ELECTRONIC COMMUNICATIONS in PROBABILITY

SPHERICAL AND HYPERBOLIC FRACTIONAL BROWNIAN MOTION

JACQUES ISTAS
LMC-IMAG and LabSad
Département IMSS BSHM, Université Pierre Mendès-France
F-38000 Grenoble.
email: Jacques.Istas@upmf-grenoble.fr

Submitted 10 January 2005, accepted in final form 2 August 2005
AMS 2000 Subject classification: 60G15
Keywords: Fractional Brownian Motion, Manifold

Abstract

We define a Fractional Brownian Motion indexed by a sphere, or more generally by a compact rank one symmetric space, and prove that it exists if, and only if, $0<H \leq 1 / 2$. We then prove that Fractional Brownian Motion indexed by an hyperbolic space exists if, and only if, $0<H \leq 1 / 2$. At last, we prove that Fractional Brownian Motion indexed by a real tree exists when $0<H \leq 1 / 2$.

1 Introduction

Since its introduction [10, 12], Fractional Brownian Motion has been used in various areas of applications (e.g. [14]) as a modelling tool. Its success is mainly due to the self-similar nature of Fractional Brownian Motion and to the stationarity of its increments. Fractional Brownian Motion is a field indexed by \mathbb{R}^{d}. Many applications, as texture simulation or geology, require a Fractional Brownian Motion indexed by a manifold. Many authors (e.g. [13, 8, 1, 7, 2]) use deformations of a field indexed by \mathbb{R}^{d}. Self-similarity and stationarity of the increments are lost by such deformations: they become only local self-similarity and local stationarity. We propose here to build Fractional Brownian Motion indexed by a manifold. For this purpose, the first condition is a stationarity condition with respect to the manifold. The second condition is with respect to the self-similar nature of the increments. Basically, the idea is that the variance of the Fractional Brownian Motion indexed by the manifold should be a fractional power of the distance. Let us be more precise.
The complex Brownian motion B indexed by $\mathbb{R}^{d}, d \geq 1$, can be defined [11] as a centered Gaussian field such that:

$$
\begin{aligned}
B(0) & =0(\text { a.s. }) \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =\left\|M-M^{\prime}\right\| M, M^{\prime} \in \mathbb{R}^{d}
\end{aligned}
$$

where $\left\|M-M^{\prime}\right\|$ is the usual Euclidean distance in \mathbb{R}^{d}. The complex Fractional Brownian Motion B_{H} of index $H, 0<H<1$, indexed by $\mathbb{R}^{d}, d \geq 1$, can be defined $[10,12]$ as a centered Gaussian field such that:

$$
\begin{aligned}
B_{H}(0) & =0 \text { (a.s.) } \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =\left\|M-M^{\prime}\right\|^{2 H} \quad M, M^{\prime} \in \mathbb{R}^{d} .
\end{aligned}
$$

The complex Brownian motion B indexed by a sphere $\mathbb{S}_{d}, d \geq 1$, can be defined [11] as a centered Gaussian field such that:

$$
\begin{aligned}
B(O) & =0(\text { a.s. }) \\
\mathbb{E}\left|B(M)-B\left(M^{\prime}\right)\right|^{2} & =d\left(M, M^{\prime}\right) M, M^{\prime} \in \mathbb{S}_{d}
\end{aligned}
$$

where O is a given point of \mathbb{S}_{d} and $d\left(M, M^{\prime}\right)$ the distance between M and M^{\prime} on the sphere (that is, the length of the geodesic between M and M^{\prime}). Our first aim is to investigate the fractional case on \mathbb{S}_{d}. We start with the circle \mathbb{S}_{1}. We first prove that there exists a centered Gaussian process (called Periodical Fractional Brownian Motion, in short PFBM) such that:

$$
\begin{aligned}
B_{H}(O) & =0(\text { a.s. }) \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) \quad M, M^{\prime} \in \mathbb{S}_{1}
\end{aligned}
$$

where O is a given point of \mathbb{S}_{1} and $d\left(M, M^{\prime}\right)$ the distance between M and M^{\prime} on the circle, if and only if, $0<H \leq 1 / 2$. We then give a random Fourier series representation of the PFBM. We then study the general case on \mathbb{S}_{d}. We prove that there exists a centered Gaussian field (called Spherical Fractional Brownian Motion, in short SFBM) such that:

