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1 Introduction

The Brownian snake introduced by Le Gall [Lg1] has shown its usefulness in the study of super-
processes and semi-linear partial differential equations. The literature on the subject is now
abundant. The process has values which are Brownian path in Rd stopped at a certain time
that we call the lifetime. As time grows the lifetime evolves as a reflecting linear Brownian
motion. Roughly speaking, when the lifetime decreases the corresponding Brownian trajectories
in Rd are just erased and when the lifetime increases the corresponding Brownian trajectories
in Rd are prolonged by an independent piece of Brownian trajectory. We refer to [Lg1] for a
rigorous definition. Some authors (see [BLL] for instance) have replaced Brownian motion in
Rd by a different “spatial motion”. In the Poisson snake that we consider, the spatial motion
is an ordinary Poisson process of parameter α > 0. This object has already been considered by
Warren [Wa] and Watanabe [Wt]. Moreover, in view of application to dislocation, we let α vary
and more precisely we construct a family of Poisson snakes indexed by α > 0, in a coherent way.
This object is described by the following existence theorem.

Theorem 1. There exists a family (ζs, N
α
s (u); u, s ≥ 0, α > 0) of random variables with values

in R+ × N such that

1. (ζs; s ≥ 0) has the law of the normalised Brownian excursion.

2. For every α > 0, (ζs, N
α
s (·); s ≥ 0) is a Markov process.

3. For every α > 0 and conditionally on (ζs; s ≥ 0), the process
(Nα

s (·); s ≥ 0) is a Markov process such that, for 0 ≤ s ≤ s′,

(a) Nα
s (·) is a Poisson process with rate 2α stopped at time ζs.

(b) Nα
s (u) = Nα

s′(u) for u ≤ inf [s,s′] ζ = m(s, s′).

(c) Nα
s′(m(s, s′) + ·)−Nα

s′(m(s, s′)) is independent of Nα
s (·).

4. For 0 < α ≤ β and s ≥ 0, Supp(duN
α
s (u)) ⊂ Supp(duN

β
s (u)) and

(

(Nβ
s (u) − Nα

s (u)
)

u≥0
is independent of

(

Nα
s (u)

)

u≥0.

In the following we will use the notation N̂α
s = Nα

s (ζs−). We must notice that this limit may
be +∞. In fact, as the lifetime process is of infinite variation, it is easy to see that the set of
times s such that N̂α

s = +∞ is dense in [0, 1].

We use this family of Poisson snakes to construct a fragmentation process. An exhaustive study
of fragmentation processes has been made by Bertoin in the last few years, see [Be] for instance.
Informally, a fragmentation process is a Markov process which describes the evolution of a mass
that breaks down into small pieces. It must also fulfill two additional conditions:

• A fragmentation property (a sort of branching property): the fragments present at some
time then disaggregate independently from each other.

• A self-similar property: each fragment disaggregate in the same way as the initial process,
up to a different rate.
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These statements will be made precise after Theorem 2.

For us the fragmentation process will appear as a process (F (α); α ≥ 0) taking its values in the
set S of decreasing sequences of non-negative real numbers with total sum at most 1. We first
set F (0) = (1, 0, . . . ). For every α > 0 we introduce the equivalence relation Rα defined on [0, 1]
by

uRαv ⇐⇒
(

N̂α
u = N̂α

v ≤ N̂α
s for all s ∈ [u, v]

)

.

Then F (α) is simply defined as the decreasing sequence of the lengths (Lebesgue measure) of
the Rα-equivalence classes. The figures below describe first the lifetime process with the values
of Nα

t then the different Rα-equivalence classes. Figure 1 represents how F (α) is constructed
from the Poisson snake for a fixed α. The first part of the picture is supposed to be a Poisson
snake for some fixed α > 0. We pictured the lifetime process (which should be a Brownian
excursion of length 1) and the jumps of the Poisson paths which are, due to the snake property,
horizontal lines. This breaks the Brownian excursion into several parts (see the second picture)
which are, after some suitable time-change, sub-excursions of the initial process (see the third
part of the Figure). We then consider the lengths of these sub-excursions which form the state
of F (α) after a decreasing reordering.

