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Abstract Consider a uniformly chosen element Xn of the n-fold wreath product Γn = G o G o
· · · o G, where G is a finite permutation group acting transitively on some set of size s. The
eigenvalues of Xn in the natural sn-dimensional permutation representation (the composition
representation) are investigated by considering the random measure Ξn on the unit circle that
assigns mass 1 to each eigenvalue. It is shown that if f is a trigonometric polynomial, then
limn→∞ P{∫ f dΞn 6= sn

∫
f dλ} = 0, where λ is normalised Lebesgue measure on the unit circle.

In particular, s−nΞn converges weakly in probability to λ as n → ∞. For a large class of test
functions f with non-terminating Fourier expansions, it is shown that there exists a constant c
and a non-zero random variable W (both depending on f) such that c−n

∫
f dΞn converges in

distribution as n → ∞ to W .
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1 Introduction

Let T denote the regular rooted b-ary tree of depth n. That is, T is a tree with 1+b+b2+· · ·+bn

vertices such that one vertex (the root) has degree b, the bn leaf vertices have degree 1, and all
other vertices have degree b + 1.

Consider the group Γ of automorphisms of T. An element γ ∈ Γ is a permutation of the vertices
of T such that the images of any two adjacent vertices (that is, two vertices connected by an
edge) are again adjacent.

As usual, we may identify the vertices of T with the set of finite sequences of length at most
n drawn from the set {0, 1, . . . , b − 1}. That is, we may label the vertices with the elements
of ε ∪ {0, 1, . . . , b − 1} ∪ {0, 1, . . . , b − 1}2 ∪ · · · ∪ {0, 1, . . . , b − 1}n, where the empty sequence
ε corresponds to the root, the length 1 sequences {0, 1, . . . , b − 1} correspond to the vertices
adjacent to the root, and the length n sequences {0, 1, . . . , b−1}n correspond to the leaves. With
this identification, each γ ∈ Γ maps sequences of length k into sequences of length k for 0 ≤ k ≤
n. Moreover, if γ(i1, i2, . . . , ik) = (j1, j2, . . . , jk), then γ(i1, i2, . . . , ik−1) = (j1, j2, . . . , jk−1).
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Example 1.1 The labelling for the 3-ary tree of depth 2 is:

(0, 0) (0, 1) (0, 2)

����
HHHH

(0)

(1, 0) (1, 1) (1, 2)

����
HHHH

(1)

(2, 0) (2, 1) (2, 2)

����
HHHH

(2)

((((((((((
hhhhhhhhhh

ε

An example of an element of the group Γ for this tree is:

γ(2, 0) γ(2, 1) γ(2, 2)

!!!!
aaaa

γ(2)

γ(0, 1) γ(0, 0) γ(0, 2)

!!!!
aaaa

γ(0)

γ(1, 0) γ(1, 2) γ(1, 1)

!!!!
aaaa

γ(1)

(((((((((((
hhhhhhhhhhh

γε

That is, γε = ε, γ(2) = (0), γ(0) = 1, γ(1) = 2, γ(2, 0) = (0, 0), . . ., γ(1, 1) = (2, 2).

The group Γ is nothing other than the n-fold wreath product of the symmetric group on b letters,
Sb, with itself, usually written as Sb o Sb o · · · o Sb. We describe wreath products in general in
Section 2. The group Γ can be thought of as a subgroup of the permutation group on the leaves
of T. Consequently, each automorphism γ ∈ Γ can be associated with the bn × bn permutation
matrix that has a 1 in the (i, j) position if leaf i is mapped to leaf j by γ and has 0s elsewhere
in the ith row and jth column. If G is an arbitrary permutation group acting on a finite set of
size s > 1, then elements of the n-fold wreath product G oG o · · · oG can be associated with an
sn × sn permutation matrix in a similar manner.

