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Abstract

We determine exactly when a certain randomly weighted self–normalized sum converges in
distribution, partially verifying a 1965 conjecture of Leo Breiman, and then apply our results
to characterize the asymptotic distribution of relative sums and to provide a short proof of
a 1973 conjecture of Logan, Mallows, Rice and Shepp on the asymptotic distribution of self–
normalized sums in the case of symmetry.

0.1 A conjecture of Breiman

Throughout this paper {Yi}i≥1 will denote a sequence of i.i.d. Y random variables, where Y
is non–negative with distribution function G. Let Y ∈ D (α), with 0 < α ≤ 2, denote that Y
is in the domain of attraction of a stable law of index α. We shall use the notation Y ∈ D (0)
to mean that 1−G is a slowly varying function at infinity. Now let {Xi}i≥1 be a sequence of
i.i.d. X random variables independent of {Yi}i≥1 , where X satisfies

E|X| <∞ and EX = 0. (1)

Consider the randomly weighted self–normalized sum

Rn =

∑n
i=1 XiYi
∑n

i=1 Yi
.

(Here and elsewhere we define 0/0 = 0.) In a beautiful paper, Breiman (1965) proved the
following result characterizing when Rn converges in distribution to a non–degenerate law.
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Theorem 1 Suppose for each such sequence {Xi}i≥1 of i.i.d X random variables, independent

of {Yi}i≥1 , the ratio Rn converges in distribution, and the limit law of Rn is non–degenerate

for at least one such sequence {Xi}i≥1. Then Y ∈ D (α), with 0 ≤ α < 1.

Theorem 1 is a restatement of his Theorem 4. At the end of his 1965 paper Breiman conjectured
that the conclusion of Theorem 1 remains true as long as there exist one i.i.d. X sequence
{Xi}i≥1 , satisfying (1), such that Rn converges in distribution to a non–degenerate law. We

shall provide a partial solution to his conjecture (we assume E |X|
p
<∞ for some p > 2) and

at the same time give a new characterization for a non-negative random variable Y ∈ D (α),
with 0 ≤ α < 1.

Before we do this, let us briefly describe and comment upon Breiman’s proof of Theorem 1.
Let

D(1)
n ≥ · · · ≥ D(n)

n ≥ 0 (2)

denote the order values of Yj/
∑n

i=1 Yi, j = 1, . . . , n. Clearly along subsequences {n′} of {n},

the ordered random variables D
(i)
n , i = 1, . . . , n, converge in distribution to random sequences

{Di}i≥1 satisfying Di ≥ 0, i ≥ 1, and
∑∞

i=1 Di = 1. From this one readily concludes that the
limit laws of Rn are of the form

∞
∑

i=1

XiDi.

Breiman argues in his proof that if {D′i}i≥1 is any other random sequence satisfying D′i ≥ 0,

i ≥ 1,
∑∞

i=1 D
′
i = 1 and

∞
∑

i=1

XiD
′
i =d

∞
∑

i=1

XiDi, (3)

for all sequences {Xi}i≥1 of i.i.d. X random variables independent of {Yi}i≥1 satisfying (1),
then

{D′i}i≥1 =d {Di}i≥1 . (4)

This implies that along the full sequence {n} ,

max
1≤j≤n

Yj/
n
∑

i=1

Yi →d D1, (5)

where D1 is either non–degenerate or D1 = 1. Breiman proves that when D1 = 1, Y ∈ D(0),
and when D1 is non–degenerate necessarily Y ∈ D (α) , with 0 < α < 1.

At first glance it may seem reasonable that it would be enough for (3) to hold for some i.i.d. X
sequence {Xi}i≥1 satisfying (1) in order to conclude (4). In fact, consider a sequence {si}i≥1

of independent Rademacher functions and let {ai}i≥1 and {bi}i≥1 be two sequences of non-
increasing non-negative constants summing to 1. (By Rademacher we mean that P {si = 1} =
P {si = −1} = 1/2, for each i ≥ 1.) A special case of a result of Marcinkiewicz, see Theorem
5.1.5 in Ramachandran and Lau (1991), says that

∞
∑

i=1

siai =d

∞
∑

i=1

sibi

if and only if {ai}i≥1 = {bi}i≥1.



