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Département de Mathématiques
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Abstract
In a first-passage percolation model on the square lattice Z2, if the passage times are inde-
pendent then the number of geodesics is either 0 or +∞. If the passage times are stationary,
ergodic and have a finite moment of order α > 1/2, then the number of geodesics is either 0 or
+∞. We construct a model with stationary passage times such that E[t(e)α] < ∞, for every
0 < α < 1/2, and with a unique geodesic. The recurrence/transience properties of reversible
random walks in a random environment with stationary conductances (a(e); e is an edge of Z2)
are considered.

1 Introduction.

In a first-passage percolation model, a sequence of non-negative stationary random variables
(t(e); e is an edge of Z2) is given.
A finite path γ, in the square lattice Z2, from x to y is a finite sequence of neighboring vertices
of Z2 x = x0, x1, . . . , xn = y and the passage time of the path is defined by

T (γ) =
n∑

i=1

t(xi−1, xi)
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where t(u, v) is the passage time of the edge between the neighboring vertices u and v.
For two vertices x and y of Z2, define

T (x, y) := inf{T (γ); γ is a finite path from x to y} .

Although T (x, y) is often interpreted as the travel time between x and y, as in the seminal
paper of Hammersley and Welsh in 1965 [9], the interpretation of T as a random distance
is more appropriate here. The triangle inequality reflects the subadditivity of T : for all
x, y, z ∈ Z2,

T (x, z) ≤ T (x, y) + T (y, z).

A doubly infinite path γ in Z2 is called a geodesic if for all vertices x and y of γ,

T (x, y) = T (γ(x, y))

where γ(x, y) is the finite path from x to y along γ. The question of the existence of geodesics
is a natural one. However there is also a motivation from statistical physics since it is related to
the existence of non-constant ground states for the two-dimensional Ising model in a random
environment (see [14, Chapter 1]).

Note that if the sequence (t(e); e is an edge of Z2) is ergodic, then the number of geodesics is
non random.

Our first goal is to extend theorem 1 of Wehr [16], a 0−∞ law, two different ways. In theorem 1,
we consider stationary sequences of passage times satisfying an appropriate moment condition.
Then to show that this condition is tight, in section 2, we construct a stationary sequence of
passages times such that E[t(e)α] < ∞ for all 0 < α < 1/2 and for which, almost surely, there
exists exactly one geodesic. In theorem 2, we consider passage times that are independent and
we show that no moment condition is needed to prove the 0 −∞ law.

There is a strong analogy between these facts and the recurrence/transience properties of
reversible random walks onZd in a random environment. In section 3, we recall these properties
and then we give an example of stationary conductances with finite moments of order α for
all 0 < α < 1 and such that the reversible random walks on Z2 in a random environment are
transient and examples of reversible random walks on Zd, d ≥ 3, with stationary conductances
that are recurrent but have a finite moment of order less than 1/(d − 1).

Theorem 1 If (t(e); e is an edge of Z2) is a stationary and ergodic sequence of positive random
variables such that

E[t(e)α] < ∞ for some α > 1/2,

then the number of geodesics is 0 or +∞.

The stationarity of the sequence of passage times (t(e); e is an edge of Z2), that is, the finite
distributions are translation invariant by each element of Z2, is equivalent to the existence of
a group (Sx; x ∈ Z

2) of measure preserving transformations of a probability space (Ω,F , P )
and of two non-negative random variables t1 and t2 such that S(0,0) is the identity on Ω and
for all x, y ∈ Z2 and all A ∈ F ,

Sx ◦ Sy = Sx+y, P (S−xA) = P (A) and t (x, x + e`, ω) = t` (Sxω) , ` = 1, 2,
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where {e1, e2} is the canonical basis of R2 (see for instance [2, propositions 6.9 and 6.12] or
[11, section 1.4]).
With this representation, we have that (Sx; x ∈ Z2) is ergodic if and only if (t(e); e is an edge
of Z2) is ergodic [2, proposition 6.18].

For two vertices x, y ∈ Z
2, y ∼ x means that x and y are neighbors in the square lattice. For

A a finite subset of Z2, ∂A := {x /∈ A ; there exists y ∼ x , y ∈ A} and A = A ∪ ∂A.

Proof of theorem 1. Suppose that N , the number of geodesics, is 0 < N < +∞.

By stationarity, η := P (x belongs to a geodesic) does not depend on the particular vertex x
and η > 0 since N > 0.