In this paper we investigate the random permutation matrix associated with a uniformly chosen
element of G o G o · · · o G for G an arbitrary transitive permutation group. More specifically,
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we consider the random probability measure Ξn on the unit circle T ⊂ C that assigns mass 1 to
each of the eigenvalues (with their multiplicities) of this matrix and investigate the asymptotic
behaviour as n → ∞ of the integrals

∫
T

f dΞn for suitable test functions f .

The outline of the rest of the paper is as follows. We define wreath products and list some of
their elementary properties in Section 2. In Section 3, we observe some connections between the
cycle counts of a uniform random pick from an iterated wreath product, the traces of powers
of the associated permutation matrix, and the random measure Ξn. We establish the following
result in Section 4: here λ is Lebesgue measure on the unit circle normalised to have total mass
1.

Theorem 1.2 For a trigonometric polynomial f(z) =
∑m

k=−m ckz
k, z ∈ T,

lim
n→∞P

{∫
T

f dΞn 6= snc0

}
= 0

In particular, the random probability measure s−nΞn converges weakly in probability to λ as
n → ∞.

Theorem 1.2 leaves open the possibility of interesting behaviour for
∫
T

f dΞn for certain functions
f having non-terminating Fourier expansion f(z) =

∑∞
k=−∞ ckz

k with c0 = 0. In Section 5, we
show for certain such f that there exists a constant c and a non-zero random variable W (both
depending on f) such that c−n

∫
f dΞn converges in distribution as n → ∞ to W .

We end this introduction with some bibliographic comments on the substantial recent interest in
eigenvalues of random matrices in general and eigenvalues of Haar distributed random matrices
from various compact groups in particular.

A general reference to the history of random matrix theory and its applications is [Meh91].
Asymptotics for the traces of powers of unitary, orthogonal and symplectic matrices (equiva-
lently, integrals of powers against the analogue of the measure Ξn) are investigated in [DS94]
(see also [Rai97]). Integrals of more general well-behaved functions against the analogue of Ξn

for these groups are studied in [Joh97]. The number of eigenvalues in an interval for the unitary
group (that is, the integral of an indicator function against the analogue of Ξn) is investigated
in [Wie98]. The logarithm of the characteristic polynomial of a random unitary matrix is also
the integral of a suitable function against the analogue of Ξn, and this object is the subject of
[HKO01, KS00a, KS00b]. A general theory for the unitary, orthogonal and symplectic groups
that subsumes much of this work is presented in [DE01].

Random permutations give rise to random permutation matrices. Given the connection between
cycle counts of permutations and traces of the corresponding matrices that we recall in Section
3, some of the huge literature on the cycle structure of uniform random permutations can be
translated into statements about eigenvalues of random permutation matrices. More in the spirit
of this paper, the number of eigenvalues in an interval and the logarithm of the characteristic
polynomial are investigated in [Wie00] and [HKOS00], respectively. The former paper treats
not only the symmetric group, but also the wreath product of a cyclic group with a symmetric
group.

There is a limited literature on other probabilistic aspects of wreath products. Various con-
nections between automorphism groups of infinite regular trees and probability are explored
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in [AV02]. As we recall in Section 2, the Sylow p-group of Spr is a wreath product. The
distribution of the order of a random element of this group is studied in [PS83b], while the dis-
tribution of the degree of a randomly chosen irreducible character is studied in [PS83a, PS89].
The probability that a randomly chosen element of Sn o Sp has no fixed points as n → ∞
is given in [DS95]. Mixing times of Markov chains on wreath products are considered in
[FS01]. Finally, infinite wreath products are a fruitful source of examples of interesting be-
haviour and counterexamples in the study of random walks on infinite groups (see, for example,
[KV83, LPP96, PSC99, Dyu99b, Dyu99a]).

