
E l e c t r o n i c

J
o

u
r n a l

o
f

P
r o b a b i l i t y

Vol. 7 (2002) Paper No. 14, pages 1–30.

Journal URL
http://www.math.washington.edu/~ejpecp/

Paper URL
http://www.math.washington.edu/~ejpecp/EjpVol7/paper14.abs.html

WIENER FUNCTIONALS OF SECOND ORDER
AND THEIR LÉVY MEASURES
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explicit expression of the associated Lévy measures in terms of the eigenvalues of the corre-
sponding Hilbert–Schmidt operators on the Cameron–Martin subspace is presented. In some
special cases, a formula for the densities of the distributions is given. As an application of the
explicit expression, an exponential decay property of the characteristic functions of the Wiener
functionals is discussed. In three typical examples, complete descriptions are given.

Keywords Wiener functional of second order, Lévy measure, Mellin transform, exponential
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Introduction

Let W be a classical Wiener space, and µ be the Wiener measure on it. A Wiener functional F
of second order is a measurable functional F : W → R with ∇3F = 0, ∇ being the Malliavin
gradient. It is represented as a sum of Wiener chaos of order at most two. Widely known Wiener
functionals of second order are the square of the L2-norm on an interval of the Wiener process,
Lévy’s stochastic area, and the sample variance of the Wiener process. The study of Wiener
functionals of second order has a history longer than a half century, and many contributions have
been made. Among them, pioneering works were made by Cameron-Martin and Lévy [2, 3, 12]
for the square of the L2-norm on an interval of the Wiener process and Lévy’s stochastic area.
The sample variance plays an important role in the Malliavin calculus (cf. [8]), and it was
studied in detail. For example, see [5, 7].

There are a lot of reasons why one studies such Wiener functionals. One is that they are the
easiest functionals next to linear ones. This may sound rather nonsensical, but a wide gap
between Wiener functionals of first and second orders can be found in recent works by Lyons
(for example, see [13]). Recalling roles played by quadratic Lagrange functions in the theories
of Feynman path integrals and of semi-classical analysis for Schrödinger operators, one must
encounter another reason for studying Wiener functionals of second order. A Wiener functional
of second order is one of key ingredients in the asymptotic theories, the Laplace method, the
stationary phase method et al, on infinite dimensional spaces.

As was employed by Cameron-Martin and Lévy, a fundamental strategy to investigate Wiener
functionals of second order is computing their Laplace transforms or characteristic functions, and
then their Lévy measures. In this paper, we give explicit expressions of Lévy measures of Wiener
functionals of second order in terms of the eigenvalues and eigenfunctions of the corresponding
Hilbert-Schmidt operators. See Theorem 2. Moreover, we extend the result to the case where µ is
replaced by a conditional probability (Theorem 4). These explicit representations are essentially
based on the splitting property of the Wiener measure µ, in other words, a decomposition of
the Brownian motion via the eigenfunctions of the Hilbert-Schmidt operator. Wiener used a
decomposition of this kind, the Fourier series expansion, to construct a Brownian motion, and
a generalization we use is due to Itô-Nisio [9].

With the help of the explicit expression, we compute the Mellin transform of the Lévy measures.
See Proposition 5. Recently Biane, Pitman and Yor ([1, 15]) showed that certain probability
distributions corresponding to Wiener functionals of second order are closely related to special
functions like Riemann’s ζ-function. The general expression given in Proposition 5 will indicate
that the relations studied by them are very natural ones. As another application, we shall
investigate the order of decay of the characteristic function as the parameter of Fourier transform
tends to infinity. If the Lévy-Khintchine representation admits a Gaussian term, then the decay
is very fast, but if there is no Gaussian term, then the decay is determined by the behavior
of the Lévy measure at the origin. For details, see Theorem 7. A characteristic function of
a quadratic Wiener functional is a key object to investigate the principle of stationary phase
on the Wiener space, and its exponential decay is indispensable to achieve such a principle on
infinite dimensional spaces. The exponential decay also implies that the distribution of the
Wiener functional of second order has a density function of Gevrey class with respect to the
Lebesgue measure, which relates to the property called transversal analyticity by Malliavin [14].
Another criteria for the distribution to possess a smooth density function will also be given, and
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a method to compute it by using the residue theorem is shown (Theorem 11).

In Section 3, all our general results are tested for three concrete Wiener functionals of second
order mentioned above. Comparisons with known results will be also discussed there.

1 Lévy measures of Wiener functionals of second order

1.1 General Scheme

Throughout this subsection, (W,H,µ) stands for an abstract Wiener space. For the definition,
see [11]. The inner product and the norm of H are denoted by 〈·, ·〉 and ‖ · ‖H , respectively.
Given a symmetric Hilbert-Schmidt operator A : H → H and ` ∈ H, decomposing A as
A =

∑∞
n=1 anhn ⊗ hn with an ∈ R and an orthonormal basis {hn}∞n=1 of H such that ‖A‖2

2 =∑∞
n=1 a2

n < ∞, we define

QA =
∞∑

n=1

an

{〈·, hn〉2 − 1
}

, (1)

fA,`(x) =



1
2

∑
n;an>0

{
1
x

+
〈`, hn〉2

a3
n

}
exp[−x/an], x > 0,

0, x = 0,
1
2

∑
n;an<0

{
1
−x

+
〈`, hn〉2
−a3

n

}
exp[−x/an], x < 0,

(2)

where 〈·, hn〉 stands for the Itô integral of hn, and if there exists no an with required property,
the summation is defined to be equal to zero. It is possible to define fA,` without using the
eigenfunction decomposition of A. Indeed, if B : H → H is a symmetric non-negative definite
Hilbert-Schmidt operator, then, for any N ∈ N, a bounded linear operator (B+εI)−N exp

[−{B+
εI}−1

]
on H converges strongly to a linear operator T

(N)
B of trace class. Decomposing A : H → H

as A = A1 − A2 with symmetric non-negative definite Hilbert-Schmidt operators A1 and A2 on
H such that A1A2 = A2A1 = 0, we obtain

fA,`(x) =


1
x

TrT
(0)
(1/x)A1

+
1
x3

〈`, T (3)
(1/x)A1

`〉, x > 0,

0, x = 0,
1
|x|Tr T

(0)
(1/|x|)A2

+
1

|x|3 〈`, T
(3)
(1/|x|)A2

`〉, x < 0.

Lemma 1. It holds that

0 ≤ fA,`(x) ≤ ‖A‖k−2∞
2|x|k+1

{
k!‖A‖2

2 + (k + 1)!‖`‖2
H

}
(3)

for any x 6= 0, k ≥ 2, and∫ 1

−1
|x|2fA,`(x)dx ≤ 1

2
‖A‖2

2 + ‖`‖2
H , (4)

where ‖A‖∞ = sup{|an| : n = 1, 2, . . . }.
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Proof. Since exp[−|x|/|an|] ≤ k!(|an|/|x|)k, (3) follows. (4) is an easy application of the mono-
tone convergence theorem and an estimation∫ 1

0
|x|m exp[−|x|/|an|]dx = |an|m+1

∫ 1/|an|

0
ym exp[−y]dy ≤ m!|an|m+1,

for every m ∈ N.

Theorem 2. Let A : H → H be a symmetric Hilbert-Schmidt operator, ` ∈ H, and γ ∈ R.
Then, for any λ ∈ R, it holds that∫

W
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

= exp
[
−λ2‖`A‖2

H

2
+ iλγ +

∫
R

(
eiλx − 1 − iλx

)
fA,`(x)dx

]
, (5)

where i =
√−1 and

`A =
∑

n;an=0

〈hn, `〉hn. (6)

Remark 3. (i) The integrability of (eiλx − 1 − iλx)fA,`(x) in (5) is guaranteed by Lemma 1.
(ii) The theorem asserts that the distribution of 1

2QA + 〈·, `〉 + γ is infinitely divisible and the
corresponding Lévy measure is fA,`(x)dx. Moreover, the distribution of 1

2QA + γ is selfdecom-
posable. See [16, §8 and §15].
(iii) Let Cn(W ) be the space of Wiener chaos of order n. A Wiener functional F of second order
is a Wiener chaos of order at most two, i.e., F ∈ C2(W ) ⊕ C1(W ) ⊕ C0(W ), and is of the form
that F = (1/2)QA +〈·, `〉+γ for some symmetric Hilbert-Schmidt operator A, ` ∈ H, and γ ∈ R,
and QA ∈ C2(W ), 〈·, `〉 ∈ C1(W ), and γ ∈ C0(W ). Moreover, A, `, and γ are determined so that
A = ∇2F , ` =

∫
W ∇F dµ, and γ =

∫
W F dµ, where ∇ stands for the Malliavin derivative.

(iv) It should be noted that C2(W ) ⊕ C1(W ) ⊕ C0(W ) is invariant under shifts in the direction
of H. Namely, let F = 1

2QA + 〈·, `〉 + γ and h ∈ H. Then

F (· + h) = F + 〈·, Ah〉 +
1
2
〈h,Ah〉 + 〈h, `〉 ∈ C2(W ) ⊕ C1(W ) ⊕ C0(W ).