72 Electronic Communications in Probability

However, Jim Fill has shown that there exist two non–identically distributed random sequences
{D′i}i≥1and {Di}i≥1 such that

∑∞

i=1 siD
′
i =d

∑∞

i=1 siDi. Here is his example. Let {D′i}i≥1

equal to (1, 0, 0, . . . , ) with probability 1/5 and (1/4, 1/4, 1/4, 1/4, 0, . . . ) with probability 4/5
and let {Di}i≥1 equal to (1/2, 1/2, 0, . . . ) with probability 1/5 and (1/2, 1/4, 1/4, 0, . . . ) with
probability 4/5. Clearly {D′i}i≥1and {Di}i≥1 are not equal in distribution. Whereas, calcula-
tion verifies that (3) holds.

This indicates that one must look for another way to try to establish Breiman’s conjecture, than
merely to refine his original proof. Our partial solution to Breiman’s conjecture is contained
in the following theorem.

Theorem 2 Suppose that {Xi}i≥1 is a sequence of i.i.d. X random variables independent

of {Yi}i≥1 , where X satisfies E|X|p < ∞ for some p > 2 and EX = 0, then the ratio Rn
converges in distribution to a non-degenerate random variable R if and only if Y ∈ D (α),
with 0 ≤ α < 1.

The proof of Theorem 1 will follow readily from the following characterization of when Y ∈
D (α), with 0 ≤ α < 1. We shall soon see that whether Y ∈ D (α), with 0 ≤ α < 1, or not
depends on the limit of ET 2

n , where

Tn :=

∑n
i=1 siYi
∑n

i=1 Yi
, (6)

with {si}i≥1 being a sequence of independent Rademacher random variables independent of
{Yi}i≥1 .

Proposition 3 We have Y ∈ D (α), with 0 ≤ α < 1 if and only if

nE

(

Y1
∑n

i=1 Yi

)2

→ 1− α. (7)

Remark 1 It can be inferred from Theorems 1, 2 and Proposition 1 of Breiman (1965) that
the limit in (7) is equal to zero if and only if

max
1≤j≤n

Yj/

n
∑

i=1

Yi →p 0 (8)

if and only if there exist constants Bn ↗ such that

n
∑

i=1

Yi/Bn →p 1. (9)

Remark 2 Proposition 1 should be compared to a result of Bingham and Teugels (1981),
which says

E

( ∑n
i=1 Yi

max1≤i≤n Yi

)

→ ρ, (10)

where ∞ > ρ > 1 if and only if Y ∈ D (α), where 0 < α < 1, with α = (ρ− 1) /ρ.
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Proof. First assume that Y ∈ D (α), where 0 < α < 1. Notice that with Tn defined as in
(6),

ET 2
n = nE

(

Y1
∑n

i=1 Yi

)2

.

By Corollary 1 of Le Page, Woodroofe and Zinn (1981),

Tn →d T :=

∑∞

i=1 si (Γi)
−1/α

∑∞

i=1 (Γi)
−1/α

, (11)

where Γi =
∑i

j=1 ξj , with {ξj}j≥1 being a sequence of i.i.d. exponential random variables

with mean 1 independent of {si}i≥1. Since clearly |Tn| ≤ 1, we can infer by (11) that for any
Y ∈ D (α) , with 0 < α < 1,

ET 2
n → ET 2. (12)

We shall prove that

ET 2 = −

∫ ∞

0

sω
′′

(s) exp (−ω (s)) ds, (13)

where

ω (s) =

∫ ∞

0

[

1− exp
(

−sx
−1/α

)]

dx = α

∫ ∞

0

(1− exp (−sy)) y−1−αdy

= s

∫ ∞

0

exp (−sy) y−αdy = sαΓ (1− α) .