2 Wreath products

We recall the general definition of a wreath product as follows. Let G and H be two permutation
groups acting on sets of size s and t, respectively, which we will identify with {0, 1, . . . , s − 1}
and {0, 1, . . . , t − 1}. As a set, the wreath product G o H of G and H is the Cartesian product
Gt × H; that is, an element of G o H is a pair (f, π), where f is function from {0, 1, . . . , t − 1}
into G and π ∈ H. Setting fπ := f ◦ π−1 for f ∈ Gt and π ∈ H, the group operation on G o H
is given by (f, π)(f ′, π′) := (ff ′

π, ππ′), where multiplication is coordinatewise in Gt. It is not
hard to see that for three permutation groups G,H,K the group (G o H) o K is isomorphic to
the group G o (H o K), and so it makes sense to refer to these isomorphic groups as G o H o K.
More generally, it makes sense to speak of the wreath product G1 oG2 o · · · oGn of n permutation
groups G1,G2, . . . ,Gn.

Excellent references for wreath products with extensive bibliographies are [Ker71, Ker75, JK81].
A reference that deals specifically with the automorphism groups of regular rooted trees and their
representation theory is [AD02]. A connection between automorphism groups of regular trees and
dynamical systems is explored in [BOERT96]. Besides their appearance as the automorphism
groups of regular rooted trees, wreath products are important in the representation theory of the
symmetric group and in various problems arising in the Polya–Redfield theory of enumeration
under group action. Classically, they appeared in the work of Cauchy on Sylow p-groups of the
symmetric group. For example, the Sylow p-group of Spr , the symmetric group on pr letters,
is the r-fold wreath product Cp o Cp o · · · o Cp, where Cp is the cyclic group of order p (see 4.1.22
of [JK81]). A review of the uses of wreath products in experimental design and the analysis
of variance is given in [BPRS83]. An intriguing application to spectroscopy can be found in
[LH63].

For G and H as above, there is a natural representation of G o H as a group of permutations
of the set {0, 1, . . . , t − 1} × {0, 1, . . . , s − 1}. In this permutation representation, the group
element (f, π) ∈ G o H is associated with the the permutation that sends the pair (i′, i′′) to
the pair (j′, j′′) where j′ = π(i′) and j′′ = f(π(i′))(i′′). Consequently, G o H has a linear
representation in terms of (ts)× (ts) permutation matrices with rows and columns both indexed
by {0, 1, . . . , t−1}×{0, 1, . . . , s−1}. In this linear representation, the group element (f, π) ∈ GoH
is associated with the matrix M given by

M((i′, i′′), (j′, j′′)) =

{
1, if j′ = π(i′) and j′′ = f(π(i′))(i′′),
0, otherwise.

Either of these representations is called the composition representation.
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Example 2.1 The automorphism group of the rooted 3-ary tree of depth 2 considered in Ex-
ample 1.1 is S3 o S3, and so the resulting (linear) composition representation is 9-dimensional.
The particular group element γ exhibited in Example 1.1 is given by the pair (f, π), where, in
cycle notation,

π = (012),
f(0) = (01)(2), f(1) = (0)(12), f(2) = (0)(1)(2).

The corresponding matrix is




(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
(0, 0) 0 0 0 0 0 0 1 0 0
(0, 1) 0 0 0 0 0 0 0 1 0
(0, 2) 0 0 0 0 0 0 0 0 1
(1, 0) 0 1 0 0 0 0 0 0 0
(1, 1) 1 0 0 0 0 0 0 0 0
(1, 2) 0 0 1 0 0 0 0 0 0
(2, 0) 0 0 0 1 0 0 0 0 0
(2, 1) 0 0 0 0 0 1 0 0 0
(2, 2) 0 0 0 0 1 0 0 0 0




plain

Definition 2.2 Suppose that G and H are two permutation groups acting on sets of size s and
t. Consider (f, π) ∈ G o H. Suppose that π ∈ H has the cycle decomposition

π =
c(π)∏
ν=1

(
jνπ(jν) · · · π`ν−1(jν)

)
;

that is, π can be decomposed into c(π) cycles, with the νth cycle of length `ν . The elements of
G defined by

gν(f, π) := f(jν)f(π−1(jν)) · · · f(π−(`ν−1)(jν)) = ffπ · · · fπ`nu−1(jν)

are called the cycle products of (f, π). Note that the definition of gν(f, π) depends on the choice
of the cycle representative jν , so to give an unambigious definition we would need to specify
how jν is chosen (for example, as the smallest element of the cycle). However, different choices
of cycle representative lead to conjugate cycle products (see 4.2.5 of [JK81]).