In particular, the theorem is applicable to a quadratic form of the form 1
2QA(· − h), which is

one of main ingredients in the study of the principle of stationary phase on W . See [17]

Proof of Theorem 2. The proof is divided into three steps according to the signs of an’s, the
eigenvalues of A.

1st step: the case where an > 0 for all n ∈ N .
Let λ > 0. Note that

1
2
QA + 〈·, `〉 =

∞∑
n=1

[an

2
{〈·, hn〉2 − 1

}− 〈`, hn〉〈·, hn〉
]
.
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Since {〈·, hn〉 : n ∈ N} is a family of independent Gaussian random variables of mean 0 and
variance 1, we obtain the following well known identity:∫

W
exp

[
−λ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

= exp[−λγ]
∞∏

n=1

(
(1 + λan)−1/2eλan/2 exp

[
λ2

2
〈`, hn〉2
1 + λan

])
. (7)

Applying the identities

log(1 + (λ/a)) =
∫ ∞

0
(1 − e−λx)

e−ax

x
dx,

∫ ∞

0
e−x/adx = a,∫ ∞

0

(
e−λx − 1 + λx

)
e−x/adx =

a3λ2

1 + aλ
, a, λ > 0,

we obtain

log

( ∞∏
n=1

{
(1 + an)−1/2ean/2 exp

[
λ2

2
〈`, hn〉2
1 + an

]})

= −1
2

∞∑
n=1

{log(1 + λan) − λan} +
1
2

∞∑
n=1

λ2〈`, hn〉2
1 + λan

=
∫ ∞

0
(e−λx − 1 + λx)fA,`(x)dx.

Plugging this into (7), we obtain∫
W

exp
[
−λ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

= exp
[
−λγ +

∫ ∞

0

(
e−λx − 1 + λx

)
fA,`(x)dx

]
. (8)

Note that ∣∣∣∣ d

dζ

(
eζx − 1 − ζx

)∣∣∣∣ ≤ |ζ|2x3

2
+ 2|ζ|x2 and

∣∣∣eζx − 1 − ζx
∣∣∣ ≤ 3|ζ|2x2

2

for ζ ∈ C with Reζ < 0 and x ≥ 0. Hence, continuing (8) holomorphically to Ω = {ζ ∈ C :
Reζ < 0}, and then letting Reζ → 0 in Ω, we we arrive at (5), because fA,`(x) = 0 for x ≤ 0.

2nd step: the case where an < 0 for all n ∈ N .
Since −QA = Q−A, applying the result in the first step to −A, we obtain∫

W
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

=
∫

X
exp

[
i(−λ)

(
1
2
Q(−A) + 〈·,−`〉 + (−γ)

)]
dµ

= exp[iλγ] exp
[∫
R

(
e−iλx − 1 + iλx

)
f−A,−`(x)dx

]
.
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Since f−A,−`(−x) = fA,`(x), this yields (5).

3rd step: the general case.
Set

A+ =
∑

n;an>0

anhn ⊗ hn, A− =
∑

n;an<0

anhn ⊗ hn,

`+ =
∑

n;an>0

〈`, hn〉hn, `− =
∑

n;an<0

〈`, hn〉hn.

Then
1
2
QA + 〈·, `〉 = 〈·, `A〉 +

1
2
QA+ + 〈·, `+〉 +

1
2
QA− + 〈·, `−〉.

Moreover, the random variables 〈·, `A〉, 1
2QA+ +〈·, `+〉, and 1

2QA− +〈·, `−〉 are independent under
µ, and

fA,` = fA+,`+ + fA−,`−.

From the observations made in the 1st and 2nd steps, we obtain∫
W

exp
[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

=
∫

W
exp [iλ〈·, `A〉] dµ ×

∫
W

exp
[
iλ

(
1
2
QA+ + 〈·, `+〉 + γ

)]
dµ

×
∫

W
exp

[
iλ

(
1
2
QA− + 〈·, `−〉

)]
dµ

= exp
[
−λ2‖`A‖2

H

2

]
exp

[
iλγ +

∫
R

(
eiλx − 1 − iλx

)
fA+,`+(x)dx

]
× exp

[∫
R

(
eiλx − 1 − iλx

)
fA−,`−(x)dx

]
,

from which (5) follows.

1.2 Conditional expectation

Let η = {η1, . . . , ηm} ⊂ W ∗, W ∗ being the dual space of W , be an orthonormal system in H ;
〈ηi, ηj〉 = δij . Setting

W
(η)
0 = {w ∈ W ; η(w) = 0}, H

(η)
0 = H ∩ W

(η)
0 ,

where η(w) = (η1(w), . . . , ηm(w)) ∈ Rm , we define a projection P (η) : W → W
(η)
0 by P (η)w =

w −∑m
n=1 ηn(w)ηn, and denote by µ

(η)
0 the induced measure of µ on W

(η)
0 via P (η). Then the

triplet (W (η)
0 ,H

(η)
0 , µ

(η)
0 ) is an abstract Wiener space.

For a symmetric Hilbert-Schmidt operator A : H → H, we define a symmetric Hilbert-Schmidt
operator A(η) on H

(η)
0 by A(η) = P (η)A. We denote by Eµ [F |η(w) = y] the conditional expec-

tation of a Wiener functional F : W → R given η(w) = y. For y = (y1, . . . , ym) ∈ Rm , put
y · η =

∑m
n=1 ynηn.
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Theorem 4. Let A : H → H be a symmetric Hilbert-Schmidt operator, ` ∈ H, and γ ∈ R.
Then, for every λ ∈ R, it holds that

Eµ

[
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]
= exp

[
−λ2‖{P (η)(A(y · η) + `)}A(η)‖2

H

2
(9)

+ iλ
{1

2

(
〈A(y · η), (y · η)〉 −

m∑
n=1

〈Aηn, ηn〉
)

+ 〈(y · η), `〉 + γ
}

+
∫
R

(
eiλx − 1 − iλx

)
fA(η),P (η)(A(y·η)+`)(x)dx

]
,

where {P (η)(A(y · η)+ `)}A(η) and fA(η),P (η)(A(y·η)+`)(x) are defined by (2) and (6), computed on

the space (W (η)
0 ,H

(η)
0 , µ

(η)
0 ).

Proof. According to the decomposition of w ∈ W so that w = w0 + y · η with w0 = P (η)w and
y = η(w), the Wiener measure µ is represented as

µ(dw) = µ
(η)
0 (dw0) ⊗ 1√

2π
m e−|y|2/2dy.

Hence we have
Eµ [F |η(w) = y] =

∫
W

(η)
0

F (w0 + y · η)µ(η)
0 (dw0). (10)

Using a finite dimensional approximation argument, we can easily show that

1
2
QA(w) + 〈w, `〉 =

1
2
QA(η)(w0) +

1
2

{
〈A(y · η), (y · η)〉 −

m∑
n=1

〈Aηn, ηn〉
}

(11)

+ 〈w0, P
(η)(A(y · η) + `)〉 + 〈(y · η), `〉.

In conjunction with (10), applying Theorem 2 on (W (η)
0 ,H

(η)
0 , µ

(η)
0 ), we obtain (9).

1.3 Mellin transform

Proposition 5. The Mellin transform of fA,` defined by (2) is given by∫
R

|x|sfA,`(x)dx =
Γ(s)

2

∞∑
n=1

|an|s +
Γ(s + 1)

2

∑
n:an 6=0

|an|s−2〈`, hn〉2 (12)

for any s ≥ 2.

Proof. Rewrite

fA,`(x) =



1
2

∑
n;an>0

{
1
|x| +

〈`, hn〉2
|an|3

}
exp[−|x|/|an|], x > 0,

0, x = 0,
1
2

∑
n;an<0

{
1
|x| +

〈`, hn〉2
|an|3

}
exp[−|x|/|an|], x < 0,
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Then, by a change of variables x → −x on (−∞, 0), we obtain∫
R

|x|sfA,`(x)dx =
1
2

∑
n;an<0

∫ 0

−∞
|x|s

{
1
|x| +

〈`, hn〉2
|an|3

}
e−|x|/|an|dx

+
1
2

∑
n;an>0

∫ ∞

0
|x|s

{
1
|x| +

〈`, hn〉2
|an|3

}
e−|x|/|an|dx

=
1
2

∑
n:an 6=0

∫ ∞

0
|x|s

{
1
|x| +

〈`, hn〉2
|an|3

}
e−|x|/|an|dx

=
Γ(s)

2

∞∑
n=1

|an|s +
Γ(s + 1)

2

∑
n:an 6=0

|an|s−2〈`, hn〉2,

which completes the proof.

Remark 6. A sufficient condition for the Mellin transform of fA,` to have a meromorphic
extension to C is given by Jorgenson and Lang ([10]).