Since the random variables t(e) are positive, there is δ > 0 such that P (t` < δ) < η/9N for
` = 1, 2, where t1 and t2 are the random variables of the representation given above.

Let Qn be the set of vertices of Z2 in the square ]− n, n]2 and Qn be the set of edges with at
least one vertex in Qn.

By the multidimensional pointwise ergodic theorem [11, p.205], for n large enough, the number
of vertices x in Qn such that t(x, x + e1) < δ or t(x, x + e2) < δ is less than η(2n)2/9N . Thus,
the number of edges e in Qn such that t(e) < δ is less than 2η(2n)2/9N .
Furthermore, for n large enough, one of the geodesics, denoted by γ in the sequel, must contain
at least η(2n)2/2N vertices of Qn. Thus, it must contain at least η(2n)2/4N edges of Qn. Let
v and w be respectively the first and the last vertex of γ that are in ∂Qn−1.
Since the passage time between v and w along γ is less than the passage time along a portion
of ∂Qn−1, for n large enough and for all 0 < α ≤ 1 and ε > 0, we have

(
η

4N
(2n)2 − 2η

9N
(2n)2

)
δ ≤ T (v, w) ≤

∑
x,y∈∂Qn−1, x∼y

t(x, y) (1)

≤


 ∑

x,y∈∂Qn−1, x∼y

t(x, y)α




1/α

≤ (n−1)(1+ε)/α


(n − 1)−(1+ε)

∑
x∈∂Qn−1

(t1 + t2)α ◦ Sx




1/α

which leads to a contradiction if (1 + ε)/α ≤ 2, since, almost surely,

lim
K→+∞

(2K)−2
∑

x∈QK

(t1 + t2)α ◦ Sx = lim
K→+∞

(2K)−2
K∑

n=2

∑
x∈∂Qn−1

(t1 + t2)α ◦ Sx

= E[(t1 + t2)α] < ∞ ,

and therefore
lim inf
n→+∞ (n − 1)−(1+ε)

∑
x∈∂Qn−1

(t1 + t2)α ◦ Sx = 0 .

•
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Since there is an equivalence between the existence of nonconstant ground states in a disordered
Ising ferromagnetic model and the existence of geodesics in the corresponding first-passage
percolation model (see [12], [14, Chapter 1] or [16]), it follows that if the interactions are
stationary, ergodic and with finite moment of order α > 1/2 then P -a.s., there are either two
ground states or an infinity of ground states.
In dimension d > 2, the notion of geodesic can be replaced by the interface of a non constant
ground state for an Ising ferromagnetic model in a random environment. In this case, with
a similar argument, one proves that if the interactions are stationary, ergodic and with finite
moment of order α > (d−1)/d then P -a.s., there are either two or an infinity of ground states.
In Licea and Newman [12], the non existence of (x̂, ŷ)-bigeodesics is proved for distributions
without atoms but there are no moment conditions. Related arguments can be found in [3].

Theorem 2 If (t(e); e is an edge of Z2) is a sequence of independent positive random variables
then the number of geodesics is 0 or +∞.

The properties of open paths that we need to prove theorem 2 without assuming a moment
condition, can be obtained by elementary arguments on a slightly modified model of oriented
percolation (see [7, section 10.10]).
Consider a percolation model on the lattice Z2. Let p be the probability that an edge of
Z

2 is open and let Pp be the product measure on the configurations. Let C be the set of
vertices x ∈ Z

2 ∩ {(i, j); 0 ≤ j ≤ i} that can be reached from 0 by at least one open path
0 = x0, x1, . . . , xn = x such that for all k, 0 ≤ k < n, if xk = (ik, jk) and xk+1 = (ik+1, jk+1)
then the edge connecting xk and xk+1 is open, ik ≤ ik+1, jk ≤ jk+1 and jk ≤ ik. Then consider
~θ(p) = Pp(]C = +∞) where ]C is the number of vertices in C. To prove theorem 2, we only
need to know that ~θ(p) > 0 for some p < 1.

First we prove the theorem using the following two lemmas.

Lemma 1 As p ↑ 1 then ~θ(p) ↑ 1.

This lemma is used to prove the existence of a sequence of circuits with linearly growing
passage times.

Lemma 2 Let p, 0 < p ≤ 1, be the probability that an edge of Z2 is open. If ~θ(p) > 0, then
Pp-almost surely, there are infinitely many n such that 0 is surrounded by an open circuit in
] − 7n; 7n[2\] − 7n−1; 7n−1[2 consisting of less than 56 · 7n−1 edges.

