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Abstract
We prove that a large set of long memory (LM) processes (including classical LM processes
and all processes whose spectral densities have a countable number of singularities controlled
by exponential functions) are obtained by an aggregation procedure involving short memory
(SM) processes whose spectral densities are infinitely differentiable (C∞). We show that the
C∞ class of spectral densities infinitely differentiable is the best class to get a general result for
disaggregation of LM processes in SM processes, in the sense that the result given in C∞ class
cannot be improved by taking for instance analytic functions instead of indefinitely derivable
functions.

1 Introduction

Let X be a stochastic second-order stationary process with covariance function γ and density
spectral F . We define

‖γ‖ =
∞∑

k=0

|γ(k)|.

If ‖γ‖ < ∞, we say that the process is SM and if ‖γ‖ = ∞, we say that the process is LM.
The long memory is generally associated to the singularities of the spectral density F .

The most important LM processes used in applications are obtained by a model of aggrega-
tion, see [2, 3, 5, 6, 8, 9, 11]. This is the case in finance, hydrology or communication networks.
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By aggregations, we mean the following procedure: let Zi = {Zi
t(Y

i(ω), ω′), t ∈ T} be doubly
stochastic elementary processes centered second-order stationary, whose structure is driven by
Y = {Y i, i ∈ N}, an ergodic process with distribution ν. The aggregation of the elementary
processes {Zi} is possible if there exists a summation-normalization procedure which converges
in the following way: for every fixed trajectory of Y , let XN (Y ) = {XN

t (Y ), t ∈ T} of partial
aggregations of elementary processes {Zi}, defined by

XN
t (Y ) =

1√
BN

N∑
i=1

Zi
t(Y

i), (1)

where BN is a sequence of real numbers such that BN → ∞, and the sequence of partial
aggregation {XN (Y )} converges ν − a.s. in distribution to a process X, independent of Y ,
which is called the aggregation of the elementary processes {Zi}.

By disaggregation, we mean the inverse problem. Let X a given stochastic process. Is there
a sequence of elementary process {Zi} driving an ergodic process Y and a sequence {BN}
such that the sequence {XN (Y )} converges in distribution to X for almost all trajectory Y .
Disaggregation existence can allow to consider X, for instance in a statistic mechanics con-
text, as an observable macro-process resulting of a suitable mean of the {Zi}, non necessarily
observable micro-processes; and in some cases, disaggregation allows to understand how LM
could be generated.

Of course the previous framework is too general. We investigate here only a very particular
situations. We consider that X is a given centered stationary process with spectral density
F . Let G be a class of centered second-order stationary processes, we denoted by G the class
of the corresponding spectral densities. Then, there exists a disaggregation of X on G iff the
sequence {XN (Y )} converges in distribution to X for almost all trajectory Y , with Zi(Y i) ∈ G
and Y is an ergodic process with stationary distribution ν. We study in detail the following
two cases:

1. The {Zi(Y i), i ∈ N} is a sequence of independent elementary processes. In this case, we
prove in [2] that necessarily BN is equivalent to

√
N .

2. The {Zi(Y i), i ∈ N} is a sequence of linear gaussian elementary processes with the same
innovation process ε = {εt, t ∈ T} independent of Y , then BN is equivalent to N , [2].

Intermediate cases, with interactive elementary processes {Zi} can be also considered, see [2].
We do not detail here this situation.

Let µ be the common distribution of Y i, i.e. ν = µ
N

N. From [2], it can be seen that the
existence of a disaggregation for the case 1 is equivalent to the existence of a representation of
F as a mixture

F (λ) =
∫

g(λ, y)dµ(y), (2)

with g(λ, y) ∈ G µ − a.s. and for the case 2 is equivalent to the existence of a representation
of the spectral density as

F1(λ) =
∣∣∣∣∫ h(λ, y)dµ(y)

∣∣∣∣2 , (3)

with g(λ, y) = |h(λ, y)|2 ∈ G µ− a.s..
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Remark 1 When we consider interactive elementary processes the spectral density of the ag-
gregated process is always a positive convex combination of the form aF + bF1. So the results
in these cases can be deduced from the two previous cases.

