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Abstract

We consider minimax trees with independent, identically distributed leaf values that have a
continuous distribution function FV being strictly increasing on the range where 0 < FV < 1.
It was shown by Pearl that the root value of such trees converges to a deterministic limit in
probability without any scaling. We show that after normalization we have convergence in
distribution to a nondegenerate limit random variable.

1 Introduction and result

We study trees related to the analysis of game-searching methods for two-person perfect in-
formation games like Chess or Go. In these games two players A and B start with an initial
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position and take alternate turns, choosing each time among d ≥ 2 possible moves. A terminal
position is reached after 2k, k ≥ 0, moves. The terminal position does not necessarily termi-
nate the game, but instead it terminates the horizon of a player or machine searching for best
possible moves. One would like to assign a value to each position that indicates the chances
of each player winning the game when starting from that position. Although, assuming best
possible moves of both players, it is deterministic how the game terminates, the horizon 2k
of players or machines is usually limited so that they cannot plan their moves up to the very
end of the game. To overcome this problem one assigns values V to terminal positions, where
large values of V indicate that the position favors player A, small values favor player B. Given
the values of all n = d2k terminal nodes one can search for best possible moves for the starting
position and calculate its value.

The possible moves and its terminal positions can be represented in a rooted tree with fixed
branching degree d ≥ 2 and height 2k, k ≥ 0. Leaves are assigned random values V1, . . . , Vn,
n = d2k, and all other nodes are labeled with ∧ on even levels and with ∨ on odd levels,
cf. Figure 1 for the case d = 2 and k = 2.
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Figure 1: A minimax tree with branching degree 2 and height 4.

These trees are called minimax trees. The value of a node is given as the value of the operator
labeled at that node applied to the values of its children. This corresponds to player A always
choosing the move with maximal value, player B always choosing a minimal value move. Thus
from V1, . . . , Vn one could first calculate the values of all nodes on level 2k−1 and successively
determine the values on higher levels leading finally the root’s value. The most popular
algorithm for finding the leaf whose value trickles up to the root (which corresponds to the
best moves when two intelligent players are playing) is alpha-beta pruning. Analysis of this
algorithm for various models is given in Knuth and Moore [4], see also Zhang [11].

Minimax trees where V1, . . . , Vn only take the values 0 and 1 are also known as AND/OR trees
or boolean decision trees. A randomized algorithm for finding the root’s value of AND/OR
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trees was given in Snir [10]. For probabilistic analysis of Snir’s algorithm see Saks and Wigder-
son [9], Karp and Zhang [3], and Ali Khan and Neininger [1].
In this paper we are not concerned with the complexity of algorithms to determine the root’s
value of minimax trees. We study the value Wn of the root itself asymptotically as k →∞.
We consider Pearl’s model where the leaves’ values V1, . . . , Vn are independent and identically
distributed random variables with a distribution L(V ) having a distribution function FV (x) =
P(V ≤ x) that is continuous and strictly increasing on the range, where 0 < FV < 1, see Pearl
[8]. For an alternative incremental model, see Nau [5, 6, 7] and the analysis in Devroye and
Kamoun [2].
Pearl [8] showed for his model that Wn converges, without any scaling, in probability to a
deterministic limit qV as n = d2k tends to infinity,

Wn
P−→ qV , (k →∞),

and characterized the value of qV .
In this paper we derive a limit law for Wn after appropriate rescaling. We denote the distri-
bution function of Wn by Fn. Note that this is defined for all n = d2k with k ∈ N0 and that
we have F1 = FV . Moreover, for k ≥ 1, we have Fn = f ◦ Fn/d2 with

f(x) =
(

1− (1− x)d
)d

, x ∈ [0, 1]. (1)

This is implied by the recursive structure of the tree: The values of the d2 nodes on level 2 are
independent and identically distributed with distribution L(Wn/d2). We denote these values

by W
(i,j)
n/d2 with i, j = 1, . . . , d, see Figure 1 for the case d = 2. Hence, by independence we have

Fn(x) = P

(

d
∨

i=1

d
∧

j=1

W
(i,j)
n/d2 ≤ x

)

=

(

1−
(

1− P
(

W
(i,j)
n/d2 ≤ x

))d
)d

= f(Fn/d2(x)).