Proof of theorem 2. By lemma 1, there is p0 < 1 such that ~θ(p) > 0 for all p > p0. Take
M < ∞ large enough so that P (t(e) < M) > p0 and call an edge e open when t(e) < M . Then
by lemma 2 with p = P (t(e) < M), P -almost surely, there are infinitely many n, such that 0 is
surrounded by an open circuit πn in ]−7n; 7n[2\]−7n−1; 7n−1[2 such that T (πn) < 56 ·7n−1M .
Resume the proof of theorem 1 up to equation (1) with Qn replaced by Q7n−1 as the only
modification.
Then let vn and wn be respectively the first and the last vertex of γ that are on πn.
Since the passage time between vn and wn along γ is less than the passage time along a portion
of πn, for infinitely many n we have that(

η

4N
(2 · 7n−1)2 − 2η

9N
(2 · 7n−1)2

)
δ ≤ T (vn, wn) < 56 · 7n−1M

which leads to a contradiction. •
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Proof of lemma 1. As in [7, section 1.4], if ]C < ∞, consider the circuit π that surrounds C
in IL2, the dual lattice with vertices in Z2 + (1/2, 1/2). An edge of IL2 is said to be closed if
it intersects a closed edge of Z2. Suppose that π consists of n edges. Then n ≥ 4 and at least
n/4 of these edges must be closed.
To see this, for j ≥ 0, let −1 ≤ i1 < ... < ik < ... < iv(j) be such that the horizontal edge
from (ik, j) to (ik +1, j) intersects a vertical edge of π. If k ≤ v(j) is even then this edge must
be closed while if k is odd it might not be. Since π is a circuit, v(j) is even. Therefore v(j)
vertical edges of π intersect the horizontal line (·, j) and at least v(j)/2 of them are closed.
Now to count how many horizontal edges of π are closed, for i ≥ 0, let h(i) be the number of
horizontal edges of π which intersect the vertical line (i, ·). Since π is a circuit, h(i) is even.
Let −1 ≤ j1 < ... < jk < ... < jh(i) be such the vertical edge from (i, jk) to (i, jk +1) intersects
a horizontal edge of π. If k ≤ h(i) is even then this edge must be closed unless k = h(i) and
jk = i. Let d be the number of i for which this last possibility occurs, that is, (i, i) ∈ C. Then,
for d vertical lines (i, ·), at least (h(i)/2) − 1 of horizontal edges of π are closed and for all
other vertical lines, at least h(i)/2 of them are closed.
Finally, note that

∑∞
i=0 h(i) +

∑∞
j=0 v(j) = n and d ≤ n/4. Then the number of closed edges

in π is at least
1
2

∞∑
j=0

v(j) +
1
2

∞∑
i=0

h(i) − d ≥ n

2
− n

4
=

n

4
.

Therefore, if ρ(n) is the number of circuits in IL2 which have length n and which contain 0,

1 − ~θ(p) =
∞∑

n=4

Pp(C the circuit π that surrounds C consists of n edges)

≤
∞∑

n=4

ρ(n)(1 − p)n/4

≤ 54(1 − p)
1 − 5(1 − p)1/4

→ 0 as p → 1 ,

since ρ(n) ≤ n3n ≤ 5n. •

Proof of lemma 2. For n ≥ 1, let us introduce

vn,1 = (−3·7n−1; 7n−1) ; vn,2 = (3·7n−1; 7n−1) ; vn,3 = (3·7n−1; 7n) ; vn,4 = (−3·7n−1;−7n) ;

vn,5 = (5·7n−1;−7n) ; vn,6 = (3·7n−1;−7n−1) ; vn,7 = (−3·7n−1;−7n−1) ; vn,8 = (−5·7n−1; 7n) .

and consider

An(1), the event that there is an open path, consisting of less than 12 · 7n−1 edges, inside the
right-angle triangle (vn,1; vn,2; vn,3) from vn,1 to the opposite side [vn,2; vn,3],

An(2), the event that there is an open path, consisting of less than 16 · 7n−1 edges, inside the
right-angle triangle (vn,1; vn,4; vn,5) from vn,1 to the opposite side [vn,4; vn,5],

An(3), the event that there is an open path, consisting of less than 12 · 7n−1 edges, inside the
right-angle triangle (vn,6; vn,7; vn,4) from vn,6 to the opposite side [vn,7; vn,4],

An(4), the event that there is an open path, consisting of less than 16 · 7n−1 edges, inside the
right-angle triangle (vn,6; vn,3; vn,8) from vn,6 to the opposite side [vn,3; vn,8].
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Representation of the four right-angle triangles
and possible paths corresponding to An(i), i = 1, . . . , 4

By symmetries, for each n ≥ 1 and 0 < p < 1, we have that

Pp(An(1)) = Pp(An(3)) ≥ ~θ(p) and Pp(An(2)) = Pp(An(4)) ≥ ~θ(p) .

