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Abstract

Let (&, k > 0) be a Markov chain on {—1,41} with & = 1 and transition probabilities
P(fk+1 = 1| fk = 1) =a (mdP(ﬁk_H = —1| gk’ = —1) =b<a. Seth :O, Xn :§1+"'+§n
and M, = maxo<k<n Xi. We prove that the process 2M — X has the same law as that of X
conditioned to stay non-negative.

Pitman’s representation theorem [19] states that, if (X, ¢t > 0) is a standard Brownian motion
and M; = maxy<¢ X, then 2M — X has the same law as the 3-dimensional Bessel process. This
was extended in [20] to the case of non-zero drift, where it is shown that, if X; is a standard
Brownian motion with drift, then 2M — X is a certain diffusion process. This diffusion has the
significant property that it can be interpreted as the law of X conditioned to stay positive (in
an appropriate sense). Pitman’s theorem has the following discrete analogue [19, 18]: if X is
a simple random walk with non-negative drift (in continuous or discrete time) then 2M — X
has the same law as X conditioned to stay non-negative (for the symmetric random walk this
conditioning is in the sense of Doob).

Here we present a version of Pitman’s theorem for a random walk with Markovian increments.
Let (&, k > 0) be a Markov chain on {—1,+1} with & = 1 and transition probabilities
P(&+1 =1 & =1)=aand P({k+1 = —1| & = —1) = b. We will assume that 1 > a > b > 0.
Set Xy = 0, X, =& +---+&, and M,, = maxo<ig<n X5.
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Theorem 1 The process 2M — X has the same law as that of X conditioned to stay mon-
negative.

Note that, if b = 1 — a, then X is a simple random walk with drift and we recover the original
statement of Pitman’s theorem in discrete time.

To prove Theorem 1, we first consider a two-sided stationary version of £, which we denote by
(nk, k € Z), and define a stationary process {Qn,n € Z} by

Jr
n
@, =max | — E 7;
m<n .
j=m

Note that @ satisfies the Lindley recursion Qn1+1 = (Qn — 7n+1)™, and we have the following
queueing interpretation. The number of customers in the queue at time n is Q,; if 7,41 = —1
a new customer arrives at the queue and Q11 = Qn + 1; if 9,41 =1 and @, > 0, a customer
departs from the queue and Q.41 = @, — 1; otherwise Qn41 = Qn.

Note that the process 1 can be recovered from @, as follows:

Ny = -1 ian>Qn—1
" 1 otherwise.
For n € Z, set Q,, = Q_,.
Theorem 2 The processes Q and Q have the same law.

Proof: We first note that it suffices to consider a single excursion of the process @ from zero.
This follows from the fact that, at the beginning and end of a single excursion, the values of
7 are determined, and so these act as regeneration points for the process. To see that the
law of a single excursion is reversible, note that the probability of a particular excursion path
depends only on the numbers of transitions (in the underlying Markov chain ) of each type
which occur within that excursion path, and these numbers are invariant under time-reversal.
O

Thus, if we define, for n € Z,

. {—1 if Qn > Qui
Mn =

1 otherwise,

we have the following corollary of Theorem 2.

Corollary 3 The process 1) has the same law as 7.

Proof of Theorem 1: Note that we can write 7, = 41 + 2(Qn+1 — @n). Summing this, we
obtain, for n > 1,

S iy = Ko +2(Qn — Qo). (3)

where X,, = Z?:l n;. If we adopt the convention that empty sums are zero, and set Xy =0,
then this formula remains valid for n = 0. It follows that, on {Q¢ = 0},

Aj = 2Mn - Xnv (4)
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where M,, = maxo<m<n Xm-
Note also that, from the definitions, for m € Z,