Function f has the fixed points 0 and 1 and there is a unique fixed point in the open unit
interval (0, 1) that we denote by q, cf. Lemma 2 below. It was shown by Pearl [8] that we have

qV = F−1
V (q).

We denote the slope of f in q by ξ = f ′(q). Then the following limit law holds.

Theorem 1 With FV , q and ξ as above and d ≥ 2 we have the following convergence in
distribution for the value Wn of the minimax tree in Pearl’s model. With α = log(ξ)/ log(d2) ∈
(0, 1),

nα(FV (Wn)− q)
L−→W, k →∞. (2)

The random variable W does not depend upon L(V ), has a continuous distribution function
FW with 0 < FW < 1, FW (0) = q and

FW (x) = f (FW (x/ξ)) , x ∈ R, (3)

where f is the function defined in (1).
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Figure 2: Approximations of the limit distribution function FW for d = 2, . . . , 10. They can
be distinguished by FW (0) = qd being decreasing in d. As approximations the functions g6

defined in (7) are plotted.

An approximation of the limit distribution function FW is plotted in Figure 2 for the cases
d = 2, . . . , 10.

Note that the transformation FV (Wn) of Wn in (2) allows to rewrite FV (Wn) as follows: The
random variable FV (Wn) is distributed as the root’s value W ′

n of a minimax tree with same
branching degree and height where the independent, identically distributed leaves now have
distribution L(V ′) = L(FV (V )) = unif[0, 1], the uniform distribution on [0, 1]. Hence without
loss of generality one may assume that L(V ) = unif[0, 1].

The rest of this note contains a proof of Theorem 1. We first collect some properties of f in
section 2, since later on the recurrence relation Fn = f ◦Fn/d2 is exploited. Section 3 contains
the proof of Theorem 1.

2 Technical preliminaries

We collect some properties of the function f defined in (1).

Lemma 2 There is a unique q ∈ (0, 1) with f(q) = q. We have ξ = f ′(q) = d2q2/(1 − q)2 ∈
(1, d2). Furthermore, for z := 1− 1/(d+ 1)1/d, we have

f ′′(x)







> 0 for 0 < x < z,
= 0 for x = z,
< 0 for z < x < 1.

(4)

We have q < z, thus f ′′(q) > 0.
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Proof. For 0 < x < 1 we have

f ′(x) = d2(1− x)d−1(1− (1− x)d)d−1, (5)

f ′′(x) = d2(d− 1)(1− x)d−2(1− (1− x)d)d−2((d+ 1)(1− x)d − 1). (6)

From this the (in-)equalities (4) follow with z = zd = 1 − 1/(d + 1)1/d. For existence and
uniqueness of the fixed point q of f in (0,1) we first show:
Claim: f(zd)− zd > 0 for all d ≥ 2.
The claim follows for d = 2, 3 by explicit calculation. Furthermore we have f(zd) = (1−1/(d+
1))d ↓ 1/e as d→∞, hence f(zd) ≥ 1/e for all d ≥ 4. It is easily seen that zd is decreasing in
d, thus zd ≤ z4 for all d ≥ 4. Consequently, for all d ≥ 4