And since these four events are increasing, by Harris FKG inequality (see [7, section 2.2]), for
each n ≥ 1 and 0 < p < 1,

Pp(An(1) ∩ An(2) ∩ An(3) ∩ An(4)) ≥ ~θ(p)4.

Therefore, by Borel-Cantelli, if ~θ(p) > 0, the four events occur simultaneously for infinitely
many n. And for each n for which An(1) ∩ An(2) ∩ An(3) ∩ An(4) occurs, there is an open
circuit in ] − 7n; 7n[2\] − 7n−1; 7n−1[2 consisting of less than 56 · 7n−1 edges and surrounding
0. •

2 A counterexample for 0 < α < 1/2.

In this section, we define a stationary and ergodic sequence of positive random variables
(t(e); e is an edge of Z2) with finite moments of order α for any 0 < α < 1/2, such that,
almost surely, there exists exactly one geodesic. For two integers a, b such that a ≤ b, denote
{k ∈ Z; a≤ k ≤ b} by [a, b] and denote {k ∈ Z; k ≥ a} by [a,∞[.

First of all, take a path Γ in [1,∞[2 with the following property : if Γn is the restriction
of Γ to the square [2, 2n+1] × [2, 2n+1], then the translates, Γn + 2n+1e1, Γn + 2n+1e2 and
Γn + 2n+1(e1 + e2) are the restrictions of Γ to the respective translated squares.

The restrictions Γ1 and Γ2 of the path Γ that we use, have this shape :
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∗
∗
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∗
∗
∗∗ ∗ ∗ ∗

Representation of Γ1 and Γ2

For n ≥ 1, Γn+1 is obtained from Γn by connecting the four translated paths with paths
similar to the star-studded in the representation of Γ2 given above. These paths correspond
to γ

(n+1)
1 ∪ γ

(n+1)
2 in the notations below.

Some randomness will be introduced in this process. To do so we will use a sequence ( ~Xn; n ≥
1) of independent random variables defined on a probability space (Ω,F , P ) such that ~X1 has
uniform distribution on the vectors {(i, j) ; 0 ≤ i, j ≤ 3} and, for n > 1, ~Xn has uniform
distribution on {(0, 0), (2n, 0), (0, 2n), (2n, 2n)}.

The sequence of random passage times will be defined so that almost surely, there exists only
one geodesic γ = γ(ω) and that it looks like Γ.

(2.1) Definition of (t(e) ; e is an edge of Z2).

The passage times are defined on (Ω,F , P ) using the sequence ( ~Xn; n ≥ 1).
Most of the edges not in γ(ω) constitute barriers that force the way along the geodesic. These
edges correspond to

(x, x + e`) x ∈ B(n)
` + ~m · ( ~X1, . . . , ~Xn) , ~m ∈ Zn , n ≥ 1 , ` = 1, 2 ,

with the notations below.

Set
γ

(1)
1 = {(2, 2), (3, 2)} γ

(1)
2 = {(2, 2), (2, 3)}

B(1)
1 = {(2, 3), (2, 4)} B(1)

2 = {(3, 2), (4, 2)}
and, for n ≥ 2,

γ
(n)
1 = {(2n, 2n + 2), (2n + 1, 2n+1)} ∪ [2, 2n+1 − 1] × {2n + 1} ∪ {(2n, 2), (2n + 1, 2n)}

γ
(n)
2 = {2n + 1} × [2n + 2, 2n+1 − 1] ∪ {(2n+1, 2n + 1), (2, 2n)} ∪
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{2n + 1} × [2, 2n − 1]

B(n)
1 = {2n} × [2n + 3, 2n+1] ∪ {2n + 1} × [2n + 2, 2n+1 − 1] ∪

{2n} × [3, 2n] ∪ {2n + 1} × [2, 2n − 1]

B(n)
2 = [2, 2n+1 − 1] × {2n + 1} ∪ [3, 2n+1] × {2n}.