The construction of the process F (α) is based on the same ideas as in [AP] but the formalism
is slightly different. The results below are therefore not new but the techniques to prove them
are completely different from Aldous-Pitman’s arguments. See section 4 for the connections
between the two constructions.

Theorem 2. The process (F (α); α ≥ 0) is a self-similar fragmentation process with index 1/2.

This means that (F (α)) is a Markov process with values in S such that, if pα denotes the law of
F (α) , for 0 < α < β, the conditional law of F (β) knowing F (α) = s = (s1, s2, . . . ) is the law of
the decreasing reordering of

⋃

i≥1 siFi where the Fi are independent S-valued random variables
of law p

(β−α) s
1/2
i

. When we write siFi we mean that we multiply all the terms of the sequence

Fi by the real number si.

In our model the self similarity will only result from the independent increments properties of
Brownian motion and Poisson process. The index 1/2 of the fragmentation derives from the
Brownian scaling exponent. See Section 3.

In [Be] it is shown that a self-similar fragmentation is in fact determined by three parameters:
the index of similarity, the so-called erosion coefficient (which characterises the loss of mass
during the evolution) and the dislocation measure. In our case, we already know that the index
is 1/2. The erosion coefficient is null; this corresponds to the lack of continuous loss of mass,
which is clear in our representation. Roughly speaking, the dislocation measure describes how
a mass is dislocated at every jump of the fragmentation process. In our case such dislocation
arises when a new atom of the Poisson measure is created which leads to the breaking of the
corresponding mass in two components. Figure 2 represents the effect of a new atom which
appears in a sub-excursion. We see that this new atom leads to two fragments. For three
fragments to appear, the new atom should arise at exactly the level of a local minimum of the
Brownian excursion which is a zero probability event. In other words, the dislocation measure
puts mass only on sequences (s1, s2, . . . ) with only s1, s2 being non-zero. Then, Bertoin remarked
(cf [Be]) that such a self-similar fragmentation is completely determined when we can describe
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Figure 1: Fragmentation

the law of the mass of a tagged fragment. The latter expression means in our context that we
choose a uniform variable U on [0, 1] independently of all the processes previously defined and
we trace the evolution of the mass of its component that is the process

λU (α) = Leb ({s; sRα U}) .

Proposition 3. The process (λU (α)) has the same law as (1/(1 + σα)) where (σα) denotes a
stable subordinator with index 1/2.
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Figure 2: Dislocation of a sub-excursion

This proposition is essentially Theorem 6 of [AP]. See also the end of [Be]. As an application
of our representation we will compute in Section 6 the dislocation measure independently of the
previous results.

In reality our model could be considered as a replica of the Poisson fragmentation of the Aldous’
Continuum Random Tree (CRT) explained in [AP]. The main difference is that we have built a
“time”-parametrised process in the same way as Brownian excursion is a “time”-parametrised
process” which can represent the CRT. As a consequence our proofs are completely different.
Whereas Aldous and Pitman argue on discrete trees and pass to the limit, our main argument
is obtained by continuous time stochastic calculus using [AS]. We first point out a symmetry
property that would be called re-rooting symmetry in the tree terminology; see Subsection 3.2
and [A2] for a statement using the CRT. A consequence is that (λU (α)) has the same law that
(λ0(α)). We recall that λ0(α) = Leb({s; N̂α

s = 0}). The law of this quantity, at least for fixed
α, can be identified using a result of [AS] that we recall now.

Proposition 4. Let us fix α > 0 and set, for s ≥ 0,

As = inf

{

u;

∫ u

0
dv 1{N̂α

v =0} > s

}

Then (ζAs ; s ≥ 0) has the same law as (e(s) − α s; s ≥ 0) stopped at the first return at zero
where e has the law of the normalised Brownian excursion.

How this result leads to Proposition 3 is detailed in Section 5.

2 Construction of Poisson snakes

Let Mu be the set of measures on [0, u]× R+. We define the vague topology on Mu by

µn −→ µ ⇐⇒ ∀f ∈ Cc([0, u]× R+),

∫

fdµn −→
∫

fdµ

where Cc denotes the space of continuous functions with compact support. We recall that Mu

endowed with this topology is a Polish space and we denote by du the corresponding distance.
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We also denote by M the set of Radon measures on R+×R+ that we endow also with the vague
topology.

