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Abstract

Starting with a percolation model in Zd in the subcritical regime, we consider a random walk
described as follows: the probability of transition from x to y is proportional to some function f
of the size of the cluster of y. This function is supposed to be increasing, so that the random
walk is attracted by bigger clusters. For f(t) = eβt we prove that there is a phase transition
in β, i.e., the random walk is subdiffusive for large β and is diffusive for small β.

1 Introduction and results

First, we describe the usual site percolation model in Zd. This model is defined as follows.
For fixed p ∈ (0, 1), consider i.i.d. random variables ω(x), x ∈ Zd, where ω(x) = 1 with
probability p and ω(x) = 0 with probability 1− p. A site x is said to be open if ω(x) = 1 and
closed otherwise. Write x ∼ z if x and z are neighbors. A (self-avoiding) path from x to y is:
γ(x, y) = {x0 = x, x1, x2, . . . , xn = y}, where xi 6= xj if i 6= j and xi ∼ xi+1, i = 0, . . . , n− 1.
A path γ is said to be open if all the sites in γ are open. The cluster of x is defined by

C(x) = {y ∈ Zd : ω(y) = 1 and there is an open path γ(x, y) from x to y}.

Note that, if ω(x) = 0, then C(x) = ∅. It is a well-known fact (see e.g. [9]) that there exists
pcr (depending on d; obviously, pcr = 1 in dimension 1) such that if p < pcr, then a.s. there
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is no infinite open cluster, and if p > pcr, then a.s. there exists an infinite open cluster (also,
with positive probability |C(0)| =∞).
Throughout this paper we assume that p < pcr, i.e, the model is in the (strictly) subcritical
regime. Fix a parameter β > 0. The percolation configuration is regarded as random envi-
ronment. Fixed the environment, we start a discrete time random walk on Zd with transition
probabilities

Pω
xy =

eβ|C(y)|
∑

z∼x
eβ|C(z)|

,

if x ∼ y. Since β is positive, one can note that the random walk is in some sense “attracted” by
bigger clusters, and the strength of this attraction grows with β. Denote by ξ(t) the position
of this random walk at time t. Let P be the probability measure with respect to ω and Px

ω the
(so-called quenched) probability for the random walk starting from x in the fixed environment
ω. Denote also Px = Pxω ⊗ P (Px is usually called the annealed probability); throughout the
paper ‖ · ‖ stands for the L∞ norm. Our main result is that there is a phase transition in β,
i.e., the random walk exhibits different behaviors for large and small β: it is diffusive for small
values of β and subdiffusive for large values of β.

Theorem 1.1 Suppose that the random walk ξ(t) starts from the origin. There exist β0 and
β1 (depending on d) such that 0 < β0 ≤ β1 <∞ and

(i) if 0 < β < β0, then

lim
t→∞

logmax0≤s≤t ‖ξ(s)‖
log t

=
1

2
, P0-a.s. (1.1)

(ii) if β > β1, then

lim sup
t→∞

logmax0≤s≤t ‖ξ(s)‖
log t

<
1

2
, P0-a.s. (1.2)

One can prove also that the same result holds for the bond percolation model in the subcritical
regime. The method of the proof remains the same; the reason why we have chosen the site
percolation is that for bond percolation there are some technical difficulties (easily manageable,
though; they relate to the fact that, in the bond percolation model, two neighboring sites can
belong to different large clusters) in the proof of the part (ii) of Theorem 1.1.
Recently much work has been done on the (simple or not) random walk on the unique infinite
cluster for the supercritical (bond or site) percolation in Zd (see e.g. [2, 4, 10, 15]; see also [11]
for some results for the random walk on the incipient infinite cluster in dimension 2). Another
related subject is the class of models (see e.g. [5, 8]) that can be described as follows. Into
each edge of Zd we place a random variable that represents the transition rate between the
sites. The new features of the model of the present paper are, first, the fact that the random
environment is not independent, and secondly, the absence of the uniform ellipticity. Speaking
of uniform ellipticity, we should mention that in the paper [7] there was considered a simple
symmetric one-dimensional random walk with random rates, where the time spent at site i
before taking a step has an exponential distribution with mean τi, and τi’s are i.i.d. positive
random variables with distribution function F having a polinomial tail. One may find that
there are similarities of the d-dimensional analog of the model of [7] with our model, because
clusters of size n will have “density” e−Cn, and the mean time spent there is roughly eβn,
so, thinking of clusters as “sites”, we indeed obtain a polinomial tail of mean time spent at
a given site. However, the facts that the random environment is no longer independent and
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that here the random walk is not a time-change of the simple random walk make the model
of the present paper considerably more difficult to analyze.