Let G be a class of spectral densities and let M(G) denotes the set of mixtures, given by
(2), of spectral densities g(λ, y) belonging to G. M1(G) denotes the set of mixture, given
by (3), of transfer functions h(λ, y) such that |h|2 ∈ G. We say that a process with spectral
density F (λ) can be disaggregated into elementary processes with spectral densities in G iff
F ∈ M(G)

⋃
M1(G); equivalently by disaggregation in G, we understand the existence of

a representation of a given process as an aggregation of elementary processes with spectral
densities belonging to G. Under previous considerations, the disaggregation problem is then
equivalent to the following question: when do we have F ∈M(G) or F ∈M1(G) for F and G
given?

What are the ”interesting” choices of G? Small classes G with exponentially decreasing co-
variances as AR(p) class of spectral densities of AR(p) processes ( p-order autoregressive
processes), OU(p) class of spectral densities of OU(p) processes, (p-order Ornstein-Uhlenbeck
processes), or the class A of analytical spectral densities have nice analytical and practical
properties (for instance for simulation). We show that disaggregation in these classes needs
very specific properties of F , properties which are not related with singularities and LM; for
instance the conditions for the existence of a disaggregation on AR(1) class, the set of AR(1)
processes, are related to specific algebraic properties of F , for instance to be a Mellin trans-
form. A known example is the disaggregation of the FARIMA(d) process on AR(1), see [9]. A
more general development of the disaggregation on AR(p), the set of AR(p) processes is given
in [3] where we also show results of disaggregation, for continuous time processes on OU(p),
the set of OU(p) processes.

We address the disaggregation procedure in SM processes and on subclasses G for which the
covariances decrease as fast as possible. We prove that a very large set of stationary processes,
whose spectral densities have singularities of different kinds, can be disaggregated by involving
processes whose spectral densities are in C∞ (or in CH , with H ∈ N). We get general results
for F ∈ CH , H ≤ ∞, except in a countable set of singularities; we conjecture that we are
close to a kind of necessary and sufficient condition for a density to be in M(C∞). Classical
LM processes are included in this set, for instance processes whose spectral densities F have
a single singularity where F and its derivatives are explicitly controlled by functions with ex-
ponential growth.

In section 2, we study disaggregation using multiplicative kernels and elementary densities
roughly of the form g(λ, y) = F (λ)K(yφ(λ)), where K ◦ φ is a kernel such that at each singu-
larity λ0 of F we have F (λ0)K(yφ(λ0)) = 0 as well as for all its derivatives. The C∞ behavior
of K ◦ φ drives the C∞ behavior of g(λ, y). For instance, if we consider the AR(1) class then
K(y) = 1

1+y and φ(λ) = 1− cosλ.

In section 3, we study the following representation

F (λ) =
∫

F (λ)φ(λ)K(yφ(λ))dy,

where F is singular at λ0 = 0 and g(λ, y) = F (λ)φ(λ)K(yφ(λ)) ∈ C∞. Thus, under suitable
conditions, we get F ∈ M(C∞) for a large class of densities with singularities. The main
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theorem extends the previous ideas to F with a countable set Λs of singularities. If these
singularities are controlled (by very weak conditions) then for F ∈ CH on Λc

s we have that
F ∈M(CH).

In section 4, we study extreme cases. We prove that F ∈ M(C) iff it is lower semi contin-
uous (l.s.c.). We give then an example of LM process which cannot be disaggregated in SM
processes. We should call such a situation as a ”hard” long memory but we are in almost
pathological situations. Then we detail the disaggregation on A class of analytical functions
to show how A and C∞ play a different role. Disaggregation on C∞ is linked to very weak
analytical properties much easier to be satisfied by F than the algebraic properties required
by disaggregation on A. We give examples of C∞ functions that can not be disaggregated on
the class A. The boundary between C∞ and A is very clear, a function in C∞ which is zero at
some frequency λ can be disaggregated in A iff it belongs to A.

Finally, in section 5 we consider the disaggregation procedure for the case of non-independent
elementary processes and present some other considerations.

2 Disaggregation using Multiplicative Kernels

Let K(y) be a positive kernel, y ∈ R, µ a bounded measure such that K(τy) ∈ L1(µ) for every
τ ∈ R. Let G be a given class of spectral densities, we suppose there exists a function φ(λ)
defined on Λ, where Λ = (−π, π] in the case of discrete process and Λ = R in the continuous
case, such that K(φ(λ)y) ∈ G for every y ∈ R.