+

Qm = (Qm+1 - ﬁm)—i_ = £Ln>ax - Z ﬁj . (5)
j=m

m

The law of X conditioned to stay non-negative is the same as the law of X conditioned to
stay non-negative, since the events X; > 0 and X 1 > 0 respectively require that £&; = 1 and
m = 1, and so the difference in law between £ and 7 becomes irrelevant. By Corollary 3, the
law of X conditioned to stay non-negative is the same as the law of the process

n—1
> iy n>=0
j=0

given that

n—1
Qo = max —Zﬁj =0.
j=0

n>0

By (4) this is the same as the law of oM — X given that Qo = 0 or, equivalently, that g = 1;
but this is the same as the law of 2M — X, so we are done. O
In the queueing interpretation, 7 = —1 whenever there is a departure from the queue and 7 = 1
otherwise. Thus, Corollary 3 states that the process of departures from the queue has the same
law as the process of arrivals to the queue; it can therefore be regarded as an extension of the
celebrated theorem in queueing theory, due to Burke [5], which states that the output of a
stable M /M /1 queue in equilibrium has the same law as the input (both are Poisson processes;
by considering the embedded chain in the M/M/1 queue, Burke’s theorem is equivalent to the
statement of Corollary 3 with b = 1 — a). Our proof of Theorem 2 is inspired by the kind of
reversibility arguments used often in queueing theory. For general discussions on the role of
reversibility in queueing theory, see [4, 13, 22]; the idea of using reversibility to prove Burke’s
theorem is originally due to Reich [21].

To describe the finite dimensional distributions of the process 2M — X appearing in Theorem
1, one can consider the Markov chain (X, ) conditioned on X staying non-negative; this is a

h-transform of (X, &) with
b\
B, —1) =1 (_)

a

h(k, 1) =1— (g)k G:Z)

It is well-known (see, for example, [11]) that the particular case of Theorem 1 with b =
1 — a is more or less equivalent to a collection of random walk analogues of Williams’ path-
decomposition and time-reversal results relating Brownian motion and the three-dimensional
Bessel process. The same is true for general a and b. For example, X conditioned to stay
non-negative has a shift-homogeneous regenerative property at last exit times, like the three-
dimensional Bessel process. Moreover, if we set X, = Z?;OI 7], then, by Corollary 3, (Xn, n >

and

1) has the same law as (X,,, n > 1), and this can be interpreted as the analogue of Williams’
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path-decomposition for Brownian motion with drift. The analogue of Williams’ time-reversal
theorem for the three-dimensional Bessel process can also be verified. In this case we have,
setting R = 2M — X, Ly = max{n : R, = k} and T} = min{n : X, = k}, that {k —
XTpor-1-n, 0<n <Tpyq — 1} and {R,, 0 <n < Ly} have the same law.

Finally, we remark that the following analogue of Theorem 1 holds in continuous time: let
(&, t > 0) be a continuous-time Markov chain on {—1,+1} with £, = 1, and set X; = fot £ods,
M = maxg<s<t Xs. We assume that the transition rates of the chain are such that the event
that X remains non-negative forever has positive probability. Then 2M — X has the same
law as that of X conditioned to stay non-negative. The proof is identical to that of Theorem
1; in particular, the following analogues of Theorem 2 and Corollary 3 also hold: if we let
(nt, t € R) be a stationary version of £ and, for ¢ € R, set

¢
@ == [ ).
then @Q (defined as Q; = Q_;) has the same law as @, and 7, defined by

-1 ifmp, =1 and
) { if m and Q¢ >0 (6)

= 1 otherwise,
has the same law as 7. The process X in this setting is sometimes called the telegrapher’s
random process, because it is connected with the telegrapher equation. It was introduced by
Kac [12], where it is also shown to be related to the Dirac equation. There is a considerable
literature on this process and its connections with relativistic quantum mechanics (see, for
example, [6, 7] and references therein).
For other variants and multidimensional extensions of Pitman’s theorem see [1, 2, 9, 10, 15, 8,
16, 17, 18] and references therein. In [16] a version of Pitman’s theorem for geometric function-
als of Brownian motion is presented. In [17] connections with Burke’s theorem are discussed.
In [18], a representation for non-colliding Brownian motions is given (the case of two motions
is equivalent to Pitman’s theorem); this extends a partial representation (for the rightmost
motion at a single epoch) given in [1, 8]. The corresponding result for continuous-time random
walks is also presented in [18]. The corresponding discrete-time random walk result is pre-
sented in [15], and this extends a partial representation given in [10]. See also [9] for a related
but not yet well understood representation; this is also discussed in [15]. (See also [14].) In [2]
an extension of Pitman’s theorem is given for spectrally positive Lévy processes. A partial
extension of Pitman’s theorem for Brownian motion in a wedge of angle /3 is presented in [3].

Acknowledgements. The authors would like to thank Jim Pitman and the anonymous referee
for their helpful comments and suggestions.
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