$$
\begin{align*}
B_{H}(O) & =0(\text { a.s. }) \tag{1}\\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) \quad M, M^{\prime} \in \mathbb{S}_{d} \tag{2}
\end{align*}
$$

where O is a given point of \mathbb{S}_{d} and $d\left(M, M^{\prime}\right)$ the distance between M and M^{\prime} on \mathbb{S}_{d}, if and only, if $0<H \leq 1 / 2$. We then extend this result to compact rank one symmetric spaces (in short CROSS).
Let us now consider the case of a real hyperbolic space \mathbb{H}_{d}. We prove that there exists a centered Gaussian field (called Hyperbolic Fractional Brownian Motion, in short HFBM) such that:

$$
\begin{align*}
B_{H}(O) & =0(\text { a.s. }) \tag{3}\\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) M, M^{\prime} \in \mathbb{H}_{d} \tag{4}
\end{align*}
$$

where O is a given point of \mathbb{H}_{d} and $d\left(M, M^{\prime}\right)$ the distance between M and M^{\prime} on \mathbb{H}_{d}, if, and only if, $0<H \leq 1 / 2$.
At last, we consider the case of a real tree (X, d). We prove that there exists a centered Gaussian field such that:

$$
\begin{aligned}
B_{H}(O) & =0(\text { a.s. }), \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) M, M^{\prime} \in X,
\end{aligned}
$$

where O is a given point of X, for $0<H \leq 1 / 2$.

2 Periodical Fractional Brownian Motion

Theorem 2.1

1. The PFBM exists, if and only if, $0<H \leq 1 / 2$.
2. Assume $0<H \leq 1 / 2$. Let us parametrize the points M of the circle \mathbb{S}_{1} of radius r by their angles $x . B_{H}$ can be represented as:

$$
\begin{equation*}
B_{H}(x)=\sqrt{r} \sum_{n \in \mathbb{Z}^{\star}} d_{n} \varepsilon_{n} \cdot\left(e^{i n x}-1\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n}=\frac{\sqrt{-\int_{0}^{|n| \pi} u^{2 H} \cos (u) d u}}{\sqrt{2 \pi}|n|^{1 / 2+H}}, \tag{6}
\end{equation*}
$$

and $\left(\varepsilon_{n}\right)_{n \in \mathbb{Z}^{\star}}$ is a sequence of i.i.d. complex standard normal variables.

Proof of Theorem 2.1

Without loss of generality, we work on the unit circle $\mathbb{S}_{1}: r=1$. Let M and M^{\prime} be parametrized by $x, x^{\prime} \in[0,2 \pi[$. We then have:

$$
\begin{aligned}
d\left(M, M^{\prime}\right) & =d\left(x, x^{\prime}\right) \\
& =\inf \left(\left|x-x^{\prime}\right|, 2 \pi-\left|x-x^{\prime}\right|\right) \\
d_{H}\left(x, x^{\prime}\right) & \stackrel{\text { def }}{=} d^{2 H}\left(x, x^{\prime}\right) \\
& =\inf \left(\left|x-x^{\prime}\right|^{2 H},\left(2 \pi-\left|x-x^{\prime}\right|\right)^{2 H}\right)
\end{aligned}
$$

The covariance function of B_{H}, if there exists, is:

$$
R_{H}\left(x, x^{\prime}\right)=\frac{1}{2}\left(d_{H}(x, 0)+d_{H}\left(x^{\prime}, 0\right)-d_{H}\left(x, x^{\prime}\right)\right)
$$

Let us expand the function $x \rightarrow d_{H}(x, 0)$ in Fourier series:

$$
\begin{equation*}
d_{H}(x, 0)=\sum_{n \in \mathbb{Z}} f_{n} e^{i n x} \tag{7}
\end{equation*}
$$

We will see that the series $\sum_{n \in \mathbb{Z}}\left|f_{n}\right|$ converges. It follows that equality (7) holds pointwise. Since $d_{H}(0,0)=0, \sum_{n \in \mathbb{Z}} f_{n}=0$. The function d_{H} is odd: $f_{-n}=f_{n}$. We can therefore write, no matter if $x-x^{\prime}$ is positive or negative:

$$
\begin{aligned}
d_{H}\left(x, x^{\prime}\right) & =\sum_{n \in \mathbb{Z}} f_{n} e^{i n\left(x-x^{\prime}\right)} \\
& =\sum_{n \in \mathbb{Z}^{\star}} f_{n}\left(e^{i n\left(x-x^{\prime}\right)}-1\right) .
\end{aligned}
$$