At stage n ≥ 1, for ` = 1, 2, set

t(x, x + e`) = 1 for all x ∈ ∪~m∈Znγ
(n)
` + ~m · ( ~X1, . . . , ~Xn).

These edges will be part of the geodesic.
Then, for ` = 1, 2, set

t(x, x + e`) = 9 · 22n for all x ∈ ∪~m∈ZnB(n)
` + ~m · ( ~X1, . . . , ~Xn).

The values α > 0 such that E[t(e)α] < ∞ depend on how large these passage times have to
be.
The passage time of any other edge is set equal to 0. Actually, any other constant will do.

Almost surely, in any square, the proportion of edges with passage time equal to 9 · 22n is less
than 8 ·2n ·2−2(n+1) = 8 ·2−n. Therefore E[t(e)α] < ∞ for all α < 1

2 whether e is an horizontal
or a vertical edge.

For ω ∈ Ω, let γ(ω) = {e an edge of Z2 ; t(e) = 1}.

The remainder of this section is to show that γ(ω) is the unique geodesic.

(2.2) Almost surely, γ(ω) is a geodesic :

For each n ≥ 1, the set of edges with passage time defined up to stage n and equal to 1, is
a union of vertex-disjoint finite paths in Z

2, each one being a translation of a fixed path Γn

contained in [2, 2n+1] × [2, 2n+1]. Therefore γ(ω) is a path in Z2.

Let x and y be two vertices of γ(ω) and denote the finite path between x and y along γ(ω)
by γ(x, y). Our goal is to show that for any path π(x, y) from x to y, T (γ(x, y)) ≤ T (π(x, y)).
Let N ≥ 1 be the greatest integer such that at stage N , the passage time of at least one edge
of γ(x, y) is not yet defined.
First, since all passage times of γ(x, y) are defined at stage N + 1,

T (γ(x, y)) ≤
(
2N+2

)2
.

Secondly, since the passage time of some edge of γ(x, y) is not defined at stage N , x and y

cannot belong to Z2 ∩ [2, 2N ] × [2, 2N ] + ~m · ( ~X1, . . . , ~XN ) for the same index ~m. Therefore,
any finite path π(x, y) from x to y contains an edge whose passage time is not defined at stage
N . But all passage times defined at a later stage are either 1 or are ≥ 9 · 22(N+1).
In particular, if π(x, y) is edge disjoint from γ(x, y), then

T (π(x, y)) ≥ 9 · 22N+2 > T (γ(x, y)).
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(2.3) Almost surely, γ(ω) is the unique geodesic :

Suppose that, for some ω ∈ Ω, there is a second geodesic, distinct from γ(ω). Then on this
second geodesic, there is a finite path π(x, y), x 6= y, that is edge-disjoint from γ(ω).
By (2.2), at most one vertex of π(x, y) can belong to γ(ω). Therefore, there is at least one
vertex, z ∈ π(x, y) that does not belong to γ(ω). But the only vertices z′ of Z2 that do not
belong to γ(ω) verify z′ ∈ ∪m∈Z{3, 4} × {3, 4} + m ~X1. And since this is the case for z, any
self-avoiding path of the form x−4, . . . , x−1, z, x1 . . . , x4 contains at least two distinct vertices
of γ(ω), in contradiction with (2.2).

3 Recurrence of reversible random walks on Z
d.

As in a first-passage percolation model, we are given a sequence of positive random variables
(a(e) : e is an edge of Zd) which are now interpreted as the electrical conductance of the edges.
a(e)−1 is called the resistance of the edge. Almost surely, there is an associated random walk,
(ξk; k ≥ 0), on Zd whose transition probabilities are given by

Pω(ξk+1 = y|ξk = x) := a(x, y)/a(x) if x ∼ y (2)

where a(x) :=
∑
y∼x

a(x, y).

(ξk; k ≥ 0) is a reversible random walk with a(x) as an invariant measure.

Recall that in a finite graph with conductances given by a sequence a(e), e an edge of the graph,
the effective resistance, Ra(x, V ), between a vertex x and a set of vertices V not containing x
is the intensity of the electric current needed to maintain a unit potential difference between
x and V (cf. [5] or [15, Chapters 8 and 9] for example). It has the following probabilistic
interpretation :

Ra(x, V )−1 = a(x)Pω(τ+
x > τV |ξ0 = x)

where τ+
x = inf{k > 0; ξk = x} and τV = inf{k ≥ 0; ξk ∈ V }.