The following result is 4.2.19 in [JK81].

Lemma 2.3 Suppose that G and H are two permutation groups acting on sets of size s and t.
Consider (f, π) ∈ G oH. Suppose that π ∈ H has the cycle decomposition

π =
c(π)∏
ν=1

(
jνπ(jν) · · · π`ν−1(jν)

)
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and that the νth cycle product gν(f, π) has a cycle decomposition into cycles of lengths
mν,1,mν,2, . . . ,mν,d(π,ν). Then the cycle decomposition of the composition representation of (f, π)
consists of cycles of lengths `νmν,η, 1 ≤ η ≤ d(π, ν), 1 ≤ ν ≤ c(π).

The following is obvious and we leave the proof to the reader.

Lemma 2.4 Suppose that G and H are two permutation groups acting on sets of size s and t,
respectively. A G oH-valued random variable (F,Π) is uniformly distributed if and only if

• The H-valued random variable Π is uniformly distributed.

• The coordinates of the Gt-valued random variable F are uniformly distributed on G and
independent.

• The random variables F and Π are independent.

3 Random elements of iterated wreath products

Suppose from now on that we fix a permutation group G acting on a finite set of size s > 1.
For simplicity, we will suppose that G acts transitively.

Let Xn be a uniform random pick from the n-fold wreath product

Γn := G o G o · · · oG.

The random group element Xn will have a corresponding composition representation Mn. If we
wished to describe the distribution of the sn × sn random matrix Mn, we would need to specify
the order in which the successive “wreathings” were performed. However, two different orders
produce matrices that are similar (with the similarity effected by a permutation matrix), and
so the eigenvalues of the composition representation of Xn (and their multiplicities) are well-
defined without the need for specifying such an order. As in the Introduction, let Ξn denote the
random discrete measure of total mass sn on the unit circle T ⊂ C that is supported on this set
of eigenvalues and assigns a mass to each eigenvalue equal to its multiplicity.

Note that ∫
T

zk Ξn(dz)

= Tr (Mk
n) = Tr (Mk

n) = Tr (Mn
k)

=
∫
T

z̄k Ξn(dz) =
∫
T

z−k Ξn(dz),

(3.1)

and so the behaviour of
∫
T

f dΞn for a function f with Fourier expansion f(z) =
∑∞

k=−∞ ckz
k

is determined by the behaviour of the random variables Tn,k := Tr (Mk
n), k ≥ 1.

Let Sn,k denote the number of k-cycles in the composition representation of Xn. By a standard
fact about permutation characters (see, for example, 6.13 of [Ker75]),

Tn,k =
∑
`|k

`Sn,`, (3.2)
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and hence, by Möbius inversion,

Sn,k =
1
k

∑
`|k

µ

(
k

`

)
Tn,`, (3.3)

where µ is the usual Möbius function

µ(i) :=

{
(−1)j , if i is the product of j distinct primes,
0, otherwise.

Therefore, it is equally useful to study the random variables Sn,k, k ≥ 1.

plain

Example 3.1 Consider the n-fold wreath product S2 o S2 o · · · o S2, that is, the group of auto-
morphisms of the regular rooted binary tree of depth n (so that the composition representation
has dimension 2n). It follows from Lemma 2.3 that the cycle count Sn,k is 0 unless k is of the
form 2j , 0 ≤ j ≤ n. Observe from (3.2) that if k = 2hr where 2 - r, then

Tn,k =
∑

2j |k, j≤n

2jSn,2j =
∑

2j |2h, j≤n

2jSn,2j = Tn,2h∧n .