2 Proof of Theorem 1.1

We begin by introducing some notations and recalling a well-known fact from the percolation
theory. Namely, we will use the following result (see [12, 9]): if p < pcr, then there exists
c1 > 0 such that for all N > 0 and x ∈ Zd

P[|C(x)| > N ] ≤ e−c1N . (2.1)

Now, to prove Theorem 1.1, an important idea is to consider ξ(t) in finite region. Take
Λn = (−n/2, n/2]d and let the process ξ(n)(t) be the random walk ξ(t) restricted on Λn.

Proof of part (i). It can be easily seen that ξ(t) is reversible with the reversible measure

π(x) = eβ|C(x)|
∑

z∼x
eβ|C(z)|, (2.2)

and thus the finite Markov chain ξ(n)(t) is also reversible, with the invariant (and reversible)
measure

π(n)(x) =

eβ|C(x)|
∑

z∼x
eβ|C(z)|

Z
, (2.3)

where

Z =
∑

x∈Λn
eβ|C(x)|

∑

z∼x
eβ|C(z)|

is the normalizing constant, so that
∑

x∈Λn π(n)(x) = 1.

Consider also a random walk ξ̂(n)(t) that is a continuization of ξ(n)(t). That is, ξ̂(n)(t) =
ξ(n)(Nt), where Nt is a Poisson process with rate 1, independent of anything else (in other

words, ξ̂(n) is a continuous time Markov chain with the transition rates equal to the transition
probabilities of ξ(n)). Let Ti be the time interval between the jumps (i − 1) and i of Nt,

Sn =
∑n

i=1 Ti, and T̂A (respectively, TA) be hitting time of set A by random walk ξ̂(n)(t)

(respectively, ξ(n)(t)). It can be easily seen (cf., for example, Chapter 2 of [1]) that T̂A = STA
and E(T̂A | TA) = TA. Moreover, since t−1Nt → 1 a.s., many other results concerning ξ̂(n)

can be easily translated into the corresponding results for ξ(n).

Remark 2.1 Using this technique, it is elementary to obtain that Theorem 1.1 holds for ξ(t)

iff it holds for ξ̂(t), where ξ̂(t) is the continuization of ξ(t) defined in the same way.

So, now we consider the finite continuous time Markov chain ξ̂(n)(t). Denote by λ the spectral

gap of ξ̂(n)(t).

Lemma 2.1 There exist c14 > 0 and n∗ = n∗(ω) such that for all n > n∗ we have λ ≥ c14n
−2,

P-a.s.
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Proof of Lemma 2.1. The idea is to use Theorem 3.2.1 from [14] to prove the lemma. For each
pair x, y ∈ Λn, we will choose exactly one path γ(x, y) (connecting x and y) in a way described
below. Let |γ(x, y)| be the length of γ(x, y) (i.e. the number of edges in γ(x, y)). Denote
by E(Λn) the set of edges of Zd ∩ Λn. For an edge u = 〈z1, z2〉 let Q(u) = (Pω

z1z2π
(n)(z1) +

Pω
z2z1π

(n)(z2))/2. According to Theorem 3.2.1 of [14], it holds that λ ≥ 1/A, where

A = max
u∈E(Λn)

{ 1

Q(u)

∑

x,y∈Λn: γ(x,y)3u
|γ(x, y)|π(n)(x)π(n)(y)

}

. (2.4)

Here, we have, for u = 〈z1, z2〉,

Q(u) =
eβ(|C(z1)|+|C(z2)|)

Z

and for each pair x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)) ∈ Λn we choose the path γ(x, y) in
the following way. Let e1, . . . , ed be the coordinate vectors. Denote ∆i = y(i) − x(i) and let
sgn(∆i) be the sign of ∆i. Suppose for definiteness that x(d) ≤ y(d) (so that sgn(∆d) ≥ 0).
We take then

γ(x, y) = (x, x+ ed, . . . , x+∆ded, x+ sgn(∆d−1)ed−1 +∆ded, . . . ,

x+∆d−1ed−1 +∆ded, . . . , x+∆1e1 + · · ·+∆ded = y),

so, first we successively change the d-th coordinate of x to obtain the d-th coordinate of y,
then we do the same with (d− 1)-th coordinate, and so on. With this construction it is clear
that the length of γ(x, y) is at most dn. For an edge

u = 〈(x(1), . . . , x(d)), (x(1), . . . , x(d−1), x(d) + 1)〉

define

Iu = {(z(1), . . . , z(d)) ∈ Λn : z(1) = x(1), . . . , z(d−1) = x(d−1), z(d) ≤ x(d)}

and
Ru = {(z(1), . . . , z(d)) ∈ Λn : z(d) > x(d)}

(for the edges of other directions the computations are quite analogous). We have then

∑

x,y∈Λn: γ(x,y)3u
|γ(x, y)|π(n)(x)π(n)(y)

≤ dn
∑

x∈Iu
π(n)(x)

∑

y∈Ru
π(n)(y)

≤ dn
∑

x∈Iu
π(n)(x), (2.5)

as
∑

y∈Ru π(n)(y) ≤ 1.