We now prove that R_{H} is a covariance function if and only if $0<H \leq 1 / 2$.

$$
\begin{align*}
\sum_{i, j=1}^{p} \lambda_{i} \overline{\lambda_{j}} R_{H}\left(x_{i}, x_{j}\right) & =\frac{1}{2} \sum_{n \in \mathbb{Z}} f_{n}\left[\sum_{i, j=1}^{p} \lambda_{i} \overline{\lambda_{j}}\left(e^{i n x_{i}}+e^{-i n x_{j}}-e^{-i n\left(x_{i}-x_{j}\right)}\right)\right] \\
& =-\frac{1}{2} \sum_{n \in \mathbb{Z}^{\star}} f_{n}\left|\sum_{i=1}^{p} \lambda_{i}\left(1-e^{i n x_{i}}\right)\right|^{2} \tag{8}
\end{align*}
$$

Let us study the sign of $f_{n}, n \in \mathbb{Z}^{\star}$. Since $f_{-n}=f_{n}$, let us only consider $n>0$.

$$
\begin{aligned}
f_{n} & =\frac{1}{\pi} \int_{0}^{\pi} x^{2 H} \cos (n x) d x \\
& =\frac{1}{\pi n^{1+2 H}} \int_{0}^{n \pi} u^{2 H} \cos (u) d u
\end{aligned}
$$

1. n odd.

$$
\int_{2 k \pi}^{2 k \pi+\pi} u^{2 H} \cos (u) d u=\int_{0}^{\pi / 2} \cos (v)\left[(v+2 k \pi)^{2 H}-(2 k \pi+\pi-v)^{2 H}\right] d v \leq 0
$$

2. n even.

$$
\begin{aligned}
\int_{2 k \pi}^{2(k+1) \pi} u^{2 H} \cos (u) d u= & \int_{0}^{\pi / 2} \cos (v)\left[(v+2 k \pi)^{2 H}-(2 k \pi+\pi-v)^{2 H}\right. \\
& \left.-(2 k \pi+\pi+v)^{2 H}+(2 k \pi+2 \pi-v)^{2 H}\right] d v
\end{aligned}
$$

Using the concavity/convexity of the functions $x \rightarrow x^{2 H}$, one sees that
$\left[(v+2 k \pi)^{2 H}-(2 k \pi+\pi-v)^{2 H}-(2 k \pi+\pi+v)^{2 H}+(2 k \pi+2 \pi-v)^{2 H}\right]$ is negative when $H \leq 1 / 2$ and positive when $H>1 / 2$.

1. $H \leq 1 / 2$ All the f_{n} are negative and (8) is positive.
2. $H>1 / 2$. We check that, if B_{H} exists, then we should have:

$$
\begin{aligned}
\mathbb{E}\left|\int_{0}^{2 \pi} B_{H}(t) e^{i n t} d t\right|^{2} & =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(d_{H}(t, 0)+d_{H}(s, 0)-d_{H}(s, t)\right) e^{i n(t-s)} d t d s \\
& =-4 \pi^{2} f_{n}
\end{aligned}
$$

All the f_{n}, with n even, are positive, which constitutes a contradiction.
In order to prove the representation (5), we only need to compute the covariance:

$$
\begin{aligned}
\mathbb{E} B_{H}(x) \overline{B_{H}\left(x^{\prime}\right)} & =\frac{1}{2}\left(f_{0}-\sum_{n \in \mathbb{Z}^{\star}} d_{n}^{2} e^{i n x}-\sum_{n \in \mathbb{Z}^{\star}} d_{n}^{2} e^{i n x^{\prime}}+\sum_{n \in \mathbb{Z}^{\star}} d_{n}^{2} e^{i n\left(x-x^{\prime}\right)}\right) \\
& =R_{H}\left(x, x^{\prime}\right) .
\end{aligned}
$$

3 Spherical Fractional Brownian Motion

Theorem 3.1

1. The SFBM, defined by (1), (2), exists if, and only if, $0<H \leq 1 / 2$.
2. The same holds for CROSS: the Fractional Brownian Motion, indexed by a CROSS, exists if, and only if, $0<H \leq 1 / 2$.