LetM be the set of pairs (ζ, µ) where ζ is a nonnegative real number and µ is a Radon measure
on R2

+ whose support is included in [0, ζ]× R+. We define, for (ζ, µ), (ζ ′, µ′) ∈M

d
(

(ζ, µ), (ζ ′, µ′)
)

= |ζ − ζ ′|+
∫ ζ∧ζ′

0
du(µ(u), µ

′
(u)) ∧ 1 du

where µ(u) stands for the restriction of µ to [0, u]× R+. It is easy to check that d is a distance
onM and that (M, d) is a Polish space. Then, following the ideas of [BLL], we can construct a
measure valued snake and so a family of probability measures (P`)`>0 on C(R+,M) (the index
` corresponds to the duration of the lifetime of the snake):

Theorem 5. There exists a continuous strong Markov process (ζs,Ns; s ≥ 0) with values inM
such that

1. (ζs; s ≥ 0) has the law of the Brownian excursion conditioned to have length `.

2. Conditionally on (ζs; s ≥ 0), the process (Ns; s ≥ 0) is a Markov process such that, for
0 ≤ s ≤ s′,

Ns′(dx dy)
(d)
= Ns(dx dy) 1x≤m(s,s′) + Ñ (dx dy) 1m(s,s′)≤x≤ζs′

where m(s, s′) = inf [s,s′] ζ and Ñ denotes a Poisson point measure on R2 independent of
Ns with intensity the Lebesgue measure on (R+)

2.

Sketch of proof. We follow the construction of Le Gall ([Lg1] Theorem 1.1). We first introduce
a kernel Qa,b on M by

∫

Qa,b(N , dν)F (ν) = E
[

F
(

N (dx dy) 1x≤a + Ñ (dx dy) 1a≤x≤b

)]

In this formula, 0 ≤ a ≤ b, F is a bounded Borel function on M and Ñ is a Poisson point
measure with intensity the Lebesgue measure on (R+)

2. We denote by F(R+,M) the set of
functions from R+ to M and by C(R+,R+) the set of continuous function from R+ to R+. We
fix η ∈ C(R+,R+) such that η(0) = 0. Using the Kolmogorov extension theorem we can define
a probability Rη on F(R+,M) by

Rη (ν(0) ∈ A0, ν(t1) ∈ A1, . . . , ν(tn) ∈ An)

= 1{0∈A0}

∫

A1×···×An

Q0,η(t1)(dν1) Qm(t1,t2),η(t2)(dν2)

. . . Qm(tn−1,tn),η(tn)(dνn)

where n ∈ N∗, 0 ≤ t1 ≤ · · · ≤ tn, m(r, s) = inf [r,s] η, A0, A1, . . . , An are measurable subsets
of M . The compatibility conditions needed to apply the Kolmogorov extension theorem result
from the properties of the kernels Qa,b.
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Let us denote by Γ` the law of the Brownian excursion of length `. We define a probability P` on
F(R+,M) by P`(dη dν) = Γ`(dη) Rη(dν). The canonical process (ζs,Ns; s ≥ 0) then verifies,
under P`, the properties 1. and 2.

It remains to check that there exists a continuous version of this process, which is rather easy
since, for r < s,

d
(

(ζr,Nr), (ζs,Ns)
)

= |ζr − ζs|+
∫ ζr∧ζs

0

(

du(Nr,(u),Ns,(u)) ∧ 1
)

du.

As Nr,(u) = Ns,(u) for u ≤ inf [r,s] ζ, P`-a.s., we have

d
(

(ζr,Nr), (ζs,Ns)
)

≤ |ζr − ζs|+ (ζr ∧ ζs − inf
[r,s]

ζ)

and the continuity of ζ under P` gives the result.

The strong Markov property is eventually proved using the same arguments as in [Lg1]. ¥

Now we can set
Nα

s (u) = Ns([0, u]× [0, 2α])

It is not difficult to prove that (ζs, N
α
s (u); u, s ≥ 0, α > 0) is under P1 a Poisson snake in the

sense of Theorem 1.