2 Exponential decay and density functions

In this section, as an application of Theorems 2 and 4, we first study how fast a stochastic
oscillatory integral decays when its phase function is a Wiener chaos of order at most two.
Moreover we also show how to compute the density function of its distribution.

2.1 Exponential decay

Theorem 7. Let (W,H,µ) be an abstract Wiener space, A : H → H be a symmetric Hilbert-
Schmidt operator, ` ∈ H, y ∈ Rm , and η = {η1, . . . , ηm} ⊂ W ∗ be an orthonormal system
in H. Suppose that `A = 0 when µ is considered, and that {P (η)(A(y · η) + `)}A(η) = 0 when
µ(·|η(w) = y) is dealt with. Define fA,` by (2), and fA(η),P (η)(A(y·η)+`) as described in Theorem 4.
(i) For any λ ∈ R, it holds that∣∣∣∣∫

W
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

∣∣∣∣ ≥ exp
[
−λ2

2

∫
R

x2fA,`(x)dx

]
(13)∣∣∣∣Eµ

[
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]∣∣∣∣
≥ exp

[
−λ2

2

∫
R

x2fA(η),P (η)(A(y·η)+`)(x)dx

]
(14)

(ii) Let

a− := sup

{
a > 0 : lim sup

λ→∞
λ−a

∫
(−∞,0)

(cos(λx) − 1)fA,`(x)dx < 0,

}
,

a+ := sup

{
a > 0 : lim sup

λ→∞
λ−a

∫
(0,∞)

(cos(λx) − 1)fA,`(x)dx < 0

}
,

8



where a− = 0, a+ = 0 if {· · · } = ∅. If max{a−, a+} > 0, then, for every a < max{a−, a+},
there exist Ca > 0 and λa > 0 such that∣∣∣∣∫

W
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

∣∣∣∣ ≤ exp[−Caλ
a], (15)

for every λ ≥ λa, γ ∈ R. Moreover, if both supremums a+, a− are attained as maximums, then
the above assertion holds with a = max{a−, a+}.
(iii) Put

b− := sup

{
b > 0 : lim sup

λ→∞
λ−b

∫
(−∞,0)

(cos(λx) − 1)fA(η),P (η)(A(y·η)+`)(x)dx < 0

}
,

b+ := sup

{
b > 0 : lim sup

λ→∞
λ−b

∫
(0,∞)

(cos(λx) − 1)fA(η),P (η)(A(y·η)+`)(x)dx < 0

}
,

where b− = 0, b+ = 0 if {· · · } = ∅. If max{b−, b+} > 0, then, for every b < max{b−, b+}, there
exist Cb > 0 and λb > 0 such that∣∣∣∣Eµ

[
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]∣∣∣∣ ≤ exp[−Cbλ
b], (16)

for any λ ≥ λb, γ ∈ R. Moreover, if both supremums b+, b− are attained as maximums, then
the above assertion holds with b = max{b−, b+}.
Remark 8. (i) If `A 6= 0, then we have an exponent −λ2‖`A‖2

H/2, which gives a much faster
decay than the one discussed in Theorem 7. Similarly, if {P (η)(A(y · η) + `)}A(η) 6= 0, then we
obtain a much faster decay than the one discussed in the theorem.
(ii) The integrability of x2fA,`(x) and x2fA(η),P (η)(A(y·η)+`)(x) is due to Lemma 1.
(iii) The lower estimates in (13) and (14) are sharp as we shall see in Lemma 10. For example,
if we consider A =

∑∞
n=1 n−phn ⊗ hn for some p > 1/2 and an orthonormal basis {hn} of H,

then there exist C > 0 and λ0 > 0 such that∣∣∣∣∫
W

exp
[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

∣∣∣∣ ≤ exp[−Cλ1/p] for any λ > λ0.

For details, see Lemma 10 and its proof.
(iv) If an > 0 for some n, then limλ→∞

∫∞
0 (cos(λx) − 1)fA,`(x)dx = −∞. In fact, it holds that

fA,` ≥ fA,0 and∫ ∞

0
(1 − cos(λx))fA,0(x)dx =

∫ ∞

0

1 − cos y

y

∑
n;an>0

exp[−y/(λan)]dy.

Then, applying the monotone convergence theorem, we obtain the desired divergence. Similarly,
if an < 0 for some n, then limλ→∞

∫ 0
−∞(cos(λx) − 1)fA,`(x)dx = −∞. Thus the assumption

made on a± is that only on the order of divergence.

If #{n; an 6= 0} < ∞, then a+ = a− = 0. Indeed, in this case, there are C,C ′ > 0 such that
fA,`(x) ≤ C{(1/|x|) + 1} exp[−C ′|x|] for every x ∈ R \ {0}. For each δ > 0, this implies the
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existence of Cδ > 0 such that fA,`(x) ≤ Cδ|x|−1−δ for any x ∈ R \ {0}. Hence, for every λ > 0,

0 ≤ max
{∫ 0

−∞
(1 − cos(λx))fA,`(x)dx,

∫ ∞

0
(1 − cos(λx))fA,`(x)dx

}
≤ Cδλ

δ

∫ ∞

0

1 − cos y

y1+δ
dy,

from which it follows that a± = 0.

Proof of Theorem 7. Assume that `A = 0 or {P (η)(A(y · η) + `)}A(η) = 0 accordingly as µ or
µ(·|η(w) = y) is considered. By virtue of Theorems 2 and 4, we have∣∣∣∣∫

W
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)]
dµ

∣∣∣∣ = exp
[∫
R

(cos(λx) − 1)fA,`(x)dx

]
∣∣∣∣Eµ

[
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]∣∣∣∣
= exp

[∫
R

(cos(λx) − 1)fA(η),P (η)(A(y·η)+`)(x)dx

]
Since | cos x − 1| ≤ x2/2 for any x ∈ R, the assertion (i) follows immediately.

Let f = fA,` or = fA(η),P (η)(A(y·η)+`). Since (cos(λx) − 1)f(x) ≤ 0, we have∫
R

(cos(λx) − 1)f(x)dx

≤ min

{∫
(−∞,0)

(cos(λx) − 1)f(x)dx,

∫
(0,∞)

(cos(λx) − 1)f(x)dx

}
.

Thus the estimations in (ii) and (iii) also follow.

A function ϕ ∈ C∞(R) is said to belong a Gevrey class of order a > 1 (ϕ ∈ Ga(R) in notation)
if, for any compact subset K ⊂ R, there exists a constant CK > 0 such that∣∣∣∣dnϕ

dxn
(x)
∣∣∣∣ ≤ CK (CK(n + 1)a)n for every x ∈ K, n ∈ N.

A finite Radon measure u on R admits a density function of class Ga(R) if there is a C > 0 such
that

|û(ξ)| ≤ C

(
C(n + 1)a

|ξ|
)n

for any ξ ∈ R \ {0}, n ∈ N,

where û is the Fourier transformation of u (cf. [6, Prop.8.4.2]). Since e−x ≤ ααx−α for α, x > 0,
a sufficient condition for this to hold is that there exist C1, C2 > 0 such that

|û(ξ)| ≤ C1 exp[−C2|ξ|1/a] for any ξ ∈ R.

We obtain the following from Theorem 7.
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Corollary 9. Let a±, b± be as in Theorem 7.
(i) If `A = 0 and max{a−, a+} > 0, then the distribution on R of 1

2QA +〈·, `〉+γ under µ admits
a density function, which is in G1/a(R) for any a < max{a−, a+}, with respect to the Lebesgue
measure.
(ii) If {P (η)(A(y · η) + `)}A(η) = 0 and max{b−, b+} > 0, then the distribution on R of 1

2QA +
〈·, `〉 + γ under the conditional probability µ(·|η(w) = y) admits a density function, which is in
G1/b(R) for any b < max{b−, b+}, with respect to the Lebesgue measure.

We give a sufficient condition for a± to be positive. It follows from (3) that fA,`(x) diverges
at the order of at most |x|−3 as |x| → 0. If we assume a uniform order of divergence, then
max{a−, a+} > 0.

Lemma 10. (i) If there exist δ, C > 0 and ε < 2 such that

fA,`(x) ≥ Cxε−3 for any x ∈ (0, δ),

then a+ ≥ 2 − ε. If there exist δ, C > 0 and ε < 2 such that

fA,`(x) ≥ C|x|ε−3for any x ∈ (−δ, 0)

then a− ≥ 2 − ε.
(ii) Let {an}∞n=1 be eigenvalues of A. Suppose that there exist a subsequence {ank

}, C > 0, and
p > 1/2 such that ank

≥ C/kp for any k ∈ N. Then, for any δ > 0,

fA,`(x) ≥
{

C1/p

p

∫ ∞

δ/C
z(1/p)−1e−zdz

}
x−1−(1/p)

holds for any x ∈ (0, δ). In particular, a+ ≥ 1/p.