Corollary 3.1

Let $(\mathcal{M}, \widetilde{d})$ be a complete Riemannian manifold such that \mathcal{M} and a CROSS are isometric. Then the Fractional Brownian Motion indexed by \mathcal{M} and defined by:

$$
\begin{aligned}
B_{H}(\widetilde{O}) & =0 \text { (a.s.) } \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =\widetilde{d}^{2 H}\left(M, M^{\prime}\right) \quad M, M^{\prime} \in \mathcal{M},
\end{aligned}
$$

exists if and only if $0<H \leq 1 / 2$.

Proof of Theorem 3.1

Let us first recall the classification of the CROSS, also known as two points homogeneous spaces $[9,17]$: spheres $\mathbb{S}_{d}, d \geq 1$, real projective spaces $\mathbb{P}^{d}(\mathbb{R}), d \geq 2$, complex projective spaces $\mathbb{P}^{d}(\mathbb{C}), d=2 k, k \geq 2$, quaternionic projective spaces $\mathbb{P}^{d}(\mathbb{H}), d=4 k, k \geq 2$ and Cayley projective plane P^{16}. [6] has proved that Brownian Motion indexed by CROSS can be defined. The proof of Theorem 3.1 begins with the following Lemma, which implies, using [6], the existence of the Fractional Brownian Motion indexed by a CROSS for $0<H \leq 1 / 2$.

Lemma 3.1

Let (X, d) be a metric space. If the Brownian Motion B indexed by X and defined by:

$$
\begin{aligned}
B(O) & =0(\text { a.s. }), \\
\mathbb{E}\left|B(M)-B\left(M^{\prime}\right)\right|^{2} & =d\left(M, M^{\prime}\right) M, M^{\prime} \in X,
\end{aligned}
$$

exists, then the Fractional Brownian Motion B_{H} indexed by X and defined by:

$$
\begin{aligned}
B_{H}(O) & =0(\text { a.s. }) \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) \quad M, M^{\prime} \in X
\end{aligned}
$$

exists for $0<H \leq 1 / 2$.
Proof of Lemma 3.1
For $\lambda \geq 0,0<\alpha<1$, one has:

$$
\lambda^{\alpha}=-\frac{1}{C_{\alpha}} \int_{0}^{+\infty} \frac{e^{-\lambda x}-1}{x^{1+\alpha}} d x
$$

with

$$
C_{\alpha}=\int_{0}^{+\infty} \frac{1-e^{-u}}{u^{1+\alpha}} d u
$$

We then have, for $0<H<1 / 2$:

$$
d^{2 H}\left(M, M^{\prime}\right)=-\frac{1}{C_{2 H}} \int_{0}^{+\infty} \frac{e^{-x d\left(M, M^{\prime}\right)}-1}{x^{1+2 H}} d x
$$

Let us remark that:

$$
e^{-x d\left(M, M^{\prime}\right)}=\mathbb{E}\left(e^{i \sqrt{2 x}\left(B(M)-B\left(M^{\prime}\right)\right)}\right)
$$

so that:

$$
d^{2 H}\left(M, M^{\prime}\right)=-\frac{1}{C_{2 H}} \int_{0}^{+\infty} \frac{\mathbb{E}\left(e^{i \sqrt{2 x}\left(B(M)-B\left(M^{\prime}\right)\right)}\right)-1}{x^{1+2 H}} d x
$$

Denote by $R_{H}\left(M, M^{\prime}\right)$ the covariance function of B_{H}, if exists:

$$
R_{H}\left(M, M^{\prime}\right)=\frac{1}{2}\left(d_{H}(O, M)+d_{H}\left(M^{\prime}, O\right)-d_{H}\left(M, M^{\prime}\right)\right)
$$

