < k2α) the lemma is proven.

In the very same way of the previous proof one can prove the following:

Lemma 4.2. There exists k̃ ∈ N such that

Pe,0

(
τ0 < k̃

)
≥ K2

1/4K2
2(> 2δ). (4.7)

Another important ingredient is the following lemma, that follows by repeating step by step the
proof of Proposition 6.5 (see also Prop. 8.1) of chapter VII in [Ba]: note that the proof relies only
on the upper bound (1.7) on the heat kernel. We give it for arbitrary d.
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Lemma 4.3. There exists a constant K4, depending only on the ellipticity bounds and on d, such
that for every x ∈ Zd, every T ≥ 0 and every λ > 0

Px,0

(
sup

s∈[0,T ]

|Xs − x| ≥ λ

)
≤ K4 exp

(
− λ

K4

√
T

)
. (4.8)

Proof of Proposition 4.1. Let {rj}j∈Z+ be a strictly increasing sequence of natural numbers. For
j > 1 and x ∈ ∂+Z̃rj−1 , with rj < n (therefore j ≤ N , for some N that we assume larger than 2),
we have the following

Px,s (τ0 < τn) = Px,s

(
τ0 < τn, τrj < τ0

)
+ Px,s

(
τrj > τ0

)
= Ex,s

[
Px,s

(
τ0 < τn|FτZ̃rj

)
; τrj < τ0

]
+ Px,s

(
τrj > τ0

)
≥ inf

y∈∂+Z̃rj

inf
s′≥s

Py,s′ (τ0 < τn)
(
1 − Px,s

(
τrj > τ0

))
+ Px,s

(
τrj > τ0

)
,

(4.9)

and in the last step we have used the strong Markov property. Take now the infimum over
x ∈ ∂+Z̃rj−1 and over s ≥ 0 to get, with the notation Qj = infy∈∂+Z̃rj

infs≥0 Py,s (τ0 < τn),
that

Qj−1 ≥ Qj

(
1 − inf

x∈∂+Z̃rj−1

inf
s

Px,s

(
τrj > τ0

))
+ inf

x∈∂+Z̃rj−1

inf
s

Px,s

(
τrj > τ0

)
. (4.10)

We now look for a lower bound on infx∈∂+Z̃rj−1
infs Px,s(τrj > τ0) which is uniform in j. In order

to do this we observe that for x ∈ ∂+Z̃rj−1 and every T > 0

Px,s

(
τ0 < τrj

) ≥ Px,s (τ0 < T ) − Px,s

(
τrj < T

)
, (4.11)

that follows by inserting in the left–hand side the characteristic function of the event {τ0 < T }.
Choose T = (rj−1 + 1)2α, j ≥ 2. By applying Lemma 4.1 we obtain that

inf
j

inf
s

inf
x∈∂+Z̃rj−1

Px,s (τ0 < T ) ≥ 2δ, (4.12)

and by Lemma 4.3, there exist two (sufficiently large) constant q(> 1) and k′ ∈ Z+ such that if
we set rj ≥ q(rj−1)α and r1 > k′

sup
j≥2

sup
x∈Z̃rj−1

Px,s

(
τrj < T

) ≤ δ. (4.13)

Fix now r1 = max(k, k̃, k′), k and k̃ were introduced respectively in Lemma 4.1 and Lemma 4.2.
Formulas (4.10), (4.11), (4.12) and (4.13) imply the recursion relation

Qj−1 ≥ Qj(1 − δ) + δ, (4.14)

for j ≥ 2. Set then Q0 = Pe,0(τ0 < τn): of course Q0 ≥ infs infx∈∂+{0} Px,s(τ0 < τn) and, recalling
the steps in (4.9) and the choice of r1 ≥ k̃, we can extend the validity of the recursion (4.14) down
to j = 1. We can then solve this recursive chain of inequalities and, recalling that j ranges from 1
to N , we obtain

Q0 ≥ 1 − (1 − δ)N . (4.15)

Therefore all that is left to determine is how many iterations N are allowed. Since the condition
is that rN < n and since we can choose rN = [βαN−1

], β = r1(2q)1/(α−1), one obtains that

Q0 ≥ 1 − c1

(log n)c2
, (4.16)

c1 = 1/(1 − δ)β/ log α and c2 = | log(1 − δ)|/ log α: the proof is therefore complete.
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5 The 0–1 law

We start by giving a more detailed construction of the process.