If there exist a subsequence {ank
}, C > 0, and p > 1/2 such that ank

≤ −C/kp for any k ∈ N.
Then, for any δ > 0,

fA,`(x) ≥
{

C1/p

p

∫ ∞

δ/C
z(1/p)−1e−zdz

}
x−1−(1/p)

holds for any x ∈ (−δ, 0). In particular, a− ≥ 1/p.

Proof. (i) It follows from (3) that∫ ∞

δ
(cos(λx) − 1)fA,`(x)dx ≤ 0.

Due to the first assumption, we have∫ δ

0
(cos(λx) − 1)fA,`(x)dx ≤ C

∫ δ

0
(cos(λx) − 1)xε−3dx

= Cλ2−ε

∫ λδ

0
(cos x − 1)xε−3dx.

11



Hence
lim sup

λ→∞
λ−(2−ε)

∫ ∞

0
(cos(λx) − 1)fA,`(x)dx ≤ C

∫ ∞

0
(cos x − 1)x3−εdx < 0.

Thus the first half has been verified. The latter half can be seen in exactly the same way.

(ii) Suppose the first assumption. Then it holds that

fA,`(x) ≥
∞∑

k=1

e−xkp/C

x
≥
∫ ∞

1

e−xyp/C

x
dy = x−1−(1/p) C

1/p

p

∫ ∞

x/C
z(1/p)−1e−zdz

for any x > 0. This yields the first estimation. Since −1 − (1/p) = {2 − (1/p)} − 3, by the
assertion (i), we have that a+ ≥ 1/p. Thus the first half has been verified.

The latter half can be seen similarly.

2.2 Density functions

Corollary 9 gives a sufficient condition for the distribution of 1
2QA+〈·, `〉+γ under µ or µ(·|η(w) =

y) to have a smooth density function with respect to the Lebesgue measure. We now show
another condition for the distribution to possess a smooth density function, and also a method
to compute it.

Theorem 11. Let (W,H,µ) be an abstract Wiener space, A : H → H be a symmetric Hilbert-
Schmidt operator, and decompose as A =

∑∞
n=1 anhn ⊗ hn with an orthonormal basis {hn}∞n=1

of H.
(i) Suppose that #{n : an 6= 0} = ∞. Then there exists a pA ∈ C∞(R) such that µ

(
QA/2 ∈

dx
)

= pA(x)dx.
(ii) Suppose that a2n−1 = a2n for any n ∈ N and #{n : an 6= 0} = ∞. Fix x ∈ R, and
assume that there exists a family of simple C1 curves Γn = {γn(t) : t ∈ [αn, βn]} in C such that
(a1) γn(αn) ∈ (−∞, 0), γn(βn) ∈ (0,∞), (a2) inf{|γn(t)| : t ∈ [αn, βn]} → ∞ as n → ∞, and
(a3)

∫
Γn

{e−iζx/det2(I − iζÂ)}dζ → 0 as n → ∞, where Â =
∑∞

n=1 a2nh2n ⊗ h2n.
(ii-1) If Im γn(t) > 0 and −i/am /∈ Γn for any n ∈ N, t ∈ (αn, βn), and m ∈ N with am < 0,
then

pA(x) = i
∑

n:an<0

Res

(
e−iζx

det2(I − iζÂ)
;− i

an

)
, (17)

where Res(f(ζ); z) denotes the residue of f at z.
(ii-2) If Im γn(t) < 0 and −i/am /∈ Γn for any n ∈ N, t ∈ (αn, βn), and m ∈ N with am > 0,
then

pA(x) = −i
∑

n:an>0

Res

(
e−iζx

det2(I − iζÂ)
;− i

an

)
. (18)

(iii) Suppose
∑∞

n=1 |an| < ∞, and set qA = QA +
∑∞

n=1 an. Then all assertions in (i) and (ii)
hold, replacing QA and det2(I − iζÂ) by qA and det(I − iζÂ), respectively.
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Remark 12. (i) The mapping C 3 ζ 7→ det2(I − iζÂ) is holomorphic ([4]).
(ii) Let η = {η1, . . . , ηm} be an orthonormal system of H. By (11), it holds

µ
(1

2
QA ∈ dx

∣∣∣η(w) = 0
)

= µ
(η)
0

(1
2

{
QA(η) −

m∑
n=1

〈Aηi, ηi〉
}
∈ dx

)
,

µ
(1

2
qA ∈ dx

∣∣∣η(w) = 0
)

= µ
(η)
0

(1
2
qA(η) ∈ dx

)
.

Thus, we can compute the density functions of the distributions of QA/2 and qA/2 under
µ(·|η(w) = 0), by applying Theorem 11 to QA(η) and qA(η) on W (η).
(iii) The method to compute the density with the help of the residue theorem has been already
applied by Cameron-Martin ([2]) more than a half century ago to the square of the L2-norm on
an interval of the one-dimensional Wiener process.

Proof. Since ‖∇(QA/2)‖2
H =

∑∞
n=1 a2

n〈·, hn〉2, ‖∇(QA/2)‖−1
H ∈ ⋂p>0 Lp(µ) if #{n : an 6= 0} =

∞ (cf.[18]). Thus the assertion (i) follows as an fundamental application of the Malliavin calcu-
lus.

By (7) and the assumption that a2n−1 = a2n, we have∫
R

eiλxpA(x)dx =
1

det2(I − iλÂ)
, (19)

and hence

pA(x) =
1
2π

∫
R

e−iλx

det2(I − iλÂ)
dλ.

Then the assertions in (ii) are immediate consequences of the residue theorem.

To see the last assertion, it suffices to mention that (19) implies that, if we denote by p̃A the
density function of qA/2, then ∫

R

eiλxp̃A(x)dx =
1

det(I − iλÂ)
.

3 Typical quadratic Wiener functionals

In this section, we investigate how our results work for typical quadratic Wiener functionals.
Some of the computations below have been carried out in Ikeda-Manabe [7], but we give all the
results for convenience of the reader. Moreover, when we do not consider the first order terms
of the Wiener chaos, that is, when ` = 0 in (5), explicit expressions of the Fourier or Laplace
transforms of the distributions are well known for the examples considered in the following and,
from them, we can obtain the same results after some elementary calculations.
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3.1 The square of the L2-norm on an interval

Let T > 0 and consider the classical one-dimensional Wiener space (W 1
T ,H1

T , µ1
T ) over [0, T ]; W 1

T

is the space of continuous functions w : [0, T ] → R with w(0) = 0, H1
T consists of h ∈ W 1

T which
is absolutely continuous and has a square integrable derivative dh/dt, and µ1

T is the Wiener
measure. The inner product in H1

T is given by

〈h, k〉 =
∫ T

0

dh

dt
(t)

dk

dt
(t)dt, h, k ∈ H1

T .

In this subsection we consider

hT (w) =
∫ T

0
w(t)2dt, w ∈ W 1

T .

3.1.1

We first compute the Lévy measure of 1
2hT + 〈·, `〉 + γ under µ1

T by applying Theorem 2, where
` ∈ H1

T and γ ∈ R.

Define a symmetric Hilbert-Schmidt operator A : H1
T → H1

T by

d(Ah)
dt

(t) =
∫ T

t
h(s)ds, h ∈ H1

T , t ∈ [0, T ].

Note that w(t)2 is in C2(W 1
T )⊕C0(W 1

T ), and so is hT . It is easily seen that ∇2hT = 2A and that∫
W 1

T
hT dµ1

T = T 2/2. Then, by virtue of Remark 3 (iii), we observe that

hT = QA +
T 2

2
. (20)

It is easy to see that

A =
∞∑

n=0

(
T(

n + 1
2

)
π

)2

hA
n ⊗ hA

n , (21)

where

hA
n (t) =

√
2T(

n + 1
2

)
π

sin
((

n + 1
2

)
πt

T

)
.

In particular, we have
`A = 0 and fA,`(x) = 0, x ≤ 0.

Set

`(n) = 〈`, hA
n 〉 =

√
2
T

∫ T

0

d`

dt
(t) cos

((
n + 1

2

)
πt

T

)
dt,

gH(x;T, `) =
π6

27T 6

∞∑
n=0

(2n + 1)6|`(n)|2 exp
[
−(2n + 1)2π2x

4T 2

]
. (22)
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Since Jacobi’s theta function Θ(u) =
∑

n∈Zexp[−n2u] enjoys the relation

Θ(u) − Θ(4u) = 2
∞∑

n=0

e−(2n+1)2u,

it is straightforward to see that

fA,`(x) =
1
4x

{
Θ
(

π2x

4T 2

)
− Θ

(
π2x

T 2

)}
+ gH(x;T, `), x > 0.

By virtue of this and (20), applying Theorem 2, we arrive at:

Proposition 13. It holds that∫
W 1

T

exp
[
iλ

(
1
2
hT + 〈·, `〉 + γ

)]
dµ1

T

= exp

[
iλ

(
γ +

T 2

4

)
+
∫ ∞

0

(
eiλx − 1 − iλx

)( 1
4x

{
Θ
(

π2x

4T 2

)
− Θ

(
π2x

T 2

)}

+ gH(x;T, `)
)

dx

]
,

where gH is defined by (22).