From this one gets from (13) after a little calculus that

ET 2 = α (1− α) Γ (1− α)

∫ ∞

0

sα−1 exp (−sαΓ (1− α)) ds = 1− α.

We get

nE

(

Y1
∑n

i=1 Yi

)2

= n

∫ ∞

0

tE
(

Y 2
1 exp (−t (Y1 + · · ·+ Yn))

)

dt

= n

∫ ∞

0

tE
(

Y 2
1 exp (−tY1)

)

E exp (−t (Y2 + · · ·+ Yn)) dt

= n

∫ ∞

0

tE
(

Y 2
1 exp (−tY1)

)

(E exp (−tY1))
n−1

dt. (14)

Now for any fixed 0 < α < 1 the limit in (11) remains the same for any Y ∈ D (α). Therefore
for convenience we can and shall choose Y = U−1/α, where U is Uniform (0, 1). Therefore we
can write the expession in (14) as

∫ ∞

0

t

∫ n

0

(

(x

n

)−2/α

exp

(

−t
(x

n

)−1/α
)

dx

)

×

(

1−
1

n

∫ n

0

[

1− exp

(

−t
(x

n

)−1/α
)]

dx

)n−1

dt,
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which by the change of variables t = s/n1/α,

=

∫ ∞

0

s

∫ n

0

(

x−2/α exp
(

−sx−1/α
)

dx
)

×

(

1−
1

n

∫ n

0

[

1− exp
(

−sx−1/α
)]

dx

)n−1

ds.

A routine limit argument now shows that this last expression converges to

−

∫ ∞

0

sω
′′

(s) exp (−ω (s)) ds.

Now assume that ET 2
n → 1− α, with 0 < α < 1. From equation (14) we get that

ET 2
n = n

∫ ∞

0

tϕ′′ (t) (ϕ (t))
n−1

dt→ 1− α,

where ϕ (t) = E exp (−tY1) , for t ≥ 0. Arguing as in the proof of Theorem 3 of Breiman
(1965) this implies that

s

∫ ∞

0

tϕ′′ (t) exp (s logϕ (t)) dt→ 1− α, as s→∞. (15)

For y ≥ 0, let q (y) denote the inverse of − logϕ (v). Changing variables to t = q(y) we get
from (15) that

s

∫ ∞

0

exp (−sy) q (y)ϕ′′ (q (y)) dq (y)→ 1− α, as s→∞.

By Karamata’s Tauberian theorem, see Theorem 1.7.1 on page 37 of Bingham et al (1987), we
conclude that

v−1

∫ v

0

q (x)ϕ′′ (q (x)) dq (x)→ 1− α, as v ↘ 0,

which, in turn, by the change of variables y = q (x) gives

∫ t

0
yϕ′′ (y) dy

− logϕ (t)
→ 1− α, as t↘ 0.

Since − log(1− s)/s→ 1 as s↘ 0, this implies that

∫ t

0
yϕ′′ (y) dy

1− ϕ (t)
=

tϕ′ (t)

1− ϕ (t)
+ 1→ 1− α, as t↘ 0,

or in other words
tϕ′ (t)

1− ϕ (t)
→ −α, as t↘ 0. (16)

Set f (x) = −x−2ϕ′ (1/x) = (ϕ (1/x))
′
, for x > 0. With this notation we can rewrite (16) as

xf (x)
∫∞

x
f (y) dy

→ α, as x→∞. (17)
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By Theorem 1.6.1 on page 30 of Bingham et al (1987) this implies that f (y) is regularly
varying at infinity with index ρ = −α − 1, which, in turn, by their Theorem 1.5.11 implies
that 1 − ϕ (1/x) is regularly varying at infinity with index −α, which says that 1 − ϕ (s) is
regularly varying at 0 with index α. Set for x ≥ 0,

U (x) =

∫ x

0

(1−G(u))du.

We see that for any s > 0,

∫ ∞

0

e−sxdU(x) = s−1 (1− ϕ (s)) ,

which is regularly varying at 0 with index α−1. Now by Theorem 1.7.1 on page 37 of Bingham
et al (1987) this implies that U(x) is regularly varying at infinity with index 1 − α. This, in
turn, by Theorem 1.7.2 on page 39 of Bingham et al (1987) implies that 1−G(x) is regularly
varying at infinity with index −α. Hence G ∈ D (α) .