5.1 Construction of the process II

Denote with B the set of bonds of Zd:

B =
{
(x, y) ∈ Zd ×Z

d : ‖x − y‖ = 1
}

, (5.1)

and for any b = (x, y) ∈ B consider a Poisson process N(b) = {N(t; b)}t≥0 with intensity C+

and a sequence U1(b), U2(b), . . . of i.i.d random variables uniformly distributed in [0, 1]. Let 0 =
T̃0(b), T̃1(b), . . . be the jump times of the process N(b). Then it is clearly possible to construct
for any b ∈ B a probability space (Ωb,Fb, µb) where these objects live, and define the probability
space (Ω,F ,P) = (

⊗
b∈B Ωb,

⊗
b∈B Fb,

⊗
b∈B µb) where are defined N(b) and U1(b), U2(b), . . . for

any b ∈ B.
On this probability space we define our random walk X starting from x0 ∈ Zd at time T0 = s0 ≥ 0
in the following way:
Step 1: X(t) = x0 for any t ∈ [T0, T1), where:

T1 = inf

{
T̃n(b) > T0 : b = (x0, y) ∈ B, Un(b) ≤ c(x0, y; T̃n(b))

C+

}
= T̃n1(b1) (5.2)

and b1 = (x0, x1);
Step 2: X(t) = x1 for any t ∈ [T1, T2), where:

T2 = inf

{
T̃n(b) > T1 : b = (x1, y) ∈ B, Un(b) ≤ c(x1, y; T̃n(b))

C+

}
= T̃n2(b2) (5.3)

and b2 = (x1, x2); . . .
Step k: in general X(t) = xk for any t ∈ [Tk, Tk+1), where:

Tk+1 = inf

{
T̃n(b) > Tn : b = (xk, y) ∈ B, Un(b) ≤ c(xk, y; T̃n(b))

C+

}
= T̃nk+1(bk+1). (5.4)

and bk+1 = (xk, xk+1).

Remark. Notice that by the construction of the process we have Px0,s0 = 1 that

T1 ≥ T 1 = inf
{
T̃n(b) > T0 : b = (x0, y) ∈ B

}
T2 ≥ T 2 = inf

{
T̃n(b) > T1 : b = (x1, y) ∈ B

}
...

and T 1, T 2, . . . are i.i.d exponentially distributed random variables, with mean 1/2dC+. We will
use this remark in the sequel.
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5.2 Proof of Proposition 1.1

We start by showing that Px,s(DS
s = +∞) can assume only the two values 0 or 1, and that this is

independent of the choice of (x, s) ∈ Zd × R+ . Notice that f(x, s) = Px,s(DS
s = +∞) satisfies the

equation
f(x, s) =

∑
y∈Zd

p(x, s; y, t)f(y, t) (5.5)

for any x ∈ Z
d and any t > s. Call any function f satisfying (5.5) harmonic. We are going to

show that any bounded harmonic function is constant. By (1.6) we have that if ‖x − y‖ ≤ 1 and
0 < ∆s < 1 then there exists C1 > 0 which depends only on d, C−, C+ such that∑

y:‖x−y‖≤1

p(x, s; y, s + ∆s) = 1 − δ ≥ C1. (5.6)

Let φ be a bounded harmonic function and M = supx,s φ(x, s), then for any ε > 0 there exists
(x0, s0) such that φ(x0, s0) > M − ε and by using (5.5) and (5.6), it is easy to show that for every x
such that ‖x−x0‖ ≤ 1 we have φ(x, s0+∆s) > M−ε/C1. Let e1, . . . , ed be the canonical base of Rd ,
by iterating the above procedure we can construct a sequence (x0, s0), (x1, s1) = (x0 +e1, s0 +∆s),
. . . , (xn, sn) = (xn−1+e1, sn−1+∆s),. . . , such that φ(xn, sn) > M−ε/Cn

1 . So if M > 0 then for any
N > 0 it is possible to chose n > 0, ε > 0 and consequently (x0, s0) such that:

∑n
k=0 φ(xk, sk) ≥ N .

By repeating the same reasoning for m = infx,s φ(x, s) we obtain that if m < 0 for any N > 0 it
is possible to choose n > 0, ε > 0 and (x0, s0) such that

∑n
k=0 φ(xk, sk) ≤ −N.

Let now f be an harmonic bounded function, φ(x, s) = f(x+ e1, s+∆s)− f(x, s) is harmonic and
bounded; if supφ > 0 then for any N > 0 there exists (x0, s0) such that

f(x0 + n(∆s)e1, s0 + n(∆s)) − f(x0, s0) =
n∑

k=0

φ(xk, sk) ≥ N,

which contradicts the fact that f is bounded. This implies that supφ ≤ 0. Similarly we get
inf φ ≥ 0, in conclusion φ ≡ 0.
We can repeat this argument substituting e1 with e2 and iterate. We obtain f(x + e1, s + ∆s) −
f(x, s) = · · · = f(x + ed, s + ∆s) − f(x, s) = 0 for any ∆s ∈ (0, 1) i.e. f is constant.
We know that Px,s(DS

s = +∞) is bounded, so because it is harmonic it is constant. Now we prove
that it can only assume the values 0 or 1.
Let τs = inf{t ≥ s : X(t) ∈ S} the time of first hitting of S after s ≥ 0. Then by strong Markov
property:

Px,s(DS
s = +∞) =

=
∑
y∈S

∫ +∞

s

Px,s(DS
s = +∞|τs = t, X(τs) = y)Px,s(τs ∈ dt, X(τs) = y)

=
∑
y∈S

∫ +∞

s

Py,t(DS
s = +∞)Px,s(τs ∈ dt, X(τs) = y)

= Px,s(DS
s = +∞)

∑
y∈S

∫ +∞

s

Px,s(τs ∈ dt, X(τs) = y) =

= Px,s(DS
s = +∞)Px,s(X hits S after s), (5.7)

so Px0,s0(X hits S after s0) < 1 for some (x0, s0) ∈ Zd × R+ implies Px,s(DS
s = +∞) = 0 for any

(x, s) ∈ Zd×R+ . Assume that Px,s(X hits S after s) ≡ 1 and define Cn = {X does not hit S for any t > n}.
Clearly (DS

s < +∞) ⊂ ⋃
k≥s Ck and by the assumption Px,s(Cn) = 0 for any (x, s) and n ≥ s.