Therefore, a.s., the random walk on Zd is recurrent if and only if

Ra(0, ∂Qn) → +∞ as n → ∞ a.s. (3)

where Qn is the set of vertices of Zd in the cube ] − n, n]d.
It follows from the Rayleigh’s monotonicity principle (see [15, Theorem 8.5]), that if the con-
ductances are bounded, but not necessarily stationary, then the associated reversible random
walk on Z

2 is recurrent while if the conductances are bounded below away from 0 then the
associated random walk on Zd, d ≥ 3, is transient (for instance [5], [6] or [15]).
For the one-dimensional walk, it is simple to see, using Poincaré recurrence theorem for in-
stance, that if the conductances (a(e); e is an edge of Z) form a stationary sequence of positive
random variables then, a.s., the associated reversible random walk is recurrent.

The next four remarks gather together the recurrence/transience properties of the reversible
random walks on Zd, d ≥ 2 with random conductances, independent or not.

Remark 1 Let (a(e); e an edge of Z2) be a sequence of non-negative conductances.
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If sup
e

E[a(e)] < ∞, then, in almost all environments, the associated reversible random walk is

recurrent.

This is due to Y. Peres [1, lemma 4.3]. Example (3.3) below shows that this moment condition
is tight. Then in his study of the random walk on the infinite cluster of long-range percolation,
Berger [1, Theorem 1.9] considered conductances on Z2 that are independent and identically
distributed. Using the exponential decay of the radius of an open cluster in the subcritical
phase in bond percolation (see [7, p.46]), he proved that

Remark 2 If (a(e); e an edge of Z2) is a sequence of independent non-negative conductances
then, in almost all environments, the associated reversible random walk is recurrent.

No moment condition on the conductances is needed. Note that this could also be obtained
by lemma 2 and Nash-Williams criterion (see [15, Corollary 9.2]).
The most useful expression of the effective resistance to study the transience properties of
reversible random walks on Zd for d ≥ 3, is given by Thomson’s Principle [15, theorem 8.4].

Ra(0, ∂Qn) = inf

{∑
e

a(e)−1[J(e)]2; J(e) is a unit flow from 0 to ∂Qn

}
(4)

where the sum is over the edges of Qn, that is the edges with at least one vertex in Qn.
Using this variational principle, the proof of Peres [1, lemma 4.3] shows that if the conduc-
tances on Z

d, d ≥ 3, are such that sup
e

E[a(e)−1] < ∞, then, in almost all environments,

the associated reversible random walk is transient. However, it is possible to weaken this
integrability condition.

Remark 3 Let (a(e); e an edge of Zd), d ≥ 3, be a sequence of positive conductances.

If sup
e

E[a(e)−α] < ∞, for some α >
d

2(d − 1)
then, in almost all environments, the associated

reversible random walk is transient.

Proof. Let J(e) be a unit flow from 0 to ∞ in Z
d such that for some constant c1 < ∞, for

all x 6= 0 and i = 1, . . . , d,
|J(x, x + ei)| ≤ c1|x|1−d (5)

where for two vertices x ∼ y, J(x, y) denotes the flow in the edge from x to y (see [15, example
9.4 and exercise 11.4] or [13]).
Then, if 0 < α < 1, there is a constant c2 < ∞ such that

E [Ra(0, ∂Qn)α] ≤ E

[(∑
e∈Qn

a(e)−1J(e)2
)α]

≤ E

[ ∑
e∈Qn

a(e)−αJ(e)2α

]

≤ sup
e

E
[
a(e)−α

] ∑
e∈Qn

J(e)2α

≤ c2 sup
e

E
[
a(e)−α

] ∞∑
n=1

nd−1n2α(1−d)
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which is finite if sup
e

E[a(e)−α] < ∞ and if d − 1 + 2α(1 − d) < −1.

Thus, we obtain in this case
E [Ra(0 ↔ ∞)] < ∞

giving that
Ra(0 ↔ ∞) < ∞ a.s. .

•

Finally, the independent case follows immediately from the transience of the reversible random
walk on the infinite open cluster in the supercritical case proved in [8]. It suffices to take ε > 0
small enough so that P (a(e) < ε) < pc(Zd), the critical probability of bond percolation on Zd.