It thus suffices to understand the random variables Tn,2h , 0 ≤ h ≤ n.

A simulated realisation of the random group element X6 resulted in the eigenvalues shown (with
multiplicities) in (3.4).

11

11

11

11

1

1

3

3

1

1

1

1

3

3

1

1

(3.4)

The corresponding realisations of the traces are

T6,1 = 0, T6,2 = 0, T6,4 = 32, T6,8 = 48, T6,16 = 64, T6,32 = 64, T6,64 = 64,

and, by (3.3), the corresponding realisations of the cycle counts are

S6,1 = 0, S6,2 = 0, S6,4 = 8, S6,8 = 2, S6,16 = 1, S6,32 = 0, S6,64 = 0.
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We note that the eigenvalues in (3.4) can be computed from the cycle counts (and hence the
traces) as follows. Observe from the cycle counts that, by a suitable common permutation of
the rows and columns, the composition representation matrix becomes block diagonal with 8
4 × 4 blocks, 2 8 × 8 blocks, and 1 16 × 16 block – each block of the form



0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
0 · · · 0 0 1
1 0 · · · 0 0




Such a 2k × 2k block has the (2k)th roots of unity as its eigenvalues. Thus each 4th root of unity
appears as an eigenvalue of the composition representation matrix with multiplicity 11 = 8+2+1,
each 8th root of unity that is not a 4th root appears with multiplicity 3 = 2 + 1, and each 16th

root of unity that is not an 8th root appears with multiplicity 1.

Here are 10 more simulated realisations of the traces T6,2h , 0 ≤ h ≤ 6.




T6,1 T6,2 T6,4 T6,8 T6,16 T6,32 T6,64

2 20 40 64 64 64 64
0 0 16 48 64 64 64
0 0 0 0 0 64 64
0 0 24 64 64 64 64
2 16 32 64 64 64 64
10 36 56 64 64 64 64
8 20 56 64 64 64 64
0 0 0 16 64 64 64
14 44 56 64 64 64 64




.

The corresponding realisations of the cycle counts are




S6,1 S6,2 S6,4 S6,8 S6,16 S6,32 S6,64

2 9 5 3 0 0 0
0 0 4 4 1 0 0
0 0 0 0 0 2 0
0 0 6 5 0 0 0
2 7 4 4 0 0 0
10 13 5 1 0 0 0
0 4 8 3 0 0 0
8 6 9 1 0 0 0
0 0 0 2 3 0 0
14 15 3 1 0 0 0




.

Using the facts we develop below in Section 4, it is not difficult to show in this example that
E [Tn,1 ] = 1 and E [Tn,2 ] = n+1. (In general, E [Sn,p ] = nµp and E [Tn,p ] = 1+npµp for a prime p,
where µk denotes the expected number of k-cycles in the cycle decomposition of a permutation
chosen uniformly at random from G.) However, 5 realisations out of 11 resulted in the value 0

8



for both T6,1 and T6,2. This suggests that for large n the random variables Tn,1 and Tn,2 take
the value 0 with probability close to 1, while the expectation is maintained by large values being
taken with probability close to 0. Theorem 1.2 shows that this is indeed the case.

4 Proof of Theorem 1.2

In order to prove the theorem, it suffices by (3.1) to show that

lim
n

P{Tn,k 6= 0} = 0 for all k ≥ 1.

By (3.2), it suffices in turn to show that

lim
n

P{Sn,k 6= 0} = 0 for all k ≥ 1. (4.1)

We will now choose a specific order of the successive “wreathings” in the construction of Γn =
GoGo· · · oG that leads to a useful inductive way of constructing X1,X2, . . . on the one probability
space. Take Γn = G o (G o (G o (· · · o G) . . . )). In other words, think of Γn as a permutation
group on a set of size sn and build Γn+1 as G o Γn. Start with X1 as a uniform random pick
from G. Suppose that X1,X2, . . . ,Xn have already been constructed. Take Xn+1 to be the
pair (F,Xn), where F is a Gsn

-valued random variable with coordinates that are independent
uniform random picks from G which are also independent of Xn. It follows inductively from
Lemma 2.4 that Xn+1 is a uniform random pick from Γn+1.