Let us check that R_{H} is positive definite:

$$
\begin{gather*}
\sum_{i, j=1}^{p} \lambda_{i} \overline{\lambda_{j}} R_{H}\left(M_{i}, M_{j}\right)= \\
-\frac{1}{2 C_{2 H}} \int_{0}^{+\infty} \frac{\sum_{i, j=1}^{p} \lambda_{i} \overline{\lambda_{j}}\left[\mathbb{E}\left(e^{i \sqrt{2 x} B\left(M_{i}\right)}\right)+\mathbb{E}\left(e^{-i \sqrt{2 x} B\left(M_{j}\right)}\right)-\mathbb{E}\left(e^{i \sqrt{2 x}\left(B\left(M_{i}\right)-B\left(M_{j}\right)\right)}\right)-1\right]}{x^{1+2 H}} d x \\
=\frac{1}{2 C_{2 H}} \int_{0}^{+\infty} \frac{\mathbb{E}\left|\sum_{i=1}^{p} \lambda_{i}\left(1-e^{i \sqrt{2 x} B\left(M_{i}\right)}\right)\right|^{2}}{x^{1+2 H}} d x \tag{9}
\end{gather*}
$$

(9) is clearly positive and Lemma 3.1 is proved.

We now prove by contradiction that the Fractional Brownian Motion indexed by a CROSS does not exist for $H>1 / 2$. The geodesic of a CROSS are periodic. Let \mathbf{G} be such a geodesic containing 0 . Therefore, the process $B_{H}(M), M \in \mathbf{G}$ is a PFBM. We know from Theorem 2.1 that PFBM exits if, and only if, $0<H \leq 1 / 2$.

Proof of Corollary 3.1

Let ϕ be the isometric mapping between \mathcal{M} and the CROSS and let \widetilde{d} (resp. d) be the metric of \mathcal{M} (resp. the CROSS). Then, for all $M, M^{\prime} \in \mathcal{M}$, one has:

$$
\tilde{d}\left(M, M^{\prime}\right)=d\left(\phi(M), \phi\left(M^{\prime}\right)\right)
$$

Let \widetilde{O} be a given point of \mathcal{M} and $O=\phi(\widetilde{O})$. Denote by \widetilde{R}_{H} (resp. R_{H}) the covariance function of the Fractional Brownian Motion indexed by \mathcal{M} (resp. the CROSS).

$$
\begin{aligned}
\widetilde{R}_{H}\left(M, M^{\prime}\right) & \stackrel{\text { def }}{=} \frac{1}{2}\left(\widetilde{d}^{2 H}(\widetilde{O}, M)+\widetilde{d}^{2 H}\left(\widetilde{O}, M^{\prime}\right)-\widetilde{d}^{2 H}\left(M, M^{\prime}\right)\right) \\
& =\frac{1}{2}\left(d^{2 H}(O, \phi(M))+d^{2 H}\left(O, \phi\left(M^{\prime}\right)\right)-d^{2 H}\left(\phi(M), \phi\left(M^{\prime}\right)\right)\right. \\
& =R_{H}\left(\phi(M), \phi\left(M^{\prime}\right)\right)
\end{aligned}
$$

It follows that \widetilde{R}_{H} is positive definite if and only if, R_{H} is positive definite. Corollary 3.1 is proved.

4 Hyperbolic Fractional Brownian Motion

Let us consider real hyperbolic spaces \mathbb{H}_{d} :

$$
\mathbb{H}_{d}=\left\{\left(x_{1}, \ldots, x_{d}\right), x_{1}>0, x_{1}^{2}-\sum_{2}^{d} x_{i}^{2}=1\right\}
$$

with geodesic distance:

$$
d\left(M, M^{\prime}\right)=\operatorname{Arccosh}\left[M, M^{\prime}\right]
$$

where

$$
\left[M, M^{\prime}\right]=x_{1} x_{1}^{\prime}-\sum_{2}^{d} x_{i} x_{i}^{\prime}
$$

The HFBM is the Gaussian centered field such that:

$$
\begin{aligned}
B_{H}(O) & =0(\text { a.s. }) \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =d^{2 H}\left(M, M^{\prime}\right) M, M^{\prime} \in \mathbb{H}_{d}
\end{aligned}
$$

where O is a given point of \mathbb{H}_{d}.
Theorem 4.1
The HFBM exists if, and only if, $0<H \leq 1 / 2$.
Since the Brownian Motion indexed by a real hyperbolic space can be defined [4, 5], Lemma 3.1 implies the existence of HFBM when $0<H \leq 1 / 2$.