3.1.2

We next compute the Lévy measure of 1
2hT + 〈·, `〉 + γ under the conditional probability

µ1
T (·|w(T ) = y) given w(T ) = y, where ` ∈ H1

T , γ ∈ R, and y ∈ R.

Set η1(w) = w(T )/
√

T , w ∈ W 1
T , and η = {η1}. Note that

〈A(y · η), (y · η)〉 − 〈Aη1, η1〉 = (y2 − 1)〈Aη1, η1〉 =
(y2 − 1)T 2

3
, 〈(y · η), `〉 =

y`(T )√
T

.

By a straightforward computation, we obtain

d(A(η)h)
dt

(t) =
∫ T

t
h(s)ds − 1

T

∫ T

0

(∫ T

s
h(u)du

)
ds, h ∈ (H1

T )(η)
0 ,

and hence

A(η) =
∞∑

n=1

( T

nπ

)2
kA

n ⊗ kA
n , where kA

n (t) =
√

2T
nπ

sin
(nπt

T

)
. (23)

In particular,

{P (η)(A(y · η) + `)}A(η) = 0 and fA(η),P (η)(A(y·η)+`)(x) = 0, x ≤ 0.

Note that

〈P (η)(A(y · η) + `), kA
n 〉 = y〈Aη, kA

n 〉 + 〈`, kA
n 〉

= (−1)n+1
√

2y
( T

nπ

)2
+ ˜̀

(n), (24)
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where
˜̀
(n) = 〈`, kA

n 〉 =

√
2
T

∫ T

0

d`

dt
(t) cos

(nπt

T

)
dt.

Hence, for x > 0,

fA(η),P (η)(A(y·η)+`)(x)

=
1
2

∞∑
n=1

{1
x

+ 2y2
(nπ

T

)2
+ (−1)n+123/2y

(nπ

T

)4 ˜̀
(n)

+
(nπ

T

)6 ˜̀2
(n)

}
exp
[
−n2π2

T 2
x
]

=
1
4x

{
Θ
(π2x

T 2

)
− 1
}
− π2y2

2T 2
Θ′
(π2x

T 2

)
+ g̃H(x;T, `, y), (25)

where

g̃H(x;T, `, y)

=
1
2

∞∑
n=1

{
(−1)n+123/2y

(nπ

T

)4 ˜̀
(n) +

(nπ

T

)6 ˜̀2
(n)

}
exp
[
−n2π2x

T 2

]
. (26)

Due to Theorem 4, we obtain

Eµ1
T

[
exp

[
iλ

(
1
2
QA + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]
= exp

[
iλ
( (y2 − 1)T 2

6
+

y`(T )√
T

+ γ
)

+
∫ ∞

0

(
eiλx − 1 − iλx

)[ 1
4x

{
Θ
(π2x

T 2

)
− 1
}

− π2y2

2T 2
Θ′
(π2x

T 2

)
+ g̃H(x;T, `, y)

]
dx

]
.

Since η(w) = w(T )/
√

T , combined with (20), we conclude from this:

Proposition 14. It holds that

Eµ1
T

[
exp

[
iλ

(
1
2
hT + 〈·, `〉 + γ

)] ∣∣∣∣w(T ) = y

]
= exp

[
iλ
{Ty2

6
+

T 2

12
+

y`(T )
T

+ γ
}

+
∫ ∞

0

(
eiλx − 1 − iλx

)
fH(x;T, `, y)dx

]
,

where

fH(x;T, `, y) =
1
4x

(
Θ
(π2x

T 2

)
− 1
)
− π2y2

2T 3
Θ′
(π2x

T 2

)
+ g̃H(x;T, `, y/

√
T ),

and g̃H is given by (26).

3.1.3

We finally study the exponential decay of the characteristic function of 1
2hT + 〈·, `〉 + γ under

µ1
T and µ1

T (·|w(T ) = y).
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As was seen in §3.1.1, the Hilbert-Schmidt operator A associated with hT has eigenvalues
{T 2/[(n + 1

2)π]2;n ∈ N ∪ {0}}, each of them being of multiplicity one. By Theorem 7 and
Lemma 10, there exist C1 > 0 and λ1 > 0 such that∣∣∣∣∣

∫
W 1

T

exp
[
iλ

(
1
2
hT + 〈·, `〉 + γ

)]
dµ

∣∣∣∣∣ ≤ exp[−C1λ
1/2] (27)

for any λ ≥ λ1, γ ∈ R.

Let η1(t) = t/
√

T and η = {η1}. As was shown in §3.1.2, the Hilbert-Schmidt operator A(η)

possesses eigenvalues {(T/(nπ))2;n ∈ N}, each of them being of multiplicity 1. Since η(w) =
w(T )/

√
T , by Theorem 7 and Lemma 10, there exist C2 > 0 and λ2 > 0 such that∣∣∣∣Eµ1

T

[
exp

[
iλ

(
1
2
hT + 〈·, `〉 + γ

)] ∣∣∣∣w(T ) = y

]∣∣∣∣ ≤ exp[−C2λ
1/2] (28)

for any λ ≥ λ2, γ ∈ R.

When ` = 0 and γ = 0, it is well known ([3, 12] and [8, pp.470–473]) that∫
W 1

T

exp
[
−λ

2
hT

]
dµ1

T =
1

(cosh(
√

λT ))1/2

and

Eµ1
T

[
exp

[
−λ

2
hT

] ∣∣∣∣w(T ) = y

]

=

( √
λT

sinh
(√

λT
))1/2

exp
[(

1 −
√

λT coth
(√

λT
)) y2

2T

]
(29)

hold for λ > 0. Thus, continuing holomorphically, we see that our estimations (27) and (28)
coincide with the order obtained from these precise expressions.

Starting from these well-known expressions, and recalling the elementary formulae

cosh(x) =
∞∏

k=0

(
1 +

4x2

(2k + 1)2π2

)
, sinh(x) = x

∞∏
k=1

(
1 +

x2

k2π2

)
,

coth(πx) =
1

πx
+

2x
π

∞∑
k=1

1
x2 + k2

,

we can also show explicit expressions for the Lévy measures νT (dx) and νT,y(dx) of the distri-
bution of hT /2 under µ1

T and the conditional probability measure µ1
T ( · |w(T ) = y) as described

in Propositions 13 and 14 with ` = 0.

Moreover, by using the Riemann zeta function ζ(s) =
∑∞

n=1 n−s, we can give explicit forms of
the Mellin transforms of νT and νT,y. Namely, noting that

νT (dx) = fA,0(x)dx, νT,y(dx) = fA(η),P (η)(A((y/
√

T )·η))(x)dx,

and then plugging (21), (23), and (24) into (12), we obtain:
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Proposition 15. The Mellin transform of νT (dx) and νT,y(dx) are given by∫ ∞

0
xsνT (dx) =

(
4T 2

π2

)s 22s − 1
22s+1

Γ(s)ζ(2s)

and ∫ ∞

0
xsνT,y(dx) =

1
2

(
T 2

π2

)s

Γ(s)ζ(2s) +
y2

T

(
T 2

π2

)s

Γ(s + 1)ζ(2s), s ≥ 2,

respectively, where Γ is the usual gamma function.

Recently, Biane-Pitman-Yor [1] and Pitman-Yor [15] have discussed the related topics and shown
similar formulae.

3.2 Lévy’s stochastic area

Let T > 0 and consider the classical two-dimensional Wiener space (W 2
T ,H2

T , µ2
T ) over [0, T ]; W 2

T

is the space of continuous functions w : [0, T ] → R2 with w(0) = 0, H2
T consists of h ∈ W 2

T which
is absolutely continuous and has a square integrable derivative dh/dt, and µ2

T is the Wiener
measure. The inner product in H2

T is given by

〈h, k〉 =
∫ T

0

〈
dh

dt
(t),

dk

dt
(t)
〉
R2

dt, h, k ∈ H2
T .

Define Lévy’s stochastic area by

sT (w) =
1
2

∫ T

0
〈Jw(t), dw(t)〉2

R2 =
1
2

∫ T

0

{
w1(t)dw2(t) − w2(t)dw1(t)

}
,

where J =
(

0 −1
1 0

)
and dw(t) denotes the Itô integral.

3.2.1

We first compute the Lévy measure of sT + 〈·, `〉 + γ under µ2
T by applying Theorem 2, where

` ∈ H2
T and γ ∈ R.

Define a symmetric Hilbert-Schmidt operator B : H2
T → H2

T by

d(Bh)
dt

(t) = J

(
h(t) − 1

2
h(T )

)
, h ∈ H2

T , t ∈ [0, T ].