To finish the proof we must show that

ET 2
n = nE

(

Y1
∑n

i=1 Yi

)2

→ 1. (18)

holds if and only if Y ∈ D (0). It is well–known going back to Darling (1952), that Y ∈ D (0)
if and only if

max
1≤j≤n

(

Yj/

n
∑

i=1

Yi

)

→p 1. (19)

(Refer to Haeusler and Mason (1991) and the references therein.) Thus clearly whenever
Y ∈ D (0) we have

Tn →d s1

and therefore we have (18). To go the other way, assume that (18) holds. This implies that

n
∑

i=1

E
(

D(i)
n

)2

= ET 2
n → 1,

which since D
(1)
n ≥ · · · ≥ D

(n)
n ≥ 0 and

∑n
i=1 D

(i)
n = 1 forces ED

(1)
n → 1. This, in turn, implies

(19) and thus Y ∈ D (0). Hence we have (18) if and only if Y ∈ D (0) . tu

Proof of Theorem 2. First assume that for some non–degenerate random variable R,

Rn →d R. (20)

By Jensen’s inequality for any r ≥ 1,

∣

∣

∣

∣

∑n
i=1 XiYi
∑n

i=1 Yi

∣

∣

∣

∣

r

≤

∑n
i=1 |Xi|

r
Yi

∑n
i=1 Yi

,

Thus for any p > 2

E

∣

∣

∣

∣

∑n
i=1 XiYi
∑n

i=1 Yi

∣

∣

∣

∣

p

≤ E |X|
p
.
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This implies that whenever Rn →d R, where R is non–degenerate, then

ER2
n = EX2nE

(

Y1
∑n

i=1 Yi

)2

→ EX2 (1− α) ,

where necessarily 0 ≤ α < 1. Thus by Proposition 1, Y ∈ D (α) , with 0 ≤ α < 1.

Breiman (1965) shows that whenever Y ∈ D (α) , with 0 ≤ α < 1, then (20) holds for some
non–degenerate random variable R. To be specific, when α = 0, R =d X and when 0 < α < 1,
it can be shown by using the methods of Le Page et al (1981) that

R =d

∑∞

i=1 Xi (Γi)
−1/α

∑∞

i=1 (Γi)
−1/α

. (21)

This completes the proof of Theorem 2. tu

The proof just given is highly dependent on the assumption that E|X|p <∞ for some p > 2.
To replace it by the weaker assumption E|X| <∞ would require an entirely different approach.
Therefore the complete Breiman conjecture remains open. In the next section we provide some
applications of our results to the study of the asymptotic distribution of relative ratio and self–
normalized sums.

1 Applications

1.1 Application to relative ratio sums

Let {Yi}i≥1 be a sequence of i.i.d. Y non–negative random variables and for any n ≥ 0 let

Sn =
∑n

i=1 Yi, where S0 := 0. For any n ≥ 1 and 0 ≤ t ≤ 1, consider the relative ratio sum

Vn (t) :=
S[nt]

Sn
. (22)

Our first corollary characterizes when such relative ratio sums converge in distribution to a
non–degenerate law.

Corollary 4 For any 0 < t < 1
Vn (t)→d V (t) , (23)

where V (t) is non–degenerate if and only if Y ∈ D (α) , with 0 ≤ α < 1.

The proof Corollary 1 will be an easy consequence of the following proposition. Independent
of {Yi}i≥1 let {εi (t)}i≥1 be a sequence of i.i.d. ε (t) random variables, where P {ε (t) = 1} =
t = 1− P {ε (t) = 0} , with 0 < t < 1. For any n ≥ 1 and 0 < t < 1 let [nt] denote the integer
part of nt and set

Nn (t) =

n
∑

i=1

εi (t) .