In what follows, we denote P = P1. When the law is not mentioned, we implicitly use P.

3 Self-similarity, scaling and re-rooting

3.1 Fragmentation property

We first prove Theorem 2. In what follows, we will work under the “excursion measure” N which
is simply

N(·) =
∫ +∞

0

d`√
8π`3/2

P`(·).

We fix α > 0. For a measure µ on R+ × R+, we define

τα(µ) = inf{u > 0, µ([0, u]× [0, 2α]) > 0}.

Then, we set

Lα
s (ζ,N ) = lim

ε→0

1

ε

∫ s

0
1I{τα(Nu)≤ζu<τα(Nu)+ε}du

where the convergence holds N-a.e. (see for instance [Lg1]). Lα
· is called an exit local time. It is

a continuous additive functional of the snake (ζs,Ns)s≥0 which increases only when ζs = τα(Ns).

Let us first recall the special Markov property for the snakes. We know that the set

{s, τα(Ns) < ζs}

is open P-a.s. We denote by {(ai, bi), i ∈ I} its connected components. For every i ∈ I, we
define (ζs,N i

s) ∈ C(R+,M) by
ζis = ζ(ai+s)∧bi − ζai
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and
N i

s([0, t]×A) = N(ai+s)∧bi([ζai , ζai + t]×A).

We denote by Fα the σ-field generated by
(

ζs∧ τα(Ns),Ns

(

·∩ ([0, τα(Ns)]×R+)
)

)

s≥0
. We also

set

κs = inf

{

u > 0,

∫ u

0
1Iζr<τα(Nr)dr > s

}

and we denote by Gα the σ-field generated by
(

ζκs ,Nκs

)

s≥0. The σ-field Gα corresponds to
the knowledge of the paths of the Poisson snake Nα which stay at 0 whereas the σ-field Fα

corresponds to all the paths stopped when they reach 1. They only differ by the lengths of the
excursions of the snake above level 1.

Then we have the following result (see for instance [BLL], Proposition 7).

Proposition 6. The local time Lα
∞ is Gα-measurable. Moreover, if G is a nonnegative measur-

able function on C(R+,M),

N

(

exp−
∑

i∈I
G(ζi,N i)

∣

∣ Gα

)

= exp−Lα
∞N(1− exp−G).

This property is known as the “special Markov property”. It describes how the excursions of
the Poisson snake above level 1 behave knowing the number of excursions. ¿From this property,
we immediately deduce from standard excursion theory the following lemma:

Lemma 7. Conditionally on Fα, the excursions (ζ i,N i)i∈I form, under N and under P, a
sequence of independent M-valued processes with respective distributions Pbi−ai .

We deduce that, conditionally on the lengths (bi − ai)i∈I , the excursions (ζ i,N i)i∈I form under
P a sequence of independent processes with respective distributions Pbi−ai and independent of
Gα. Moreover, the law of the excursion (ζκs) is given by Proposition 4. So, conditionally on the
lengths (bi − ai)i∈I , the process

(

ζκs
)

has under P the law of the Brownian excursion of length

1− ` where ` stands for the sum of these lengths: ` =
∑

i∈I
(bi − ai).

Note that, for the fragmentation at time α, 1−` represents the mass of the component containing
0. Note however that the (bi−ai)i∈I are not the lengths of the other components. We now have
to apply the results of lemma 7 for each sub-excursion (ζ i,N i). For each of these excursions,
we obtain a component of the fragmentation, associated to {N̂α

s = 1}, and sub-excursions,
associated to {N̂α

s ≥ 2}. A proof by induction on the values of N̂α
s leads to the following

result. The sub-excursions (ζj ,N j)j∈J associated to each equivalence class of the fragmentation
at time α (as illustrated in figure 1) are, conditionally on their lengths (`j)j∈J , distributed as
independent processes with respective distributions ¶`j .