Since wi(s){wj(t)−wj(s)} is in C2(W 2
T ) for (i, j) ∈ {(1, 2), (2, 1)} and s < t, so is sT . It is easily

seen that ∇2sT = B, and hence, due to Remark 3 (iii), we have

sT =
1
2
QB . (30)
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By a direct computation, we see that

B =
∑
n∈Z

T

(2n + 1)π

{
hB

n ⊗ hB
n + h̃B

n ⊗ h̃B
n

}
, (31)

where

hB
n (t) =

√
T

(2n + 1)π

(
cos((2n + 1)πt/T ) − 1,

sin((2n + 1)πt/T )

)
, h̃B

n (t) = JhB
n (t).

In particular
`B = 0.

Set

`1
(n) = 〈`, hB

n 〉 =
1√
T

∫ T

0

〈
d`

dt
(t),
(− sin((2n + 1)πt/T )

cos((2n + 1)πt/T )

)〉
R2

dt,

`2
(n) = 〈`, h̃B

n 〉 = − 1√
T

∫ T

0

〈
d`

dt
(t),
(

cos((2n + 1)πt/T )
sin((2n + 1)πt/T )

)〉
R2

dt,

`(n) =

(
`1
(n)

`2
(n)

)
,

and

gL(x;T, `) =



π3

2T 3

∞∑
n=0

(2n + 1)3|`(n)|2 exp [−(2n + 1)πx/T ] , x > 0

0, x = 0,
π3

2T 3

∞∑
n=1

(2n − 1)3|`(−n)|2 exp [−(2n − 1)πx/T ] , x < 0.

(32)

Then it is easily seen that

fB,`(x) =
1

2x sinh(πx/T )
+ gL(x;T, `), x ∈ R.

By virtue of this and (30), applying Theorem 2, we arrive at;

Proposition 16. It holds that∫
W 2

T

exp [iλ (sT + 〈·, `〉 + γ)] dµ2
T

= exp

[
iλγ +

∫
R

(
eiλx − 1 − iλx

)( 1
2x sinh(πx/T )

+ gL(x;T, `)
)

dx

]
, (33)

where gL is defined by (32)
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3.2.2

We next compute the Lévy measure of sT + 〈·, `〉 + γ under the conditional probability
µ2

T (·|w(T ) = y) given W (T ) = y, where ` ∈ H2
T , γ ∈ R, and y ∈ R2 .

Let η = {η1, η2} ⊂ W ∗, where ηi(w) = wi(T )/
√

T . Since y · η = ty/
√

T and 〈Jz, z〉R2 = 0 for
any z ∈ R

2 ,

〈B(y · η), (y · η)〉 −
2∑

n=1

〈Bηn, ηn〉 = 0, 〈(y · η), `〉 =
〈y, `(T )〉R2√

T
.

For any h, g ∈ (H2
T )(η)

0 , the identity 〈B(η)h, g〉 = 〈Bh, g〉 holds, and hence

d(B(η)h)
dt

(t) = J(h(t) − h̄), where h̄ =
1
T

∫ T

0
h(t)dt.

Then it is straightforward to see that

B(η) =
∑

n∈Z\{0}

T

2nπ

(
kB

n ⊗ kB
n + k̃B

n ⊗ k̃B
n

)
, (34)

where

kB
n (t) =

√
T

2nπ

(
cos(2nπt/T ) − 1

sin(2nπt/T )

)
, k̃B

n (t) = JkB
n (t).

Hence
{P (η)(B(y · η) + `)}B(η) = 0,

and it holds that

〈P (η)(B(y · η) + `), kB
n 〉 = 〈(y · η), BkB

n 〉 + ˜̀1
(n) = −Ty2

2nπ
+ ˜̀1

(n),

〈P (η)(B(y · η) + `), k̃B
n 〉 = 〈(y · η), Bk̃B

n 〉 + ˜̀2
(n) =

Ty1

2nπ
+ ˜̀2

(n),

where

˜̀1
(n) = 〈`, kB

n 〉 =
∫ T

0

〈
d`

dt
(t),

1√
T

(− sin(2nπt/T )
cos(2nπt/T )

)〉
R2

dt,

˜̀2
(n) = 〈`, k̃B

n 〉 =
∫ T

0

〈
d`

dt
(t),

1√
T

(− cos(2nπt/T )
− sin(2nπt/T )

)〉
R2

dt.

Setting ˜̀
(n) =

(
˜̀1
(n)

˜̀2
(n)

)
, we obtain

〈P (η)(B(y · η) + `), kB
n 〉2 + 〈P (η)(B(y · η) + `), k̃B

n 〉2

=
( T

2nπ

)2|y|2 +
T

nπ
〈˜̀(n), Jy〉R2 + |˜̀(n)|2. (35)
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Thus, if we put

g̃L(x;T, `, y)

=



1
2

∞∑
n=1

{
2
(2nπ

T

)2
〈˜̀(n), Jy〉R2 +

(2nπ

T

)3
|˜̀(n)|2

}
exp
[
−2nπx

T

]
, x > 0,

0, x = 0,
1
2

∞∑
n=1

{
−2
(2nπ

T

)2〈˜̀(−n), Jy〉R2 +
(2nπ

T

)3|˜̀(−n)|2
}

exp
[2nπx

T

]
, x < 0,

(36)

then, for x > 0, it holds that

fB(η),P (η)(B(y·η)+`)(x)

=
1
2

∞∑
n=1

2
x

exp[−2nπx/T ] +
1
2

∞∑
n=1

{T/(2nπ)}2|y|2
{T/(2nπ)}3

exp[−2nπx/T ] + g̃L(x;T, `, y)

=
1
x

exp[−2πx/T ]
1 − exp[−2πx/T ]

+
π|y|2

T

∞∑
n=1

n exp[−2nπx/T ] + g̃L(x;T, `, y)

=
1
x

1
exp[2πx/T ] − 1

+
π|y|2
4T

1
sinh2(πx/T )

+ g̃L(x;T, `, y),

where we have used the identity
∑∞

n=1 ne−nx = 1/{4 sinh2(x/2)}. Similarly, for x < 0, we have

fB(η),P (η)(B(y·η)+`)(x) =
1
|x|

1
exp[2π|x|/T ] − 1

+
π|y|2
4T

1
sinh2(πx/T )

+ g̃L(x;T, `, y).

Applying Theorem 4, we get to

Eµ2
T

[
exp

[
iλ

(
1
2
QB + 〈·, `〉 + γ

)] ∣∣∣∣η(w) = y

]
= exp

[
iλ
(〈y, `(T )〉R2√

T
+ γ
)

+
∫
R

(
eiλx − 1 − iλx

){ 1
|x|

1
exp[2π|x|/T ] − 1

+
π|y|2
4T

1
sinh2(πx/T )

+ g̃L(x;T, `, y)
}

dx

]
.

Since η(w) = w(T )/
√

T , combined with (30), this yields:

Proposition 17. It holds that

Eµ2
T

[
exp [iλ (sT + 〈·, `〉 + γ)]

∣∣∣∣w(T ) = y

]
= exp

[
iλ
{〈y, `(T )〉R2

T
+ γ
}

+
∫
R

(
eiλx − 1 − iλx

)
fL(x;T, `, y)dx

]
,

where

fL(x;T, `, y) =
1

|x|{exp[2π|x|/T ] − 1} +
π|y|2
4T 2

1
sinh2(πx/T )

+ g̃L(x;T, `, y/
√

T ),

and g̃L is given by (36)

21



3.2.3

We finally consider the exponential decay of the characteristic function of sT + 〈·, `〉 + γ under
µ2

T and µ2
T (·|w(T ) = y).

As was seen in §3.2.1, the corresponding Hilbert-Schmidt operator B possesses eigenvalues
{T/[(2n + 1)π];n ∈ Z} and each of them is of multiplicity 2. By Theorem 7 and Lemma 10,
there exist C1 > 0 and λ1 > 0 such that∣∣∣∣∣

∫
W 2

T

exp [iλ (sT + 〈·, `〉 + γ)] dµ

∣∣∣∣∣ ≤ exp[−C1λ] (37)

for every λ ≥ λ1, γ ∈ R.

Let η1(t) =
(

t/
√

T
0

)
, η2(t) =

(
0

t/
√

T

)
, and η = {η1, η2}. As was shown in §3.2.2, the Hilbert-

Schmidt operator B(η) has eigenvalues {(T/(2nπ));n ∈ Z \ {0}}, each of them being of multi-
plicity 2. Since η(w) = w(T )/

√
T , by Theorem 7 and Lemma 10, there exist C2 > 0 and λ2 > 0

such that ∣∣∣Eµ2
T

[
exp [iλ (sT + 〈·, `〉 + γ)]

∣∣w(T ) = y
]∣∣∣ ≤ exp[−C2λ] (38)

for every λ ≥ λ2, γ ∈ R.