Proposition 5 For all 0 < t < 1,

∑Nn(t)
i=1 Yi
Sn

= Vn (t) + oP (1) . (24)
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Proof of Proposition 2. We have

∑Nn(t)
i=1 Yi
Sn

= Vn (t) +

∑Nn(t)
i=1 Yi − S[nt]

Sn

and, clearly,
∣

∣

∣

∣

∣

∑Nn(t)
i=1 Yi − S[nt]

Sn

∣

∣

∣

∣

∣

=d

∑Mm(t)
i=1 Yi
Sn

,

where Mm (t) = |Nn (t)− [nt]|. Now (recalling that we define 0/0 = 0), we have

E

(

E

[

∑Mm(t)
i=1 Yi
Sn

|Nn (t)

])

≤
E |Nn (t)− [nt]|

n
.

Thus since E |Nn (t)− [nt]| /n→ 0, we get (24). tu

Proof of Corollary 1. Note that

∑Nn(t)
i=1 Yi
Sn

=d

∑n
i=1 εi (t)Yi

Sn
. (25)

Therefore by Proposition 2 and (25), we readily conclude that (23) holds with a non–degenerate
V (t) if and only if

∑n
i=1 εi (t)Yi

Sn
− t =

∑n
i=1 (εi (t)− t)Yi

Sn

converges in distribution to a non-degenerate random variable. Thus Corollary 1 follows from
Theorem 2. tu

When Y ∈ D (0), it is easy to apply Proposition 2, (25) and (19) to get that Vn (t)→d ε1 (t) ,
and when Y ∈ D (α) , with 0 < α < 1, one gets from Proposition 2, (25) and by arguing as in
Le Page et al (1981), that

Vn (t)→d

∑∞

i=1 εi (t) Γ
−1/α
i

∑∞

i=1 Γ
−1/α
i

.

Also, one can show using Theorem 1, Theorem 2 and Proposition 1 of Breiman (1965) that

∑n
i=1 (εi (t)− t)Yi

Sn
→p 0,

if and only if there exists a sequence of positive constants Bn ↗ such that (9) holds. Further-
more, by Proposition 2 and (25), we see that this happens if and only if Vn (t)→p t.
An easy variation of Corollary 1, says that if S ′n =d Sn, with S′n and Sn independent, then

S′n
Sn

→d K,

where K is non–degenerate if and only if Y ∈ D (α), with 0 < α < 1. Again by using the
techniques of Le Page et al (1981) one can show that

K =d
W ′
α

Wα
,
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where W ′
α =d Wα, W

′
α and Wα are independent and

Wα =d

∞
∑

i=1

Γ
−1/α
i .

Curiously, it can be shown that

Lα := logWα and logK

provide examples of random variables that have finite positive moments of any order, yet have
distributions that are not uniquely determined by their moments. To see this, let hα denote
the density of Lα. Using known results about densities of stable laws that can be found in
Ibragimov and Linnik (1971) and Zolotarev (1986) it can be proved that Lα has all positive
moments and its density hα is in C∞. Moreover, it is readily checked that

−

∫ ∞

−∞

log hα (x)

1 + x2
dx <∞.

This implies that the distribution of Lα is not uniquely determined by its moments. Refer
to Lin (1997). Furthermore, by a result of Devinatz (1959), this in turn implies that the
distribution of logK =d L

′
α−Lα, where L

′
α is an independent copy of L′α, is also not uniquely

determined by its moments.

1.2 Application to self–normalized sums

Let {Xi}i≥1 be a sequence of i.i.d. X random variables and consider the self–normalized sums

Sn (2) =

∑n
i=1 Xi

√

∑n
i=1 X

2
i

.