This result yields easily the fragmentation property: if 0 < α < β, the law, under P, of F (β)
knowing F (α) = (s1, s2, . . . ) is the law of the decreasing reordering of

⋃

i≥1
Fi where the Fi are

independent random variables which have respectively the same law as F (β−α) under Psi . The

fact that this law is the same as the law of siF
(

(β − α)s
1/2
i

)

under P follows directly from the
scaling property of the Brownian motion and of the definition of the measure-valued snake. ¥
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3.2 Re-rooting

The goal of this section is to show that the sub-excursion created from the fragmentation that
contains a uniform independent random variable is distributed as the sub-excursion that contains
0. To do so, we will use a trajectorial transformation that transforms the Poisson snake into
another Poisson snake and that maps the excursion that contains the uniform random variable
onto the excursion that contains 0. To describe this transformation, we need a Poissonian
representation of the snake by sub-excursions (Proposition 8).

We define the measure Ñ on R+ × C(R+,M) by

Ñ(dt dζ dN ) = 1I0≤t≤σdtN(dζ dN )

where σ = inf{s > 0, ζs = 0}. Then, we combine Bismut’s description of Itô measure (see for
instance [RY], p. 502), the invariance of Itô measure under time reversal and Proposition 2.5 of
[Lg2]. We obtain the following description of the measure Ñ:

Proposition 8. Under Ñ, we have

• ζt is distributed as Lebesgue measure on R+.

• Conditionally on ζt, Nt(du dv) is a Poisson measure of intensity

du dv1Iu≤ζt .

• Conditionally on ζt and Nt, if we set (gi, di)i∈I the excursions intervals of (ζs−inf [t,s] ζr, t ≤
s ≤ σ) above 0 and (α′j , β

′
j)j∈J the excursions intervals of (ζt−s − inf [t−s,t] ζr, 0 ≤ s ≤ t)

above 0, and if we define N i
s = N(gi+s)∧di

(

·∩([ζgi ,+∞)×R+)
)

, N ′j
s = N(t−β′j+s)∧(t−α′j)

(

·∩
([ζt−α′j

,+∞)× R+)
)

, then, the measures

∑

i∈I
δ(ζgi ,N i) and

∑

j∈J
δ(ζt−α′

j
,N ′j)

are independent Poisson measures with intensity

21I[0,ζt)(u)duN.

Moreover, these three properties characterise the measure Ñ.

Now, we construct from this process another process in the following way. We first take the
measure Nt and reverse it. Then we consider the collection of excursions above the minimum of
the lifetime after t and keep them as they are but attach them to Nt at the level ζt − s (if s is
the level at which they were), so that the first excursions are now the last ones and vice-versa.
Do the same kind of transformation to the excursions before t. This transformation is described
in Figure 3 below.

More precisely, we consider, under Ñ, the snake Ň such that

• ζ̌t = ζt.

9



t σ

e’1

e’2 e’3

e’3

e’2 e’1

e1

e2 e3

e4

e4 e3

e2 e1

Figure 3: re-rooting

• ∀s ≥ 0 Ňt([0, s] ∩ ·) = Nt([ζt − s, ζt] ∩ ·).

•
∑

i∈Ǐ
δ(ζ̌ǧi ,Ň i) =

∑

i∈I
δ(ζt−ζgi ,N i).

•
∑

j∈J̌
δ
(ζ̌ǧ′

j
,Ň ′j) =

∑

j∈J
δ(ζt−ζα′

j
,N ′j).

Then, it is clear from proposition 8 that (t, ζ̌, Ň ) has the same law as (t, ζ,N ) (under Ñ).

Moreover, for every α > 0, the equivalence class relative to Rα which contains t is
⋃

Tα<ζai<ζt

{s,N i
s−gi(R+ × [0, 2α]) = 0} ∪

⋃

Tα<ζa′
i
<ζt

{s,N ′i
s−t+β′i

(R+ × [0, 2α]) = 0}

where Tα = sup{s,Nt([0, s] × [0, 2α]) = Nt(R+ × [0, 2α])}. In other words, we consider the
excursions that are above the last jump of Nα

t (·) (a time u straddled by such an excursion
verifies N̂α

t ≤ N̂α
s for all s ∈ [t, u]) and we only keep the times u such that N̂α

t = N̂α
u , i.e. the

times such that N̂ i = 0. As these excursions appear as they are in Ň but are below the first
jump of Nα

t (·) by the reversal of Nt, it is easy to see that the former equivalence class has the
same Lebesgue measure as

{s, Ňs(R+ × [0, 2α]) = 0}.