As in the previous subsection, when ` = 0 and γ = 0, it is well known ([12] and [8, pp.470–473])
that ∫

W 2
T

exp[iλsT ]dµ2
T =

1
cosh(λT/2)

,

and

Eµ2
T

[
exp[iλsT ]

∣∣w(T ) = y
]

=
λT/2

sinh(λT/2)
exp

[(
1 − λT

2
coth

(λT

2

)) |y|2
2T

]
.

Thus our estimations (37) and (38) coincide with the order obtained from these precise expres-
sions.

We can give explicit expressions for the Mellin transforms of the Lévy measures σT and σT,y

of the distributions of sT under µ2
T and the conditional probability measure µ2

T ( · |w(T ) = y),
respectively. Namely, noting that

σT (dx) = fB,0(x)dx, σT,y(dx) = fB(η),P (η)(B((y/
√

T )·η))(x)dx,

and then plugging (31), (34), and (35) into (12), we obtain:

Proposition 18. The Mellin transforms of σT and σT,y are given by∫
R

|x|sσT (dx) =
(

T

π

)s 2s − 1
2s−1

Γ(s)ζ(s)

and ∫
R

|x|sσT,y(dx) = 2
(

T

2π

)s

Γ(s)ζ(s) +
|y|2
T

(
T

2π

)s

Γ(s + 1)ζ(s), s ≥ 2,

respectively.

See [1, 15] for the related topics.
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3.3 Sample variance

Let T > 0 and (W 1
T ,H1

T , µ1
T ) be the two-dimensional classical Wiener space over [0, T ]. In this

subsection, we consider the sample variance

vT (w) =
∫ T

0
(w(t) − w̄)2 dt, w ∈ W 1

T , where w̄ =
1
T

∫ T

0
w(t)dt.

3.3.1

We first compute the Lévy measure of 1
2vT + 〈·, `〉+ γ under µ1

T by applying Theorem 2, where
` ∈ H1

T and γ ∈ R.

Define a symmetric Hilbert-Schmidt operator C : H1
T → H1

T by

d(Ch)
dt

(t) =
∫ T

t
(h(s) − h̄)ds h ∈ H1

T , t ∈ [0, T ].

Since vT (w) = hT (w) − T w̄2, due to the observation made at the beginning of §3.1.1, we have
that vT ∈ C2(W 1

T ) ⊕ C0(W 1
T ). It is easily seen that ∇2vT = 2C and

∫
W 1

T
vTdµ1

T = T 2/6. By
Remark 3 (iii), we have

vT = QC +
T 2

6
. (39)

It is a straightforward computation to see that

C =
∞∑

n=1

(
T

nπ

)2

hC
n ⊗ hC

n , where hC
n (t) =

√
2T

nπ

{
cos
(nπt

T

)
− 1
}

.

Hence `C = 0. Define ˜̀(t) =
∞∑

n=1

〈`, hC
n 〉kA

n (t), t ∈ [0, T ], (40)

where {kA
n }∞n=1 is the orthonormal basis of (H1

T )(η)
0 defined in (23). Comparing the above

expansion of C with that of A(η) in (23), and recalling the definition of fA,`, we obtain

fC,` = f
A(η),˜̀

= f
A(η),P (η)˜̀.

In conjunction with (25) and (39), Theorem 2 and Proposition 14 lead us to:

Proposition 19. It holds that∫
W 1

T

exp
[
iλ

(
1
2
vT + 〈·, `〉 + γ

)]
dµ1

T

= exp
[
iλ

(
γ +

T 2

12

)
+
∫ ∞

0

(
eiλx − 1 − iλx

)
fH(x;T, ˜̀, 0)dx

]
,

where fH is the function defined in Proposition 14, and ˜̀ is given by (40). In particular, the
distribution of 1

2vT+〈·, `〉+γ under µ1
T coincides with that of 1

2hT +〈·, ˜̀〉+γ under µ1
T (·|w(T ) = 0).
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3.3.2

We next compute the Lévy measure of 1
2vT + 〈·, `〉 + γ under the conditional probability

µ2
T (·|w(T ) = y) given W (T ) = y, where ` ∈ H1

T , γ ∈ R, and y ∈ R1 .

Set η1(w) = w(T )/
√

T , w ∈ W 1
T , and η = {η1}. Observe that

〈C(y · η), (y · η)〉 − 〈Cη1, η1〉 =
(y2 − 1)T 2

12
, 〈(y · η), `〉 =

y`(T )√
T

.

By straightforward computations, we obtain

d(C(η)h)
dt

(t) =
∫ T

t
(h(s) − h̄)ds − 1

T

∫ T

0

(∫ T

s
(h(u) − h̄)du

)
ds, h ∈ (H1

T )(η)
0 ,

and

C(η) =
∞∑

n=1

( T

2nπ

)2 {
kC

n ⊗ kC
n + k̃C

n ⊗ k̃C
n

}
,

where

kC
n (t) =

√
2T

2nπ
sin
(2nπt

T

)
, k̃C

n (t) =
√

2T
2nπ

(
cos
(2nπt

T

)
− 1
)

.

In particular,

{P (η)(C(y · η) + `)}C(η) = 0 and fC(η),P (η)(C(y·η)+`)(x) = 0, x ≤ 0.

Moreover it holds that

〈P (η)(C(y · η) + `), kC
n 〉 = −

√
2y
(

T

2nπ

)2

+ 〈`, kC
n 〉, 〈P (η)(C(y · η) + `), k̃C

n 〉 = 〈`, k̃C
n 〉.

Hence, for x > 0,

fC(η),P (η)(C(y·η)+`)(x) =
1
2

∞∑
n=1

{
2
x

+ 2y2

(
2nπ

T

)2

− 23/2y

(
2nπ

T

)4

〈`, kC
n 〉

+
(

2nπ

T

)6 (
〈`, kC

n 〉2 + 〈`, k̃C
n 〉2
)}

e−(2nπ)2x/T 2

=
1
2x

{
Θ
(4π2x

T 2

)
− 1
}
− 2π2y2

T 2
Θ′
(4π2x

T 2

)
+ gV (x;T, `, y),

where

gV (x;T, `, y) =
1
2

∞∑
n=1

{
−23/2y

(
2nπ

T

)4

〈`, kC
n 〉

+
(

2nπ

T

)6 (
〈`, kC

n 〉2 + 〈`, k̃C
n 〉2
)}

e−(2nπ)2x/T 2
. (41)

Recalling (39), and applying Theorem 4 and Proposition 14, we can conclude:
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Proposition 20. It holds that

Eµ1
T

[
exp

[
iλ

(
1
2
vT + 〈·, `〉 + γ

)] ∣∣∣∣w(T ) = y

]
= exp

[
iλ

(
Ty2

24
+

T 2

24
+

y`(T )
T

+ γ

)
+
∫ ∞

0

(
eiλx − 1 − iλx

)
fV (x;T, `, y)dx

]
,

where

fV (x;T, `, y) =
1
2x

{
Θ
(4π2x

T 2

)
− 1
}
− 2π2y2

T 3
Θ′
(4π2x

T 2

)
+ gV (x;T, `, y/

√
T ),

and gV is given by (41). Moreover, the distribution of vT/2 under the conditional proba-
bility µ1

T (·|w(T ) = y) coincides with the one of {hT/2 + h′T/2}/2 under the product measure

µ1
T/2(·|w(T/2) = 0)⊗ µ1

T/2(·|w(T/2) = y/
√

2), where h′T/2 denotes an independent copy of hT/2.

3.3.3

We finally consider the exponential decay of the characteristic function of 1
2vT + 〈·, `〉+ γ under

µ1
T and µ1

T (·|w(T ) = y).
As was seen in §3.3.1, the corresponding Hilbert-Schmidt operator C possesses eigenvalues
{(T/[nπ])2;n ∈ N}, each of them being of multiplicity 1, and `C = 0. By Theorem 7, Lemma 10,
and (39), there exist C1 > 0 and λ1 > 0 such that∣∣∣∣∣

∫
W 1

T

exp
[
iλ

(
1
2
vT + 〈·, `〉 + γ

)]
dµ

∣∣∣∣∣ ≤ exp[−C1λ
1/2] (42)

for every λ ≥ λ1, γ ∈ R.
Let η1(t) = t/

√
T and η = {η1}. As was shown in §3.3.2, the Hilbert-Schmidt operator C(η)

has eigenvalues {(T/(2nπ))2;n ∈ N}, each of them being of multiplicity 2, and {P (η)(C(y · η) +
`)}C(η) = 0. Since η(w) = w(T )/

√
T , by Theorem 7, Lemma 10, and (39), there exist C2 > 0

and λ2 > 0 such that∣∣∣∣Eµ1
T

[
exp

[
iλ

(
1
2
vT + 〈·, `〉 + γ

)] ∣∣w(T ) = y

]∣∣∣∣ ≤ exp[−C2λ
1/2] (43)

for every λ ≥ λ2, γ ∈ R.
When ` = 0 and γ = 0, combining the results in Propositions 19 and 20 with (29), we can show
the following explicit expressions of the Laplace transforms for the distributions of vT ; for λ > 0,∫

W 1
T

exp
[
−1

2
λvT

]
dµ1

T =

( √
λT

sinh(
√

λT )

)1/2

and

Eµ1
T

[
exp

[
−1

2
λvT

] ∣∣∣∣w(T ) = y

]
=

√
λT/2

sinh(
√

λT/2)
exp

[(
1 −

√
λT

2
coth

(√
λT

2

))
y2

2T

]
.