It is immediate from Lemma 2.4 that the cycle products of (F,Xn) consist of products of
disjoint collections of the independent uniformly distributed G-valued random variables F (j).
The segregation of the F (j) into the various cycle products is dictated by the independent Γn-
valued random variable Xn. Therefore, conditional on Xn, the cycle products of (F,Xn) form a
sequence of independent, uniformly distributed G-valued random variables.

Put S01 := 1 and S0k := 0, k > 1. By Lemma 2.3, the stochastic process ((Sn,k)∞k=1)
∞
n=0

taking values in the collection of infinite-length integer-valued sequences is thus a Galton–Watson
branching process with infinitely many types (the types labelled by {1, 2, 3, . . .}). An individual
of type k can only give birth to individuals of types k, 2k, 3k, . . .. Moreover, the joint distribution
of the sequence of integer-valued random variables recording the number of offspring of types
k, 2k, 3k, . . . produced by an individual of type k does not depend on k and is the same as that of
the sequence recording the number of cycles of lengths 1, 2, 3, . . . for a uniformly chosen element
of G.

Recall our standing assumption that G acts transitively. It follows from this and Burnside’s
Lemma (see, for example, Lemma 4.1 of [Ker75]) that the number of 1-cycles (that is, fixed
points) of a uniformly chosen element of G is a non-trivial random variable with expectation
µ1 = 1. By the observations above, the process (Sn,1)∞n=0 is a critical (single-type) Galton–
Watson branching process and hence this process becomes extinct almost surely. That is, if we
set τ1 := inf{n : Sn,1 = 0}, then P{τ1 < ∞} = 1 and 0 = Sτ1,1 = Sτ1+1,1 = . . ..

By the observations above and the strong Markov property, (Sτ1+n,2)∞n=0 is also a critical (single-
type) Galton–Watson branching process (with the same offspring distribution as (Sn,1)∞n=0) and
so this process also becomes extinct almost surely. Hence, if we set τ2 := inf{n : Sn,1 = Sn,2 = 0},
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then P{τ2 < ∞} = 1 and 0 = Sτ2,1 = Sτ2,2 = Sτ2+1,1 = Sτ2+1,2 = . . .. Continuing in this way
establishes (4.1), as required.

plain

Remark 4.1 Much of the work on eigenvalues of Haar distributed random matrices described
in the Introduction is based on moment calculations. As noted in the Introduction, E [Tn,1 ] = 1
for all n, and so a result such as Theorem 1.2 could not be proved using such methods.

5 Asymptotics for other test functions

In this section we consider the asymptotic behaviour of
∫
T

f dΞn for test functions other than
trigonometric polynomials. Because of (3.1), it suffices to consider functions of the form f(z) =∑∞

k=1 ckz
k.

plain

Definition 5.1 A complex sequence (dk)∞k=1 is multiplicative if dk·` = dkd`. Obvious examples
of multiplicative sequence are dk = kβ for β ∈ C . In general, a multiplicative function is specified
by assigning arbitrary values of dp to each prime p. The value of dk for an integer k with prime
decomposition k = ph1

1 ph2
2 · · · phm

m is then dh1
p1

dh2
p2

· · · dhm
pm

.

plain

Notation 5.2 As in Section 3, let µk denote the expected number of k-cycles in the cycle
decomposition of a permutation chosen uniformly at random from G. Write M for the smallest
subset of N that contains {1 ≤ k ≤ s : µk > 0} and is closed under multiplication.

plain

Example 5.3 For the reader’s benefit, we record the expected cycle counts µk in some examples
(see 5.16 of [Ker75]).

i) If G = Ss, the symmetric group of order s! acting on a set of size s, then µk = k−1,
1 ≤ k ≤ s.

ii) If G = Cs, the cyclic group of order s acting on a set of size s, then

µk =

{
Φ(k)/k, if k|s,
0, otherwise,

where Φ(k) := #{1 ≤ ` ≤ k : (`, k) = 1} is the Euler function.

iii) If G = Ds, the dihedral group of symmetries of a regular s-gon, then µ1 = 1,

µ2 =

{
(s − 1)/4, if n is odd,
s/4, if n is even,

and µk = Φ(k)/k, 3 ≤ s ≤ k, k|s.