4 Connection with Aldous’CRT and coalescence

The Continuum Random Tree introduced by Aldous (see for instance Section 2.1 in [AP] or the
relevant references) was constructed as a limit of discrete trees. However a mainstream idea
in the literature is that the Brownian normalised excursion is a natural model for this object,
because of the binary branching structure of the sub-excursions (see [A1]).
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In [AP], fragmentation of the CRT is made by a random cut-set whose law is a Poisson measure
with uniform intensity with respect to the “natural measure on the skeleton of the CRT”. We
can recover this model, or more precisely a translation of this model in our setting. We introduce
a few notations. For (es, s ∈ [0, 1]) being a normalised Brownian excursion, we define a family
(Nα(ds dt), α > 0) of point measures on the epigraph EG(e) = {(s, t); 0 ≤ s ≤ 1, 0 ≤ t ≤ es} ⊂
R2 of e such that their laws are (conditionally on e) Poisson point measures with intensity

2α ds dt

d(e, s, t)− g(e, s, t) 1{0≤s≤1, 0≤t≤e(s)}.

For (s, t) ∈ EG(e), we have denoted [g(e, s, t), d(e, s, t)] the excursion above level t containing
time s that is

g(e, s, t) = sup{s′ ≤ s; es′ = t} and d(e, s, t) = inf{s′ ≥ s; es′ = t}.

Moreover we can impose that Supp Nα ⊂ Supp Nα′ for 0 ≤ α ≤ α′. (See Figure 4 below)

s

t

e,s,t) (e,s,t)g( d

Figure 4: Atom of the point measure on the epigraph.

Proposition 9. Let, for s ∈ [0, 1],

Nα
s (u) = Card((s1, t1);Nα((s1, t1) 6= 0), t1 ≤ u, s ∈ [g(e, s1, t1), d(e, s1, t1)]).

Then, the family (es, N
α
s (u); u, s ≥ 0, α > 0) is a Poisson snake in the sense of Theorem 1.

5 Mass of a tagged fragment

This Section is devoted to the proof of Proposition 3. Recall that, as mentioned in the introduc-
tion Theorem 2 and Proposition 3 characterize (in that special case) the law of the fragmentation
process (F (α), α ≥ 0).

First, we recall that, by the re-rooting property, the law of the mass of a tagged fragment is the
same as the law of the mass of the fragment that contains 0.

From Proposition 4 we deduce that, for α > 0, the law of λ0(α) is equal to the law of inf{s >
0; e(s) − α s = 0} under Γ1(de). Then, by the well known representation of the normalised

11



Brownian excursion by a 3-dimensional Bessel process R, we have e(s) = sR(1/s)−1 (see [Bl] p.
42). So, the previous infimum is equal to inf{s > 0; R(1/s)−1−α = 0} = 1/(1+τα) where τα is the
last passage time at α of the Bessel process R. By Pitman’s theorem (see [RY] p. 253) this time
has the law of the hitting time of α for a linear Brownian motion starting at 0. Thus, for a fixed
α > 0, the law of λ0(α) is equal to the law 1/(1 + σα) where (σα) denotes a stable subordinator
with index 1/2. To show moreover that the process (λ0(α)) has the same law as the process
(1/(1 + σα)) we have to show the equality of every finite dimensional marginal distribution, or
equivalently that, for 0 < α < β the conditional law of λ0(β) knowing σ(λ0(α′), α′ ≤ α) is
equal to the the conditional law of Xβ := 1/(1 + σβ) knowing σ(Xα′ = 1/(1 + σα′), α

′ ≤ α).
Let us show first that the latter conditional law is the law of Xα/(1 + Xα τ̃β−α) where τ̃ is a
stable subordinator with index 1/2 independent of X· (or σ·). By taking the inverse this reduces
to showing that the conditional law of 1/Xβ := 1 + σβ knowing σ(σα′ , α

′ ≤ α) is the law of
(1/Xα) + τ̃β−α = 1 + σα + τ̃β−α. But the latter assertion is clear since σ· is a process with
stationary independent increments.