We say that F is disaggregated on G by means of the multiplicative kernel K(φ(λ)y) if

F (λ) =
∫

K(φ(λ)y)dµ(y),

with K(φ(λ)y) ∈ G, or if µ̂ is the K-transform, i.e. µ̂(τ) =
∫

K(τy)dµ(y) then F (λ) = µ̂(φ(λ)).

Example 1 We consider the AR(1) class, then the K-transform is the Mellin transform

µ̂(τ) =
∫

dµ(y)
1 + τy

, and φ(λ) = 1− cosλ.

The density of the AR(1) process with parameter ρ is g(λ, ρ) = 1
1−2cosλ+ρ2 . Let y = 2ρ

(1−ρ)2 ,
from where g(λ, ρ(y)) = 1

(1−ρ(y))2(1+y(1−cosλ)) . Then F ∈ AR(1) is equivalent to

F (λ) =
∫ 1

−1

dν(ρ)
1− 2ρcosλ + ρ2

,

for some bounded measure ν. Let ν̄ be the image of ν by the application y = 2ρ
(1−ρ)2 and

dµ(y) = dν̄(y)
(1−ρ(y))2 so that we can rewrite F as

F (λ) =
∫

dµ(y)
1 + y(1− cosλ)

.

Details on the integrability condition for dµ(y) are given in [3, 5] with the characterization of
F , for instance the with Toeplitz and Hankel matrix properties. The disaggregation on AR(1)
is unique when it exists.
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Example 2 Let Gexp = {e−|λ|y, y ∈ R+}, so if there exists φ(λ) such that F (λ) = µ̂(φ(λ)),
where µ̂ is the Laplace transform of the bounded measure µ, then F ∈M(Gexp). In particular,
if there exists φ a monotone positive function such that F (φ(λ)) is a Laplace transform, then
F (λ) can be written as

∫
e−φ(λ)ydµ(y).

Example 3 This example will introduce the main theorem of this paper. We take F ∈ C∞

for every λ except at λ = 0. Let K a kernel infinitely differentiable such that K(j)(0) = 0 for
every j ∈ N∗,

∫
K(y)dy = 1 and K(y) = K(−y).

Let g∗(λ, y) = φ(λ)K(φ(λ)y)F (λ), then

F (λ) =
∫

g∗(λ, y)dy =
∫

g∗(λ, y)
σ(y)

σ(y)dy,

for any σ(y) ∈ L1(dy) and σ > 0. We can extend the definition of mixtures of spectral densities,
given in (2), taking an unbounded measure, as the Lebesgue measure dy. In this case we can
consider that we take a strictly positive density of probability σ(y) and µ(y) the respective
probability distributions, i.e. dµ(y) = σ(y)dy. Then we can rewrite F as the mixture of the
spectral densities g∗(λ, y)σ−1(y) by the measure mixture µ. Thus, if φ(λ)K(φ(λ)y)F (λ) ∈ C∞
then by taking g(λ, y) = g∗(λ, y)σ−1(y) we have that F ∈M(C∞).

Lemma 1 g(λ, y) ∈ C∞ is implied by the following conditions:

1. For every j ∈ N, F (j)(λ) ≤ Cje
1
|λ|q for |λ| < ε, λ 6= 0 and for some 0 < q < 1. In this

case we say that the singularity is exponentially controlled.

2. φ(λ) = 1
|λ|p , with 0 < q < p < 1.

These conditions imply that limλ→0 F (k)(λ)φ(l)(λ)K(m)(φ(λ)y) = 0, for every (k, l,m) ∈ N3

and this implies g ∈ C∞.

3 Disaggregation of LM Processes on C∞ Class

Long memory of a process with spectral density F is in general associated to singularities of F
or of some of its derivatives at a frequency λ0. Singularities are often classified as a first order
when a one-side limit exists and second order singularity when the function has no limit at λ0 or
not limit at λ0 exists (the function being bounded or not, with bounded variation or not, etc).
We try to take into account most of these situations. Our main purpose is to obtain, for a class
as broad as possible, including all classical examples but not limited to more or less explicit
densities, a disaggregation on elementary processes with the best possible decay of correlations.