From these expressions, we see, in the same way as in §3.1.3, that our estimates (42) and (43)
coincide with the order obtained from the explicit expressions.
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3.4 Density functions

Let T > 0 and consider the classical two-dimensional Wiener space (W 2
T ,H2

T , µ2
T ) over [0, T ]. In

this subsection, as an application of Theorem 11, we show a way to obtain the explicit expressions
of the densities of the distributions of Lévy’s stochastic area and the square of the L2-norm on
an interval of the two-dimensional Wiener process. We also compute the Mellin transforms of
the distributions. For the related topics, see [1, 15].

3.4.1 Lévy’s stochastic area

By (30), (31), and Theorem 11(i), we see that the distribution of sT under µ2
T admits a smooth

density function pL with respect to the Lebesgue measure on R, and that the corresponding
Hilbert-Schmidt operator B satisfies

det2(I − iζB̂) =
∞∏

n=0

{
1 +

ζ2T 2

(2n + 1)2π2

}
= cos(iζT/2).

Define a simple curve Γn = {γn(t) : t ∈ [0, 4Rn]} in C with Rn = 4nπ/T by

γn(t) =


−Rn + it, t ∈ [0, Rn],
t − 2Rn + iRn, t ∈ [Rn, 3Rn],
Rn + i{4Rn − t}, t ∈ [3Rn, 4Rn].

Let x < 0. By a straightforward computation, we can show that Γn satisfies the conditions in
Theorem 11(ii) and conclude that

pL(x) = i
∞∑

n=0

Res
(

e−iζx

cos(iζT/2)
; i

(2n + 1)π
T

)

=
2
T

∞∑
n=0

(−1)ne(2n+1)πx/T =
1

T cosh(πx/T )
.

For x > 0, the complex conjugate Γn plays the same role as Γn, and we obtain

pL(x) = −i

∞∑
n=0

Res
(

e−iζx

cos(iζT/2)
;−i

(2n + 1)π
T

)
=

1
T cosh(πx/T )

.

Let η = {η1, η2}, where η1(t) =
(

t/
√

T
0

)
and η2(t) =

(
0

t/
√

T

)
. Then η(w) = w(T )/

√
T . By

(34) and Remark 12(ii), the distribution of sT under µ2
T (·|w(T ) = 0) admits a smooth density

function p̃L with respect to the Lebesgue measure on R, and it holds that

det2(I − iζB̂(η)) =
∞∏

n=1

{
1 +

ζ2T 2

4n2π2

}
=

sin(iζT/2)
iζT/2

.
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Using the same Γn’s as above, this time with Rn = (4n + 1)π/T , and then applying Theo-
rem 11(ii), we can show that

p̃L(x) = i

∞∑
n=1

Res
(

e−iζx(iζT/2)
sin(iζT/2)

; i
2nπ

T

)

=
2π
T

∞∑
n=1

(−1)n+1ne−2nπ|x|/T =
π

2T cosh2(πx/T )
, x < 0.

For x > 0, the complex conjugate Γn plays the same role as Γn, and we obtain

p̃L(x) = −i

∞∑
n=1

Res
(

e−iζx(iζT/2)
sin(iζT/2)

;−i
2nπ

T

)
=

π

2T cosh2(πx/T )
.

Thus we have:

Proposition 21. It holds that

µ2
T (sT ∈ dx) =

1
T cosh(πx/T )

dx, µ2
T (sT ∈ dx|w(T ) = 0) =

π

2T cosh2(πx/T )
dx.

Moreover, their Mellin transforms are given by∫
W 2

T

|sT |sdµ2
T =

4T s

πs+1
Γ(s + 1)Lχ4(s + 1), s > −1

2

Eµ2
T
[|sT |s|w(T ) = 0] =

(
T

π

)s 2s−1 − 1
22(s−1)

Γ(s + 1)ζ(s), s >
1
2
,

where Lχ4 is Dirichlet’s L-function given by Lχ4(s) =
∑∞

n=0(−1)n(2n + 1)−s.

Proof. We have already seen the first half. The last half is immediate consequence of the
representations of pL and p̃L in the form of infinite sums.

The densities of sT under µ2
T and µ2

T (·|w(T ) = 0) are first computed by Lévy ([12]).

3.4.2 L2-norm on an interval of the two-dimensional Wiener process

Put

h
(2)
T (w) =

∫ T

0
|w(t)|2dt, w ∈ W 2

T .

Since h
(2)
T is a sum of two independent copies of hT coming from w1 and w2, due to the obser-

vations made in §3.1.1, we see that the Hilbert-Schmidt operator D : H2
T → H2

T associated with
h
(2)
T /2 has eigenvalues {(T/[(n + 1

2)π])2 : n = 0, 1, . . . }, each being of multiplicity 2, and hence

det(I − iζD̂) =
∞∏

n=0

{
1 − iζ

(
T(

n + 1
2

)
π

)2
}

= cos(
√

iζ T ),
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and that h
(2)
T /2 = qD/2. By Theorem 11(iii), the distribution of h

(2)
T /2 under µ2

T admits a
smooth density function pH with respect to the Lebesgue measure on R. Consider a simple curve
Γn = {−i(Rn + it)2 : t ∈ [−Rn, Rn]} in C with Rn = 2nπ/T . Let x > 0. By a straightforward
computation, we can show that Γn satisfies the conditions in Theorem 11(ii) and conclude that

pH(x) = −i

∞∑
n=0

Res

(
e−iζx

cos(
√

iζ T )
;−i

((
n + 1

2

)
π

T

)2
)

=
π

T 2

∞∑
n=0

(−1)n(2n + 1)e−(2n+1)2π2x/(4T 2) =
1

2T 2
ϑ′

1(0|ixπ/T 2),

where ϑ1(u|τ) denotes the theta function of the first kind with parameter τ ,

ϑ1(u|τ) = 2
∞∑

n=0

(−1)neτπi(n+1/2)2 sin[(2n + 1)πu],

and ϑ′
1 stands for the first derivative in u. Obviously, pH(x) = 0 if x < 0.

Let η = {η1, η2}, where η1(t) =
(

t/
√

T
0

)
and η2(t) =

(
0

t/
√

T

)
. Due to the observations made

in §3.1.2, D(η) : H2
T → H2

T has eigenvalues {(T/[nπ])2 : n = 1, 2, . . . }, each being of multiplicity
2, and hence

det(I − iζD̂(η)) =
∞∏

n=1

{
1 − iζ

(
T

nπ

)2
}

=
sin(

√
iζ T )√

iζ T
.

By Remark 12(iii), the distribution of h(2)
T /2 under µ2

T (·|w(T ) = 0) admits a smooth density
function p̃H with respect to the Lebesgue measure on R. Let Rn =

(
2n + 1

2

)
π/T , and consider

the same curves {Γn;n ∈ N} as above and x > 0. By a straightforward computation, we can
show that Γn satisfies the conditions in Theorem 11(ii) and conclude that

p̃H(x) = −i
∞∑

n=1

Res

(√
iζ Te−iζx

sin(
√

iζ T )
;−i

(
nπ

T

)2
)

= 2
(

π

T

)2 ∞∑
n=1

(−1)n+1n2e−(nπ/T )2x =
1

4T 2
ϑ′′

4(0|ixπ/T 2),

where ϑ4(u|τ) denotes the theta function of the fourth kind with parameter τ ,

ϑ4(u|τ) = 1 + 2
∞∑

n=1

(−1)neτπin2
cos(2nπu),

and ϑ′′
4 stands for the second derivative in u. Obviously, p̃H(x) = 0 if x < 0.

Thus we have:

Proposition 22. It holds that

µ2
T

(
h
(2)
T /2 ∈ dx

)
=

1
2T 2

ϑ′
1(0|ixπ/T 2)X(0,∞)(x)dx,

µ2
T

(
h
(2)
T /2 ∈ dx

∣∣w(T ) = 0
)

=
1

4T 2
ϑ′′

4(0|ixπ/T 2)X(0,∞)(x)dx.
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Moreover, their Mellin transforms are given by∫
W 2

T

(
h
(2)
T /2

)s
dµ =

22s+2T 2s

π2s+1
Γ(s + 1)Lχ4(2s + 1), s > −1

4
,

Eµ2
T

[(
h
(2)
T /2

)s∣∣w(T ) = 0
]

= 2
(

T

π

)2s

Γ(s + 1)(1 − 21−2s)ζ(2s), s >
1
4
.

Proof. We have already seen the first half. The last half is immediate consequence of the
representations of pH and p̃H in the form of infinite sums.
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