Now our goal is to prove that with large probability, for all such u,
∑

x∈Iu π(n)(x) is of order
n/Z. Denote

Ĩu = {(z(1), . . . , z(d)) ∈ Λn : z(1) = x(1), . . . , z(d−1) = x(d−1)}.
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Note that Iu ⊂ Ĩu, so we will concentrate on obtaining an upper bound for
∑

x∈Ĩu π(n)(x). It is

important to observe that the variables π(n)(x) are not independent. For the sake of simplicity,
suppose that

√
n is an integer, the general case can be treated analogously. Divide Ĩu into

√
n

equal (connected) parts of size
√
n, denote xij := (x(1), . . . , x(d−1), (i− 1)

√
n+ j) and write

∑

x∈Ĩu

π(n)(x) =

√
n

∑

j=1

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij).

For fixed j, let Bi = 1{|C(xij)|<
√
n/2}, and B =

⋂

√
n

i=1Bi. By (2.1), we have P[Bi] ≥ 1− e−c1
√
n

which implies that P[B] ≥ 1− e−c2
√
n for some c2 > 0, so

P
[

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij) ≥
k
√
n

Z

]

≤ P
[(

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij) ≥
k
√
n

Z

)

1B

]

+ e−c2
√
n.

Now, it is important to note that the variables eβ|C(xij)|
∑

z∼xij e
β|C(z)|1B = π(xij)1B (re-

call (2.2) and (2.3)), i = 1, . . . ,
√
n, are independent. We have also

eβ|C(xij)|
∑

z∼xij
eβ|C(z)| ≤ 2de2β|C(x̃ij)|,

where x̃ij satisfies |C(x̃ij)| = maxz∼xij{|C(xij)|, |C(z)|}.
For y = nα (α > 0 will be chosen later), using (2.1), we have

√
n
2
∑

i=−
√
n
2 +1

P[2de2β|C(x̃ij)| > y] ≤ √ne−
c3 log y

2β =
√
ny−

c3
2β = n

1
2−

c3α
2β . (2.6)

According to Corollary 1.5 from [13], if X1, . . . , Xk are independent random variables, Sk =
∑k

i=1Xi, Fi(x) = P[Xi < x], then for any set y1, . . . , yk of positive numbers and any t,
t ∈ (0, 1],

P[Sk ≥ x] ≤
k
∑

i=1

P[Xi > yi] +
( eA+t
xyt−1

)
x
y

, (2.7)

where y ≥ max{y1, . . . , yk} and

A+t =

k
∑

i=1

∞
∫

0

utdFi(u).

Denote F̄i(u) = 1−Fi(u). We apply Corollary 1.5 from [13] to random variables 2de2β|C(x̃ij)|1B ,

i = −
√
n
2 + 1, . . . ,

√
n
2 , with x = k

√
n, yi ≡ y = nα, and t = 1. First term of the right-hand
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side of (2.7) was estimated in (2.6). For the second term, we have

A+1 =

√
n
2
∑

i=−
√
n
2 +1

∞
∫

0

udFi(u)

= −√n

∞
∫

0

udF̄i(u)

= −√n

∞
∫

0

F̄i(u)du

≤ c4
√
n

∞
∫

1

u−
c3
2β du

= c5
√
n, (2.8)

as β is small, thus
( eA+t
xyt−1

)
x
y ≤

(ec5
√
n

k
√
n

)

k
√
n

nα

=
(ec5

k

)kn
1
2
−α

(2.9)

so, to guarantee that
(

eA+
t

xyt−1

)
x
y → 0 as n → ∞, it is sufficient to take k large enough and

β/c3 < α < 1/2.
We proved that for β sufficiently small

P
[

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij) ≥
k
√
n

Z

]

≤ c7n
− 1

2 (
c3α
β −1) ≤ c7n

− c10
β + 1

2 . (2.10)

Thus,

P
[

∑

x∈Ĩu

π(n)(x) ≥ c8n

Z

]