We are lead to work mainly with G = C∞ (resp. CH) the class of all spectral densities belonging
to C∞ (resp. CH , for H ∈ N). An equivalent property is that the covariance function γ, of
F ∈ C∞, is rapidly decreasing in the sense that nj |γ(n)| tend to 0 as n →∞, for every j ∈ N,
see ([4], p. 34). If F ∈ CH then nj |γ(n)| tend to 0 as n →∞, for every j ≤ H, in this case the
reciprocal is false, nevertheless we can prove that F ∈ CH−2. For 1 ≤ H ≤ ∞ given and for
a function F ∈ CH except for a finite or countable set of frequencies, we get a disaggregation
on CH class. The disaggregation on the class C∞ is easier to reach than a disaggregation on
the SM class.

The next definition extends the Example 3 given in the section 2.
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Definition 1 Let Λs ⊂ Λ be a finite set of frequencies and 1 ≤ H ≤ ∞, we define GH
Λs

as the
set of spectral densities in CH which are 0 on Λs as are all their H derivatives. If Λs = {0}
we denote GH

Λs
by GH

0 .

Let K a kernel infinitely differentiable such that
∫

K(y)dy = 1 and K(y) = K(−y) and let φ
be a positive function on Λ. Let g(λ, y) = φ(λ)K(φ(λ)y)F (λ)σ−1(y), where σ(y) is a strictly
positive density of probability and dµ(y) = σ(y)dy, then F (λ) =

∫ g(λ,y)
d µ(y). The pair [K;φ]

should be called a killer kernel, as it annihilates the singularities of f . The generic situation is
given by the formula F (λ0)φ(λ0)K(φ(λ0)y)σ−1(y) = limλ→λ0 F (λ)φ(λ)K(φ(λ)y)σ−1(y) = 0
for every y ∈ R, even if F (λ0) = ∞. Therefore, F is the µ-mixture of {g(λ, y)} ⊂ GH

Λs
.

Let us give some examples of disaggregation of a function F with a single singularity at λ0.
We consider the standard situation where F and its derivatives are explicitly controlled by
functions with exponential growth.

Example 4 Let F (λ) = 1(−λ0,λ0)(λ) for λ0 ∈ Λ, φ(λ) = 1/|λ2 − λ2
0|p with 0 < p < 1, and

K(y) = e−y. In this case it is straight forward to check that g(λ, y) ∈ G∞{−λ0,λ0}, since all
derivatives of g are 0 for |λ| = λ0.

Example 5 Let F (λ) = |1−cos(λ−λ0)|−d, 0 < d < 1, λ ∈ Λ = (−π, π]. We keep K(y) = e−y

and φ(λ) = 1/|λ − λ0|p with 0 < p < 1. All derivatives of F at λ = λ0 are controlled by a
negative power of |λ− λ0| and so g(λ, y) ∈ GH

λ0
. The same properties can be easily checked for

a strongly oscillating function F as cos(π(λ − λ0))/|λ − λ0|q, for 0 < q < 1. thus for these
kinds of controlled singularities, we show that F ∈M(GH

λ0
) ⊂M(C∞).

Definition 2 Let F be a spectral density. We say that F ∈ SH , 1 ≤ H ≤ ∞, if F has a
continuous H derivative at every frequency except for a finite set Λs = {λj , j ∈ J} and if there
exists q, 0 < q < 1, and a, 0 < a < 1, such that for all j ∈ J and for all l ≤ H

lim
λ→λj

exp
(
− a

|λ− λj |q

)
|F (l)(λ)| = 0.

If Λs is a countable infinite set instead of finite and has only a finite number of accumulation
points, then we say that F ∈ TH .

We state now a theorem for a general situation.

Theorem 1 Let F ∈ SH , 1 ≤ H ≤ ∞, then F ∈M(GH
Λs

) ⊂M(CH).

Proof. Let φ(λ) =
∏

j∈J |λ− λj |−p, K(y) = e−y and g(λ, y) = F (λ)φ(λ)K(φ(λ)y)σ−1(y),
where σ(y) is a strictly positive density of probability. Then F (λ) =

∫
g(λ, y)dµ(y) with

dµ(y) = σ(y)dy. We choose p such that 0 < q < p < 1. If Ψ(λ, y) = φ(λ)K(φ(λ)y) then for all
the l-derivatives of g, l ≤ H, we show that there exist constants bl, Cl and ml such that

∣∣∣g(l)(λ, y)
∣∣∣ =

∣∣∣∣∣σ−1(y)
l∑

k=0

Ck,lF
(k)(λ)Ψ(l−k)(λ, y)

∣∣∣∣∣ ≤ Cl|σ−1(y)||Ψ(λ, y)|mle

“
−

P
j∈J

abl
|λ−λj |q

”
.