Then set ã(e) =
{

0 if a(e) < ε
ε if a(e) ≥ ε

. By the monotonicity principle, Ra(0, ∂Qn) ≤ Rã(0, ∂Qn)

which remains bounded as n → ∞ since the random walk on the open cluster is transient.

Remark 4 Let (a(e); e is an edge of Zd), d ≥ 3, be a sequence of independent non-negative
conductances. If P (a(e) = 0) < pc(Zd) then, in almost all environments, the associated
reversible random walk is transient.

While example (3.3) shows that the integrability condition in remark 1 for the recurrence of
the reversible random walk with stationary conductances is tight, example (3.4) below shows
that the appropriate moment condition in remark 3 is in between 1/(d− 1) and d/(2(d − 1)).

Further remarks A transience criterion is given in Durrett [6, theorem 1]. Note however that
the random walks studied in [6, theorems 2 and 3] are reversible, with stationary transition
probabilities but the conductances are not stationary. In [4], it is proved that if E[a(e)] < ∞
and E[a(e)−1] < ∞, then the central limit theorem holds in measure. If the conductivies are
bounded away from 0 and +∞, then there is a strong law of large number [10, p.84]. Under
an additional hypothesis on the range of the conductivities, the central limit theorem holds
a.s. [10, p.117].

(3.3) EXAMPLE of a transient reversible random walk on Z
2 with stationary and ergodic

conductances with finite moments of order α < 1.

The conductances are defined so that from every vertex of Z2 there is a path to infinity whose
edges have increasing conductances. One expects that if they increase fast enough, then the
walk will be transient. The example shows that this can happen for conductances with finite
moments of order α < 1.

For n ≥ 2 even, let

T (n)
1 = {(2n−1, 2n−2), (2n−1, 3 · 2n−2)} and T (n)

2 = {2n−1} × [1, 2n − 1]

and for n ≥ 3 odd, let

T (n)
1 = [1, 2n − 1] × {2n−1} and T (n)

2 = {(2n−2, 2n−1), (3 · 2n−2, 2n−1)}
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As in section 2, we use a sequence ( ~Xn; n ≥ 2) of independent random variables defined on a
probability space (Ω,F , P ) such that ~Xn has uniform distribution on

{(0, 0), (2n, 0), (0, 2n), (2n, 2n)} .

The random conductances, (a(e); e is an edge of Z2), are defined on Ω as follows :
for n ≥ 2 and ` = 1, 2, set

a (x, x + e`, ω) = n22n, for all x ∈ ∪~m∈ZnT (n)
` + ~m · ( ~X2, . . . , ~Xn).

and for all the other edges of Z2, set a(e) = 1.

Almost surely, in any square, the proportion of edges with conductance equal to n22n is less
than 2n · 2−2n, for all n ≥ 2 and ` = 1, 2, E[a(e)α] < ∞ whether e is a horizontal or a vertical
edge.

For all ω ∈ Ω, there is an infinite path γ in Z2 starting from (0, 0) whose successive vertices
can be labeled

γ : (0, 0) = x
(1)
0 , x

(1)
1 , . . . , x

(1)
k1

, x
(2)
1 , . . . , x

(2)
k2

, x
(3)
1 , . . . , x

(3)
k3

, . . .

such that for all n ≥ 1, kn ≤ 2n, and for all n ≥ 2,

a(x(n)
m , x

(n)
m+1, ω) = n22n for 1 ≤ m < kn, and a(x(n)

kn
, x

(n+1)
1 , ω) = n22n.

For N ≥ 1, let RN be the effective resistance between the origin and ∂QN along the path
γ, that is, by setting the resistance of all edges of Z2 equals to +∞ except those of γ whose
values are left unchanged.
The walk is transient since by the monotonicity principle,

Ra(0, ∂QN) < RN <

∞∑
n=1

kn(n22n)−1 =
∞∑

n=1

n−2 < ∞.

(3.4) EXAMPLE. Let d ≥ 3. For each α, 0 < α < 1/(d − 1), there is a sequence of stationary
and ergodic conductances such that E[a(e)−α] < ∞ and, for almost all environments, the
reversible random walk on Zd is recurrent.

Let (Z(x); x ∈ Zd) be a sequence of independent identically distributed random variables with
distribution

P (Z(x) = n) = pn, for n ∈ N and
∑
n≥0

pn = 1.