= P
[

√
n

∑

j=1

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij) ≥
c8n

Z

]

≤
√
n

∑

j=1

P
[

√
n
2
∑

i=−
√
n
2 +1

π(n)(xij) ≥
k
√
n

Z

]

≤ c7n
− c10

β +1 (2.11)

So, using (2.11) in (2.5) and (2.4), we have

A ≤ max
u∈E(Λn)

{ c9Z

eβ(|C(z1)|+|C(z2)|)
n2

Z

}

≤ c9n
2, (2.12)

as eβ(|C(z1)|+|C(z2)|) ≥ 1, with probability at least 1−c7n
− c10

β +1. Since β can be made arbitrarily
small, Borel-Cantelli lemma implies that for almost all environments for n large enough it holds
that A ≤ c13n

2 and thus λ ≥ c14n
−2. Lemma 2.1 is proved. ¤
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Now, using Lemma 2.1.4 from [14] with f(x) = 1{‖x‖≥n/4}, where, as before, ‖ · ‖ is the L∞
norm, we prove (1.1). By Lemma 2.1.4 from [14] we have that

‖Htf − π(n)(f)‖22 ≤ e−2λtVar(n)π (f).

In what follows we show that π(n)(f) is of constant order. We have

π(n)(f) =
∑

x∈Λn, ‖x‖≥n/4

eβ|C(x)|
∑

z∼x
eβ|C(z)|

Z
.

Since |C(x)| ≥ 0, it is easy to obtain that for all ω it holds

∑

x∈Λn, ‖x‖≥n/4
eβ|C(x)|

∑

z∼x
eβ|C(z)| ≥ nd

2
. (2.13)

Using the same kind of argument as in the proof of Lemma 2.1, one can easily see that for
all n

P
[

∑

x∈Λn, ‖x‖<n/4
eβ|C(x)|

∑

z∼x
eβ|C(z)| ≥ c15n

d
]

≤ c′′15n
− c′15

β , (2.14)

where c′15, c
′′
15 depend only on c15. Thus, with probability at least 1 − c′′15n

− c′15
β we have

π(n)(f) ≥ const. Then, using that Var(n)π (f) ≤ 1, taking t = c16n
2 for c16 large enough yields

that the random walk ξ̂(n)(t), and thus ξ(n)(t), will be at distance of order n from the origin
(as both random walks start from 0) after a time of order n2 with probability bounded away
from 0.
Now, for any fixed ε > 0, divide the time interval (0, t] into tε intervals of length t1−ε. Borel-
Cantelli lemma implies then that for t large enough there will be at least one time interval
such that at the end of this interval ξ(n) will be at distance at least t

1
2− ε

2 from the origin.
Since ε > 0 is arbitrary, we proved that

lim inf
t→∞

logmax0≤s≤t ‖ξ(s)‖
log t

≥ 1

2
, P0-a.s. (2.15)

It remains to prove that

lim sup
t→∞

logmax0≤s≤t ‖ξ(s)‖
log t

≤ 1

2
, P0-a.s. (2.16)

It is a well-known fact that a reversible Markov chain with a “well-behaved” reversible measure
cannot go much farther than t1/2 by time t, see [3, 6, 11, 16]. By Theorem 1 from [6] we have,
for any ε > 0

Pω[‖ξn‖ ≥ n1/2+ε] ≤ 2e−
n2(1/2+ε)

2n

∑

y:‖y‖≥n1/2+ε

eβ|C(y)|
∑

z′∼y e
β|C(z′)|

eβ|C(0)|
∑

z∼0 e
β|C(z)|

≤ c20e
−nε P -a.s. (2.17)

for all n large enough. To obtain the bound (2.17) we have used the fact that, due to (2.1),

P[max
x∈Λn

eβ|C(x)| ≥ n
ε
2 ] ≤ n−

c21ε
β
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for some c21 > 0. Borel-Cantelli lemma and (2.17) imply (2.16) and thus the part (i) of
Theorem 1.1 is proved.