Let us now concentrate on the conditional law of λ0(β) knowing
σ(λ0(α′), α′ ≤ α). By definition of the Poisson snake, conditionally on ζ·, we can write
Nβ = Nα+Ñβ−α where Ñβ−α is a Poisson snake independent of N conditioned to have lifetime
ζ·. We recall that (ζAαs ) has the same law as e(s) − α s where e(·) is the normalised excursion,
up to the return time at zero which is precisely λ0(α) (denoted by L in the following). This
law is conditionally on L the law ΓL of the Brownian excursion of length L. As a consequence,
conditionally on σ(λ0(α′), α′ ≤ α), the law of Nβ

As
is the law of Ñβ−α where Ñβ−α is a Poisson

snake independent of N with lifetime a Brownian excursion of length L = λ0(α). Although we
have only defined Poisson snake with lifetime a Brownian excursion of length 1, the same defini-
tion can be given replacing 1 by L. If we apply anew Proposition 4 with the slight modification
that we replace length 1 by length L, we obtain that conditionally on σ(λ0(α′), α′ ≤ α), the law
of λ0(β) is the law of inf{s > 0; e(s) − (β − α) s = 0} under ΓL(de). This law is, by a scaling
argument, the law of L inf{s > 0; e(s)− (β − α)

√
Ls = 0} under Γ1(de). Thus it is the law of

L/(1+ τ(β−α)
√
L) or equivalently the law of L/(1+L τ(β−α)) where as before τ· denotes a stable

subordinator with index 1/2. We conclude as desired that the conditional law of λ0(β) knowing
σ(λ0(α′), α′ ≤ α) is the law of λ0(α)/(1 + λ0(α)τ(β−α)).

6 Application: direct determination of the dislocation measure

In a fragmentation, if we consider the evolution of the mass of a tagged block, for instance if we
consider the process λ0(·), we can informally describe the evolution as a succession of jumps. At
a jump–let us say at time α–the tagged block is dislocated into smaller blocks whose decreasing
sequence of masses we denote λ0(α−) s and we set Σα = s. Then it is known (see [Be]) that
the process Σ is a point process with intensity

√

λ0(α−) ν(ds) dα where ν is the dislocation
measure.

To see how this dislocation measure can be understood in our model, the better way is perhaps
to think of Poisson atoms spread under the epigraph of the normalised Brownian excursion, as
explained in Section 4. We see that the dislocation arises when a new atoms is put, creating two
new blocks. The dislocation is binary that is ν puts mass on sequences s with only the two first
term s1, s2 being non-zero. As the measure ν is defined, it amounts in our model to put an atom
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under the epigraph of a normalised excursion e with the intensity used in our Poisson measure,
and see the resulting masses. Taking up the notations of Section 4, if the atom is placed in (s, t),
we see that the excursion is cut into [g(e, s, t), d(e, s, t)] and [0, g(e, s, t)] ∪ [d(e, s, t), 1]. Thus ν
is given by

∫

F (s1) ν(ds)

=

∫

Γ1(de) F [ max {d(e, s, t)− g(e, s, t), 1− ( d(e, s, t)− g(e, s, t) )} ]

× ds dt

d(e, s, t)− g(e, s, t) 1{0≤s≤1, 0≤t≤e(s)}

=

∫

Γ1(de)

∫ 1

0
ds

∫ e(s)

0
dt G(d(e, s, t)− g(e, s, t))

with (using abbreviated notations)

G(d− g) = 1

d− g
[

F (d− g) 1{d−g>1/2} + F (1− (d− g)) 1{d−g≤1/2}
]

.