10



iv) If G is an arbitrary finite group of order s acting on itself via the regular representation,
then µk = ωk/k, k|s, where ωk is the number of elements in G of order k.

Theorem 5.4 Consider two sequences (ck)∞k=1 and (dk)∞k=1 that satisfy the following conditions:

a) (dk)∞k=1 is multiplicative,

b) dk > 0 for all k such that µk > 0,

c)
∑∞

k=1 dk < ∞,

d) (
∑s

k=1 kdkµk)2 >
∑s

k=1 k2d2
kµk,

e) limk→∞, k∈M ck/dk = c exists.

Then the sequence of random variables

(
s∑

k=1

kdkµk)−n

∫
T

∞∑
k=1

ckz
k Ξn(dz)

converges in distribution as n → ∞ to a random variable cW
∑∞

k=1 dk, where 0 < W < ∞
almost surely.

Proof By Theorem 1.2, we may suppose that ck = dk for all k. From equations (3.1) and (3.2)
we have, in the notation of Section 4, that

∫
T

f dΞn =
∞∑

k=1

dkTn,k

=
∞∑

k=1

dk


∑

`|k
`Sn,`




=
∞∑

`=1

`


 ∞∑

j=1

dj·`


Sn,`

=


 ∞∑

j=1

dj



( ∞∑

`=1

`d`Sn,`

)
.

Setting δ :=
∑s

j=1 jdjµj and (Wn)∞n=0 := (δ−n
∑∞

k=1 kdkSn,k)∞n=0, it thus suffices to establish
that Wn converges in distribution as n → ∞ to a random variable W with P{0 < W < ∞} = 1.
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Construct X1,X2, . . . in the manner described in Section 4, so that ((Sn,k)∞k=1)
∞
n=0 is an infinitely–

many–types Galton–Watson branching process. Let Fn := σ{X1,X2, . . . ,Xn} and observe that

E

[ ∞∑
k=1

kdkSn+1,k

∣∣∣Fn

]
=

∞∑
k=1

kdk


∑

`|k
Sn,`µk/`




=
∞∑

`=1


 s∑

j=1

j · `dj·`µj


Sn,`

=


 s∑

j=1

jdjµj


( ∞∑

`=1

`d`Sn,`

)
.

Thus, (Wn)∞n=0 is a nonnegative martingale with respect to the filtration (Fn)∞n=0, and hence
Wn converges almost surely as n → ∞ to an almost surely finite nonnegative random variable
W .

We will next show that E [W ] = 1 by showing that the martingale (Wn)∞n=0 is bounded in
L2(P) (and hence converges in L2(P) as well as almost surely). By orthogonality of martingale
increments,

E [W 2
n+1 ] = E [(Wn+1 − Wn)2] + E [W 2

n ].

Let σj′,j′′ denote the covariance between the number of j′-cycles and the number of j′′-cycles in
a uniform random pick from G. By the branching process property,

E [(Wn+1 − Wn)2
∣∣∣Fn] = δ−2(n+1)

∞∑
`=1

Sn,`

∑
j′,j′′

` · j′d`·j′ ` · j′′d`·j′′ σj′,j′′

= δ−2(n+1)

( ∞∑
`=1

`2d2
`Sn,`

)∑
j′,j′′

j′dj′j
′′dj′′σj′,j′′


 .