Proof of part (ii). For x ∈ Zd let T0(x) = 0, T ′0(x) = 0, and define

T ′i (x) = min{t ≥ Ti−1(x) + T ′i−1(x) : ξ(t) ∈ C(x)}
Ti(x) = min{t > T ′i (x) : ξ(t) /∈ C(x)} − T ′i (x),

i = 1, 2, 3, . . ., where Ti(x) is defined if min{t ≥ Tk(x) : ξ(t) ∈ C(x)}, k ≤ i, are finite. In
words, T ′i (x) is the moment of ith entry to the cluster of x, and Ti(x) is the time spent there
(i.e., after T ′i (x) and before going out of C(x)). It is important to note that the cluster C(x)
is surrounded by sites with ω(·) = 0. Comparing Ti(x) with geometric random variable with
parameter (2d−1+eβ|C(x)|)−1, one can easily see that if |C(x)| ≥ δ log n, then ETi(x) ≥ c17n

βδ.
Moreover, it is elementary to obtain that for ε > 0 and for any δ > 0 we can choose β large
enough so that with probability bounded away from 0 we have

Ti(x) ≥ c18n
2+ε (2.18)

for x such that |C(x)| ≥ δ log n.
Now, we use a dynamic construction of the percolation environment usually called the genera-
tion method (see [12]). That is, we proceed in the following way: we assign generation index 0
to the origin, and put ω(0) = 1 (the origin is open) with probability p or ω(0) = 0 (closed)
with probability 1− p. If ω(0) = 0, the process stops. If ω(0) = 1, then to all x ∼ 0 we assign
generation index 1, and put ω(x) = 1 with probability p or ω(x) = 0 with probability 1 − p,
independently. Suppose that the we constructed m generations of the process. Let Yi be the
set of sites with generation index i and Y m = {0} ∪ Y1 ∪ . . . ∪ Ym. Denote by Ym+1 the set
of neighbors of the open sites in Ym which do not belong to Y m. Assign to the sites from
Ym+1 the generation index m+ 1 and a value 1 or 0 in a way described above. If Ym 6= ∅ and
ω(y) = 0 for all y ∈ Ym+1, then the process stops. Note that for subcritical percolation this
process stops a.s., and what we obtain at the moment when the process stops is the cluster of
the origin surrounded by 0-s.
So, first we construct the environment within the set H1 = C(0) ∪ ∂C(0), where

∂C(0) = {y : y /∈ C(0), y ∼ x for some x ∈ C(0)}

(note that ω(y) = 0 for any y ∈ ∂C(0)) and we know nothing yet about the environment out
of the set H1. For an arbitrary set H ⊂ Zd denote

H◦ = {x /∈ H : for any infinite path γ(x) starting from x it holds

that γ(x) ∩H 6= ∅}

(i.e., H◦ is the set of the holes within the set H) and let

G1 = H1 ∪H◦
1 .

Then, choose ω(x) for x ∈ H◦
1 and start the random walk ξ(t) from the origin. Let

τ1 = min{t : ξ(t) /∈ G1}.

Note that C(ξ(τ1)) ∩ C(0) = ∅, and construct, using the above method

H2 = C(ξ(τ1)) ∪ ∂C(ξ(τ1))
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and
G2 = G1 ∪H2 ∪ (G1 ∪H2)

◦.

Then, define
τ2 = min{t : ξ(t) /∈ G2},

and so on. For all i, we have

P[C(ξ(τi)) ≥ δ log n] ≥ pδ logn

where p is the percolation parameter. This is so due to the fact that, to have C(ξ(τi)) ≥ δ log n,
it is sufficient to choose a path of length δ log n emanating from ξ(τi) which does not intersectGi

(it is possible by the construction of τi, since ξ(τi) cannot be completely surrounded by points
of Gi), and such path will be open with probability pδ logn. Thus, for any ε > 0 (one can take
the same ε from (2.18)), we can choose δ small enough (take δ such that δ log p−1 < ε) so that

P0[C(ξ(τi)) ≥ δ log n | Fi] ≥ n−ε, (2.19)

where Fi is the σ-algebra generated by {ω(x), x ∈ Gi} and {ξ(m), m ≤ τi}. Fix θ > 0 in
such a way that 1− θ > ε. Note that, as p < pcr, using (2.1) and Borel-Cantelli lemma, for n
large enough min{k : ξ(τk) /∈ Λn} (the number of times that we repeat the basic step in the
above construction) will be of order at least n1−θ for all n large enough, P0-a.s. (recall that
Λn = (−n/2, n/2]d; with overwhelming probability all the clusters inside Λn will be of sizes
at most nθ). On each step, by (2.19), with probability at least n−ε the random walk enters
the cluster of size at least δ log n. By (2.18), it stays in that cluster (if β is large enough) for
at least n2+ε time units with large probability. If 1 − θ > ε, with overwhelming probability
on some step (of the above construction) the random walk will delay (in the corresponding
cluster) for more than n2+ε time units before going out of Λn. In other words, we will have

max
s≤n2+ε

‖ξ(s)‖ ≤ dn

2
,

which implies (1.2). This concludes the proof of Theorem 1.1. ¤
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