So g(λ, y) ∈ GH
Λs

and F ∈M(GH
Λs

) ⊂M(CH). �
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Example 6 If F (λ) = |λ|−d, λ ∈ Λ = R, −1 < d < 1, F is the spectral density of continuous
fractional Gaussian noise. Then |F (l)(λ)| = O(1/|λ|d+l) and the conditions of Theorem 1 are
satisfied.

The next theorem is an extension of the previous one. Its proof follows the same steps of
Theorem 1 but uses a localization required when Λs is a countable infinite set.

Theorem 2 Theorem 1 remains valid if F ∈ TH .

Proof. Suppose, in order to simplify notations, that Λs is an infinite countable set with
only one accumulation point. The general case can be easily obtained by re-indexing Λs points
using the partition of Λ defined by the points of accumulation of Λs and then applying the
same proof. We can thus suppose Λs = {λj , j ≥ 1}, with λj < λj+1 for every j ∈ N.

We build in the same way as previously a family of functions gΛs(λ, y), multiplying F by a
killer kernel [K;φΛs ](λ, y) that annihilates the points of discontinuity of F .

Let us note a = inf Λs, b = supΛs and λ∞ = limj→∞ λj = supj λj . Let be p such that
0 < q < p < 1, and we consider

[K, φ0](λ, y) =
1

|λ− λ1|p
exp

(
− y

|λ− λ1|p

)
1(a,λ1)(λ).

[K, φj ](λ, y) =
1

|λ− λj |p|λ− λj+1|p
exp

(
− y

|λ− λj |p|λ− λj+1|p

)
1(λj ,λj+1)(λ).

[K, φ∞](λ, y) =
1

|λ− λ∞|p
exp

(
− y

|λ− λ∞|p

)
1(λ∞,b)(λ).

Then we define

[K;φΛs ](λ, y) =
∞∑

j=0

[K;φj ](λ, y),

and
gΛs(λ, y) = F (λ)[K;φΛs ](λ, y)σ−1(y).

We have that

∫
[K;φΛs ](λ, y)dy =

∫
e−zdz

1(a,λ1) +
∑
j≥1

1(λj ,λj+1) + 1(λ∞,b)

 = 1.

So V (y) =
∫
Λ

gΛs(λ, y)dλ and by applying Fubini’s theorem
∫

V (y)dµ(y) =
∫
Λ

F (λ)dλ < ∞.
We can prove, by using the same proof as for Theorem 1, that the H derivatives with respect
to λ of gΛs(λ, y) converge to 0 when λ → λj , since q < p. So gΛs(λ, y) ∈ GH

Λs
. �

Remark 2 Killer kernels [K;φ] selected to build only the mixtures are never the best ones
for covariances decay. For instance, we can take exp(− exp(y)) instead of exp(−y) getting
covariances decreasing to 0 slightly faster and so on.
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4 Condition for the Existence of Disaggregation

4.1 Continuous Densities Class

Let us begin with some remarks about mixtures and LM property giving rough necessary
conditions for the existence of a disaggregation on SM densities. We use only the fact that
every SM density is continuous.

Lemma 2 [Characterization of M(C)] A spectral density is a mixture of continuous spectral
densities iff it is lower semicontinuous (l.s.c.).

Proof. If F (λ) =
∫

g(λ, y)dµ(y) where {g(λ, y)} is a family of continuous spectral densities,
then applying Fatou’s lemma we see that F is l.s.c.

Conversely, if F is l.s.c. and positive, there exists a sequence fn of continuous functions
such that F = supn fn. Taking Fn = sup1≤k≤n fk, we can choose an increasing sequence
of continuous functions {Fn} such that F = supn Fn. So F =

∑
n≥1(Fn+1 − Fn)). If we

take µ(y) =
∑

n≥1
1
2n δ(y − n) and g(λ, n) = 2n (Fn+1(λ)− Fn(λ)) then we can rewrite F as

F (λ) =
∫

g(λ, y)dµ(y) where {g(λ, y)} is a family of continuous spectral densities. �

From the lemma, we see that every non l.s.c. spectral density has LM property and cannot
be disaggregated on SM class. For instance, if F is the function equal to one on a perfect set,
[7], of strictly positive Lebesgue measure, then F is upper semicontinuous (u.s.c.) and not
l.s.c. and it is the density of an absolutely continuous probability with respect to the Lebesgue
measure. This provides an example of a situation that we can call ”hard” LM process which
cannot be disaggregated by SM processes. In fact, we are very close to the case of a non
absolutely continuous spectral measure.