Let H be a real function. [5, Prop. 7.6] prove that if $H\left(d\left(M, M^{\prime}\right)\right)$ is negative definite, then $H(x)=O(x)$ as $x \rightarrow+\infty$. It follows that $d^{2 H}\left(M, M^{\prime}\right)$, when $H>1 / 2$, is not negative definite: the HFBM, when $H>1 / 2$ does not exist.

Corollary 4.1

Let $(\mathcal{M}, \widetilde{d})$ be a complete Riemannian manifold such that \mathcal{M} and \mathbb{H}_{d} are isometric. Then the Fractional Brownian Motion indexed by \mathcal{M} and defined by:

$$
\begin{aligned}
B_{H}(\widetilde{O}) & =0 \text { (a.s.) } \\
\mathbb{E}\left|B_{H}(M)-B_{H}\left(M^{\prime}\right)\right|^{2} & =\widetilde{d}^{2 H}\left(M, M^{\prime}\right) M, M^{\prime} \in \mathcal{M}
\end{aligned}
$$

exists if, and only, if $0<H \leq 1 / 2$.
The proof of Corollary 4.1 is identical to the proof of Corollary 3.1.

5 Real trees

A metric space (X, d) is a real tree (e.g. [3]) if the following two properties hold for every $x, y \in X$.

- There is a unique isometric map $f_{x, y}$ from $[0, d(x, y)]$ into X such that $f_{x, y}(0)=x$ and $f_{x, y}(d(x, y))=y$.
- If ϕ is a continuous injective map from $[0,1]$ into X, such that $\phi(0)=x$ and $\phi(1)=y$, we have

$$
\phi([0,1])=f_{x, y}([0, d(x, y)]) .
$$

Theorem 5.1
The Fractional Brownian Motion indexed by a real tree (X, d) exists for $0<H \leq 1 / 2$.
[16] proves that the distance d is negative definite. It follows from [15] that function $R(x, y)=\frac{1}{2}(d(0, x)+d(0, y)-d(x, y))$ is positive definite. Lemma 3.1 then implies theorem 5.1.

Acknowledgements. I would like the anonymous referee for his valuable suggestions.

References

[1] M. Clerc and S. Mallat, Estimating deformation of stationary processes, Ann. Statist. 6 (2003), 1772-1821.
[2] S. Cohen, X. Guyon, O. Perrin, and M. Pontier, Identification of an isometric transformation of the standard Brownian sheet, J. Stat. Plann. Inference 136 (2006), no. 4, 1317-1330.
[3] A. Dress, V. Moulton, and W. Terhalle, T-theory: An overview, Europ. J. Combinatorics 17 (1996), 161-175.
[4] J. Faraut, Fonction brownienne sur une variété riemannienne, Séminaire de Probabilité, LNM-Springer 709 (1973), 61-76.
[5] J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier 24 (1974), 171-217.
[6] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. Poincaré. 3 (1967), 121-226.
[7] M. Genton and O. Perrin, On a time deformation reducing nonstationary stochastic processes to local stationarity, J. Appl. Prob. 1 (2004), 236-249.
[8] X. Guyon and O. Perrin, Identification of space deformation using linear and superficial quadratic variations, Stat. and Proba. Letters 47 (2000), 307-316.
[9] S. Helgason, Differential Geometry and Symmetric spaces, Academic Press, 1962.
[10] A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum. (German), C. R. (Dokl.) Acad. Sci. URSS 26 (1940), 115-118.
[11] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Vilars, 1965.
[12] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review 10 (1968), 422-437.
[13] O. Perrin, Quadratic variation for Gaussian processes and application to time deformation, Stoch. Proc. Appl. 82 (1999), 293-305.
[14] G. Samorodnitsky and M. Taqqu, Stable non-gaussian random processes: stochastic models with infinite variance, Chapman \& Hall, New York, 1994.
[15] I. Schoenberg, Metric spaces and positive definite functions, Ann. Math. 39 (1938), 811841.
[16] A. Valette, Les représentations uniformément bornées associées à un arbre réel, Bull. Soc. Math. Belgique 42 (1990), 747-760.
[17] H. Wang, Two-point homogeneous spaces, Ann. Math. 2 (1952), 177-191.