Note that the sequence (`2d2
` )

∞
`=1 is multiplicative. Thus, setting ε :=

∑s
j=1 j2d2

jµj , the sequence
(ε−n

∑∞
k=1 k2d2

kSn,k)∞n=0 is a martingale by the same argument that established (Wn)∞n=0 was a
martingale. Consequently,

E [(Wn+1 − Wn)2] = δ−2(n+1)εn
∑
j′,j′′

j′dj′ j
′′dj′′ σj′,j′′ .

By assumption, δ2 > ε, and hence supn E [W 2
n ] < ∞, as required.

For a partition a = (1a1 , 2a2 , . . . , sas) of s (that is, a has a1 parts of size 1, a2 parts of size 2, et
cetera and, in particular,

∑
i iai = s) let p(a1, a2, . . . , as) denote the probability that a uniformly

chosen element of G has a1 1-cycles, a2 2-cycles et cetera. Write

g(u1, u2, . . . , us) :=
∑
a`s

p(a1, a2, . . . , as)
s∏

i=1

uai
i

for the multivariate probability generating function corresponding to the probability distribution
p (thus g is just the cycle index polynomial of the group G - see 5.14 of [Ker75]).
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Set ϕn(x) := E [exp(−xWn)] and ϕ(x) := E [exp(−xW )], x ≥ 0. Conditioning on F1 gives

ϕn+1(x) = g(ϕn(1d1x/δ), ϕn(2d2x/δ), . . . , ϕn(sdsx/δ)),

and hence
ϕ(x) = g(ϕ(1d1x/δ), ϕ(2d2x/δ), . . . , ϕ(sdsx/δ)).

Thus, from assumption (b),

ρ := P{W = 0}
= lim

x→∞ϕ(x)

= h(ρ),

(5.1)

where h(u) := g(u, . . . , u) is the probability generating function of the total number of cycles
in a random uniform pick from G. The equation (5.1) has two solutions in the interval [0, 1]:
namely, 1 and the probability of eventual extinction for a (single-type) Galton–Watson branching
process with the distribution of the total number of cycles as its offspring distribution. Because
E [W ] = 1, ρ cannot be 1. The other root of (5.1) is clearly 0, because the total number of cycles
is always at least 1.

�

plain

Remark 5.5 Suppose that (dk)∞k=1 is an arbitrary positive multiplicative sequence. Note that
d1 = 1 (by the multiplicative assumption), µ1 = 1 (by Burnside’s Lemma and the assumption
that G acts transitively – see Section 4), and µk > 0 for some k ≥ 2 (again by transitivity).
Thus

∑s
k=1 kdkµk > 1 and (

∑s
k=1 kdkµk)2 >

∑s
k=1 kdkµk. For any group G the condition (d)

of Theorem 5.4 is therefore implied by the condition kdk ≤ 1 for all k.

In light of Remark 5.5, the following result is immediate from Theorem 5.4.

Corollary 5.6 Suppose that (ck)∞k=1 is a sequence such that for some α < −1 limk→∞ ck/k
α = c

exists. Then the sequence of random variables

(
s∑

k=1

kα+1µk)−n

∫
T

∞∑
k=1

ckz
k Ξn(dz)

converges in distribution as n → ∞ to a random variable cW
∑∞

k=1 kα, where 0 < W < ∞
almost surely.

plain

Remark 5.7 Theorem 5.4 was proved under the hypothesis (b) that dk > 0 for all k ∈ M.
If this is weakened to the hypothesis that dk ≥ 0 for all k ∈ M, then a similar result holds.
Hypothesis (e) needs to be modified to an assumption that limk→∞,dk>0 ck/dk = c exists and
dk = 0 implies ck = 0 for all k sufficiently large. The conclusion then becomes that the stated
limit holds with 0 ≤ W < ∞ almost surely. The probability P{W = 0} is the probability of
eventual extinction for a Galton-Watson branching process with offspring distribution the total
number of cycles in a random uniform pick from G having lengths in the set {k : dk > 0}.
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