4.2 Analytic Spectral Densities Class

Let us prove that the previous results cannot be improved by taking analytic densities instead
of infinitely differentiable densities.

Disaggregation is a hierarchical procedure: if F ∈ M(G) and G ⊂ M(H) then F ∈ M(H), in
fact if g(λ, y) =

∫
h(λ, z)dν(y, z) then

F (λ) =
∫

g(λ, y)dµ(y) =
∫ ∫

[h(λ, y, z)dν(y, z)]dµ(y).

In general we have G ⊂M(G) ⊂M(G) with strict inclusion, the closure being taken in L1(dλ).
The obvious exception is G = MA(q), the set of densities of q-moving average processes, for
which MA(q) = M(MA(q)) = M(MA(q)).

We use this hierarchical procedure in order to show that our result cannot be improved in the
following sense: we cannot take analytic functions instead of C∞. Therefore, we have to check
that the functions we have used in C∞, as F (λ) = 1

|λ|p exp(− y
|λ|p ), do not belong to M(A), in

order to show that our result cannot be improved.

Proposition 1 If F ∈ C∞0,+ =
{
F ∈ C∞ : F ≥ 0,∃λ0 such thatF (j)(λ0) = 0 ∀ j ∈ N

}
, then

F /∈M(A).
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Proof. Suppose F (λ) =
∫

Rs g(λ, y)dµ(y) with g ∈ A µ− a.s. The Fatou’s Lemma implies

F (j)(λ0) ≥
∫

Rs

g(j)(λ0, y)dµ(y),

and F (j)(λ0) = 0 implies that, if g(j)(λ0, y) ≥ 0 µ − a.s., then g(j)(λ0, y) = 0 µ − a.s. From
g(λ, y) ≥ 0 µ−a.s we get g(λ0, y) = 0 µ−a.s. and g(1)(λ0, y) ≥ 0 µ−a.s., and so g(1)(λ0, y) = 0
µ − a.s and g(2)(λ0, y) ≥ 0 µ − a.s. By induction we have that g(j)(λ0, y) = 0 µ − a.s and
µ{y, g(λ, y) ∈ A} = 0. We have proved that f /∈M(A). �

The class of analytic functions only rarely allows for disaggregation. A slight modification
of the proof presented above shows that spectral densities which are polynomials (of given
degree) by pieces cannot be in M(A) except if they are themselves elements of A, that is, if
they are polynomials.

5 Case of Non Independent Elementary Processes

In this section we consider the disaggregation procedure for the case of non-independent ele-
mentary processes. We suppose that

Zi
t(Y

i) =
∫

Λ

h(λ, y)eitλdζ(λ)

where {ζλ} is a second order stationary process with orthogonal increment, h ∈ L2(dλ) is
a square root of the spectral density of Zi(Y i) and Y = {Y i} is an ergodic process with
distribution ν. We prove in [2] that the sequence of partial aggregation

XN
t (Y ) =

1
N

N∑
i=1

Zi
t(Y

i),

converges ν − a.s. in distribution to centered stationary gaussian process X with spectral
density F (λ) = |H(λ)|2, where

H(λ) =
∫

h(λ, y)dµ(y). (4)

Now let F = |H|2 and G be given class, then we want to have (4) with |h(λ, y)|2 ∈ G µ− a.s.
Singularities of F give singularities on H and it is not very difficult to prove that the main
theorems remain valid taking dependent elementary processes instead of independent processes.
We can also deduce the results for interactive elementary processes from the two previous
cases, see [2].

Remark 3 We can define mixtures of Wold regular densities, in the Wold Theorem sense,
[1], which verify the following condition∫

Λ

log g(λ, y)dλ > −∞, µ− a.s. (5)

In this case, we say that the processes with spectral densities g(λ, y) are regular. If f(λ) is the
mixture of the densities g(λ, y), condition (5) does not imply that

∫
Λ

log f(λ)dλ > −∞. But
if f is regular then g(λ, y) is regular µ − a.s. by Jensen’s inequality. The main point of this
topic is that we can choose the killer kernel [K;φ] such that if f is Wold regular then all the
elementary processes used in the aggregation are also Wold regular.
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