Two other sequences of positive real numbers are used to define the conductances of the edges:
(an; n ≥ 0) and (rn; n ≥ 0) such that, a0 = 1, r0 = 1 and, as n → ∞, an decreases to 0 and rn

increases to ∞. Then the conductance of the edge between two neighboring vertices y and z
of Zd is

a(y, z) = inf{ an ; n = Z(x) for some x ∈ Zd such that
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−1 < |y − x| − rn < 1 or − 1 < |z − x| − rn < 1} (6)

where | · | is the euclidean norm in Rd , or, a(y, z) = 1 if the infimum is over an empty set.
Consequently, if x is a vertex where Z(x) = n, the conductance of every edge near the boundary
of the ball Bn(x), of radius rn and centered at x, is at most an.
The idea is to choose the sequences (pn), (an) and (rn) such that, almost surely, the origin, and
therefore every vertex, belongs to an increasing sequence of balls and the effective resistances
between 0 and the boundary of these balls are unbounded.
A first condition must be given to insure that the conductivities are well defined and positive.
To do so, let

Dn = {there is a vertex x ; rn − 2 < |x| < rn + 2, Z(x) = n}.

Since, for some constant c1 > 0, P (Dc
n) ≥ (1 − pn)c1rd−1

n then,

∑
n

P (Dn) ≤
∑

n

[1 − (1 − pn)c1rd−1
n ]

which converges if ∑
n

pnrd−1
n < ∞. (7)

And therefore, by Borel-Cantelli lemma, the infimum in (6) is over a finite set of positive
numbers.
The next step is to prove that, almost surely, the origin belongs to an increasing sequence of
balls such that the conductances of the edges near the boundary decreases to 0. Introduce a
new sequence (ρn; n ≥ 0) such that ρn ↑ ∞ and consider the events

An = {there is a vertex x ; ρn < |x| < ρn+1, Z(x) = n}.

The second condition is to insure that An occurs infinitely often. If ρn+1 − ρn > 2, then there
is a constant c2 > 0 such that, P (Ac

n) < (1 − pn)c2(ρ
d
n+1−ρd

n). Then,
∑

n

P (An) diverges if

∑
n

pn(ρd
n+1 − ρd

n) = +∞. (8)

And we can use the second Borel-Cantelli lemma to conclude
We also need the following property : if (xn; n ≥ 1) is a sequence of vertices such that
ρn < |xn| < ρn+1 for all n ≥ 1, then 0 ∈ Bn(xn) ⊂ Bn+1(xn+1), for all n sufficiently large.
This is the case if the next condition, a third one, is satisfied for all n sufficiently large :

rn+1 > ρn+2 + ρn+1 + rn. (9)

The next step is to verify that for almost all environments, the reversible random walk is
recurrent. If conditions (7) to (9) are satisfied, then for almost all environments, there are
sequences (xnk

; k ≥ 1) and (rnk
; k ≥ 1) such that for all y ∈ ∂Bnk

(xnk
) and for all z ∼ y,

a(y, z) ≤ ank
. Consider the network Zd with the following conductances:

For 1 ≤ i ≤ d, ã(y, y + ei, ω) =
{

ank
, if y ∈ ∂Bnk

(xnk
) for some k ≥ 1;

∞ otherwise.
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Then by Rayleigh’s monotonicity principle, Ra(0, ∂Bnk
) ≥ Rã(0, ∂Bnk

) where the latter is the
effective resistance calculated with the conductances ã. The edges around each sphere are in
parallel and the spheres are in series, therefore, there is a constant c3 > 0 such that

Rã(0, ∂BnK ) ≥ c3

K∑
k=1

(
rd−1
nk

ank

)−1

which diverges if the following condition is satisfied

lim sup
n

rd−1
n an < ∞. (10)

Then by Nash-Williams criterion, the random walk is recurrent.
Finally, we find that for a fixed edge e of Zd,

E[a(e)−α] =
∞∑

n=0

a−α
n P (a(e) = an) ≤

∞∑
n=0

a−α
n P (Dn) which converges for all α > 0 such that

∑
n

a−α
n pnrd−1

n < +∞. (11)

We see that it is possible to construct the example if 0 < α < 1/(d− 1). For example, one can
take, for n ≥ 0, rn = 2n and an = 2(1−d)n. Note that β = 2(α+1)(d−1) verifies 2d−1 < β < 2d.
Then, for n ≥ 0, set ρn = βn/d and pn = cβ−n where c is the appropriate normalizing constant.
•
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