It is convenient to come back for a moment to the Ito measure Γ of positive Brownian excursion.
Under Γ(de), the “law” of the length σ(e) of e has the density (1/

√
8π) σ−3/2. Conditioning

by the length then using the scaling properties of the conditional laws and finally making an
obvious change of variables we get with an arbitrary function ψ,

∫

Γ(de)

∫ σ(e)

0
ds

∫ e(s)

0
dt ψ(d(e, s, t)− g(e, s, t), σ(e))

=
1√
8π

∫

Γ1(de)

∫ 1

0
ds

∫ e(s)

0
dt

∫

dσ ψ(d(e, s, t)− g(e, s, t), σ). (1)

The interest of coming back to Ito measure is that we can take advantage of Bismut decomposi-
tion of the excursion, see for instance [RY] p. 502. Denoting by J1(·) and J2(·) the last passage
times of two independent 3-dimensional Bessel processes we obtain

∫

Γ(de)

∫ σ(e)

0
ds

∫ e(s)

0
dt ψ(d(e, s, t)− g(e, s, t), σ(e))

=

∫ +∞

0
dq

∫ q

0
dt E[ψ(J1(q)− J1(t) + J2(q)− J2(t), J1(q) + J2(q))] .

By Pitman’s theorem ([RY] p. 253), the processes J1(·) and J2(·) have the law of the process
of hitting times of Brownian motion, thus are stable subordinators with index 1/2. So (J1(q)−
J1(t)+J2(q)−J2(t), J1(q)+J2(q)) is easily shown to have the law of (4(q− t)2)Z1, 4(q− t)2Z1+
t2Z2]) where Z1, Z2 are independent variables having the law of J1(1) that is having the density
(1/
√
2π) x−3/2 exp(−1/2x) over [0,+∞). We find, with the change of variables t → t/q and

13



4q2 → q,
∫

Γ(de)

∫ σ(e)

0
ds

∫ e(s)

0
dt ψ(d(e, s, t)− g(e, s, t), σ(e))

=
1

16π

∫ +∞

0
dq

∫ 1

0
dt

∫

[0,+∞)2
dx dy(xy)−3/2 exp−

(

1

2x
+

1

2y

)

×ψ(q(1− t)2 x, q(1− t)2x+ qt2y)

=
1

16π

∫ +∞

0
dq

∫ 1

0
dt

∫ +∞

0
dσ

∫ 1

0
dz ψ(σ z, σ)

×qt(1− t)
σ2

z−3/2(1− z)−3/2 exp− q

2σ

(

t2

1− z +
(1− t)2

z

)

.

The last equality is obtained by the change of variables

σ = q((1− t)2x+ t2y) , z =
q(1− t)2x

σ
.

Then we evaluate easily the integral in q. For the resulting integral in t a glimpse at Mathematica
spares some pain. We get finally

∫

Γ(de)

∫ σ(e)

0
ds

∫ e(s)

0
dt ψ(d(e, s, t)− g(e, s, t), σ(e))

=
1

8π

∫ 1

0

dz

z1/2(1− z)1/2
∫ +∞

0
dσ ψ(σ z, σ).

If we compare with equation 1, we obtain

∫

Γ1(de)

∫ 1

0
ds

∫ e(s)

0
dt H(d(e, s, t)− g(e, s, t))

=
1√
8π

∫ 1

0

dz

z1/2(1− z)1/2 H(z)

for functions H of the form H(z) =
∫ +∞
0 dσψ(σ z, σ). Since this class is rich enough the formula

holds in fact for all functions H and in particular for the function G defined previously. We
find, summarizing our results, and making an obvious change of variable z → 1− z,

∫

F (s1) ν(ds)

=

∫

Γ1(de)

∫ 1

0
ds

∫ e(s)

0
dt G(d(e, s, t)− g(e, s, t))

=
1√
8π

∫ 1

0

dz

z1/2 (1− z)1/2 G(z)

=
1√
8π

∫ 1

0

dz

z1/2 (1− z)1/2
1

z

(

F (z)1z>1/2 + F (1− z)1z≤1/2
)

=

∫ 1

1/2

dz√
2π z1/2 (1− z)1/2

F (z)

(

1

z
+

1

1− z

)

=

∫ 1

1/2

dz√
2π z3/2 (1− z)3/2

F (z).
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This is the result that Bertoin had derived from the law of the tagged fragment using his general
representation theorem on self-similar fragmentation processes.
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