This implies Px,s(DS
s < +∞) ≡ 0.
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We proved that Px,s(DS
s = +∞) ∈ {0, 1} and that Px,s(DS

s = +∞) ≡ 1 if and only if

Px,s(X hits S after s) ≡ 1 .

If Px,s(DS
s = +∞) ≡ 0 then because Px,s(T S

s = +∞) ≤ Px,s(DS
s = +∞) we have that Px,s(T S

s =
+∞) ≡ 0. On the contrary assume Px,s(DS

s = +∞) ≡ 1 and define the sequence of entry and exit
times of X in S:

τS
1,s = inf{t ≥ s : X(t) ∈ S} = “instant of first entry of X in S after s”;

σS
1,s = inf{t ≥ τS

1,s : X(t) 6∈ S} = “instant of first exit of X from S after s”;

τS
2,s = inf{t ≥ σS

1,s : X(t) ∈ S} = “instant of second entry of X in S after s”;

σS
2,s = inf{t ≥ τS

2,s : X(t) 6∈ S} = “instant of second exit of X from S after s”;
...

with the usual convention that inf ∅ = +∞. Now define the random variable

NS
s = “number of times that X hits S” = sup{n ≥ 1 : τS

n,s < +∞} ,

and notice that Px,s(T S
s < +∞) = Px,s(T S

s < +∞, DS
s = +∞) ≤ Px,s(T S

s < +∞, NS
s = +∞).

Assume for a moment to know that Px,s(NS
s = +∞) ∈ {0, 1}. If Px,s(NS

s = +∞) = 0 then
Px,s(DS

s < +∞) = 0, i.e. Px,s(T S
s = +∞) = 1. On the contrary if Px,s(NS

s = +∞) = 1, the time

spent from X into S during the kth visit is δS
k,s = σS

k,s−τS
k,s and T S

s =
∑NS

s

k=1 δS
k,s =

∑+∞
k=1 δS

k,s. Now
define σ̃S

k,s = inf{t > τS
k,s : X(t) 6= X(τS

k,s)}, k = 1, . . . , NS
s then clearly δ̃S

k,s = σ̃S
k,s − τS

k,s ≤ δS
k,s,

furthermore δ̃S
k,s ≥ δ

S

k,s where δ
S

k,s, k = 1, . . . , NS
s are independent random variables exponentially

distributed with mean 1/2dC+ (see remark at the end of Section 5.1). Thus we have

Px,s(T S
s < +∞) = Px,s(T S

s < +∞, NS
s = +∞) =

= Px,s

NS
s∑

k=1

δS
k,s < +∞, NS

s = +∞
 ≤ Px,s

NS
s∑

k=1

δ
S

k,s < +∞, NS
s = +∞


= Px,s

(
+∞∑
k=1

δ
S

k,s < +∞, NS
s = +∞

)
= 0. (5.8)

It remains to prove that Px,s(NS
s = +∞) ∈ {0, 1}. It is easy to show that Px,s(NS

s = +∞) is a
harmonic, trivially bounded, function, so it is constant. Let now n ∈ N be a fixed number, then
again by strong Markov property

Px,s(NS
s = +∞) =

=
∑

y1,...,yn∈S

∫
· · ·
∫

s<s1<···<sn

Px,s

(
NS

s = +∞
∣∣∣∣ τS

1,s = s1, . . . , τ
S
n,s = sn

X(τS
1,s) = y1, . . . , X(τS

n,s) = yn

)

× Px,s

(
τS
1,s ∈ ds1, . . . , τ

S
n,s ∈ dsn

X(τS
1,s) = y1, . . . , X(τS

n,s) = yn

)
=

=
∑

y1,...,yn∈S

∫
· · ·
∫

s<s1<···<sn

Pyn,sn(NS
sn

= +∞) × Px,s

(
τS
1,s ∈ ds1, . . . , τ

S
n,s ∈ dsn

X(τS
1,s) = y1, . . . , X(τS

n,s) = yn

)

= Px,s(NS
s = +∞)

∑
y1,...,yn∈S

∫
· · ·
∫

s<s1<···<sn

Px,s

(
τS
1,s ∈ ds1, . . . , τ

S
n,s ∈ dsn

X(τS
1,s) = y1, . . . , X(τS

n,s) = yn

)
= Px,s(NS

s = +∞)Px,s(NS
s ≥ n).
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By taking the limit for n → +∞ in the above equation we get Px,s(NS
s = +∞) =

[
Px,s(NS

s = +∞)
]2

which implies Px,s(NS
s = +∞) ∈ {0, 1}.
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