Logan, Mallows, Rice and Shepp (1973) conjectured that Sn (2) converges in distribution to a
standard normal random variable if and only if EX = 0 and X ∈ D (2) , and more generally
that Sn (2) converges in distribution to a non–degenerate random variable not concentrated on
two points if and only if X ∈ D (α), with 0 < α ≤ 2, where EX = 0 if 0 < α < 1 and X is in
the domain of attraction of a Cauchy law in the case α = 1. The first conjecture was proved by
Giné, Götze and Mason (1997) and the more general conjecture has been recently established
by Chistyakov and Götze (2004). Griffin and Mason (1991) attribute to Roy Erickson an
elegant proof of the first conjecture of Logan et al (1973) in the case when X is symmetric
about 0. We shall use Proposition 1 to extend Erickson’s method to provide a short proof of
the second conjecture of Logan et al (1973), for the symmetric about 0 case. In the following
corollary s and Y are independent random variables, where P {s = 1} = P {s = −1} = 1/2.
Since for a random variable X symmetric about 0, X =d sY, where Y =d |X|, it establishes
the second Logan et al (1973) conjecture in the symmetric case. It is also Corollary 1 of
Chistyakov and Götze (2004). The proof of the second Logan et al (1973) conjecture without
the simplifying assumption of symmetry is much more lengthy and requires a lot of serious
analysis.

Corollary 6 Let {Yi}i≥1 be a sequence of non–negative i.i.d. Y random variables and inde-

pendent of them let {si}i≥1 be a sequence of independent Rademacher random variables. We
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have

Sn (2) :=

∑n
i=1 siYi

√

∑n
i=1 Y

2
i

=:

∑n
i=1 siYi
Vn

→d S(2), (26)

where S(2) is a non-degenerate if and only if sY ∈ D (α) , where 0 ≤ α ≤ 2.

In the proof of Corollary 2 we describe the possible limit laws and when they occur.

Proof of Corollary 2. When sY ∈ D (0), then by using (19) one readily gets that

Sn (2)→d s.

Whenever sY ∈ D (α), with 0 < α < 2, we apply Corollary 1 of Le Page et al (1981) to get
that

Sn (2)→d

∑∞

i=1 si (Γi)
−1/α

√

∑∞

i=1 (Γi)
−2/α

,

and when sY ∈ D (2), Raikov’s theorem (see Lemma 3.2 in Giné et al (1997)), implies that
for any non–decreasing positive sequence {ai}i≥1 such that

∑n
i=1 siYi/an →d Z, where Z is a

standard normal random variable, one has
∑n

i=1 Y
2
i /a

2
n →p 1 , which gives

Sn (2)→d Z.

Next assume that Sn (2) →d S(2), where S(2) is non–degenerate. By Khintchine’s inequality

for any k ≥ 1 we have E |Sn (2)|
2k
≤ Ck, for some constant Ck. Hence we can conclude that

(26) implies that

3− 2nE

(

Y 4
1

(
∑n

i=1 Y
2
i )

2

)

= ES4
n (2)→ ES4(2),

which since

0 ≤ nE

(

Y 4
1

(
∑n

i=1 Y
2
i )

2

)

= E

(∑n
i=1 siY

2
i

∑n
i=1 Y

2
i

)2

≤ 1,

forces

nE

(

Y 4
1

(
∑n

i=1 Y
2
i )

2

)

→ 1− β,

where 0 ≤ 1− β ≤ 1. In the case 0 < 1− β ≤ 1 Proposition 1 implies that Y 2 ∈ D (β) , which
says that Y ∈ D (α) , where α = 2β. When 1 − β = 0, it is easy to argue using Markov’s
inequality that

max
1≤j≤n

Y 2
j /

n
∑

i=1

Y 2
i →p 0,

which by Theorem 1 of Breiman (1965) implies that Y ∈ D (2). tu
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1.3 A conjecture

As in Breiman (1965) we shall end our paper with a conjecture. For a sequence of i.i.d. positive
random variables {Yi}i≥1, a sequence of independent Rademacher random variables {si}i≥1

independent of {Yi}i≥1 and 1 ≤ p < 2, we conjecture that

Sn (p) :=

∑n
i=1 siYi

(
∑n

i=1 Y
p
i )

1/p
→d S(p), (27)

where S(p) is a non-degenerate random variable if and only if Y ∈ D (α), where 0 ≤ α < p.
At present we can only verify it for case p = 1 and the limit case p = 2.
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