f(zd)− zd ≥
1

e
− z4 =

1

e
+ 1− 1

51/4
> 0,

which implies the claim.
Since f(0) = f ′(0) = 0, there exists 0 < ε < zd with f(x) − x < 0 for all 0 < x ≤ ε.
Together with the previous claim, continuity and the intermediate value theorem we obtain a
fixed point of f in (ε, zd). We denote by q = qd the smallest fixed point of f in (0, zd), which
exists by continuity and satisfies q > ε > 0. Then we have f(x) < x for all x ∈ (0, q). For
x ∈ (q, z) we have f(x) > x by convexity of f on [0, z]: Otherwise there was an x ∈ (q, z)
with f(x) ≤ x. For arbitrary y ∈ (0, q), and λ ∈ (0, 1) with q = λy + (1 − λ)x this implied
f(q) ≤ λf(y) + (1− λ)f(x) < λy + (1− λ)x = q, a contradiction. Similarly, concavity of f on
[z, 1] implies f(x) > x for all x ∈ (z, 1): For all such x there is a λ ∈ (0, 1) with x = λz+(1−λ)1
thus f(x) ≥ λf(z) + (1− λ)f(1) > λz + (1− λ)1 = x. Altogether, q is the unique fixed point
of f in (0, 1).
It remains to prove that ξ = ξd = f ′(q) = d2q2/(1 − q)2 ∈ (1, d2). For this note that the
function ud : [0, 1]→ [0, 1], x 7→ (1− x)d, has a unique fixed point in (0, 1). Since f = ud ◦ ud
this fixed point must be q = qd, hence we obtain the relation q = (1−q)d. Using this relation in
(5) implies ξ = f ′(q) = d2q2/(1− q)2. Moreover, since ud′ ≤ ud for all 2 ≤ d ≤ d′ the sequence
(qd)d≥2 is decreasing. Thus qd ≤ q2 = (3−

√
5)/2 < 1/2 for all d ≥ 2, hence ξd < d2. Finally,

q = (1− q)d, f ′′(q) > 0 and the representation (6) imply q > 1/(d+ 1), hence q/(1− q) > 1/d
and ξ > d2/d2 = 1. 2

In the following, it is convenient to extend function f defined in (1) to the real line by setting
f(x) = 0 for x < 0 and f(x) = 1 for x > 1. We denote the iterations of f by fk = f ◦ fk−1 for
k ≥ 1 and f0(x) = x for all x ∈ R. In particular, we have f1 = f . Using Fn = f ◦ Fn/d2 we

obtain for n = d2k that Fn = fk ◦ F1 = fk ◦ FV .
For the quantities nα(FV (Wn)− q) of Theorem 1 we obtain with the relation nα = ξk

P(nα(FV (Wn)− q) ≤ x) = P
(

Wn ≤ F−1
V

(

q +
x

ξk

))

= Fn ◦ F−1
V

(

q +
x

ξk

)

= fk

(

q +
x

ξk

)

.

Thus, the functions gk : R → R defined by

gk(x) = fk

(

q +
x

ξk

)

, x ∈ R, (7)
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are the distribution functions of nα(FV (Wn)− q) for n = d2k, k ≥ 0.
Subsequently we will need bounds for gk valid locally around x = 0 and uniformly in k ≥ 0.

Lemma 3 Denote h1(x) := q+x and h2(x) := q+x+cx2 for x ∈ R with c := 1+f ′′(q)/(2ξ(ξ−
1)) > 1. Then there exists an ε > 0 such that for all k ≥ 0 and |x| < ε

h1(x) ≤ gk(x) ≤ h2(x).

Proof. We prove the assertion by induction on k. For k = 0 we have, for all x ∈ R,

h1(x) = q + x = g0(x) ≤ h2(x).

Assume that the assertion is true for some k − 1 ≥ 0 and ε > 0. Since f is increasing and
|x|/ξ < ε for all |x| < ε we obtain

gk(x) = fk

(

q +
x

ξk

)

= f

(

fk−1

(

q +
x/ξ

ξk−1

))

= f

(

gk−1

(

x

ξ

))

≥ f

(

h1

(

x

ξ

))

,

and analogously

gk(x) ≤ f

(

h2

(

x

ξ

))

.

Thus, the induction proof is completed by showing that for some ε > 0 we have

f

(

h1

(

x

ξ

))

≥ h1(x), f

(

h2

(

x

ξ

))

≤ h2(x), (8)

for all |x| < ε.
Taylor expansion of x 7→ f(hi(x/ξ)) around x = 0 yields for each i = 1, 2

f(hi(x/ξ)) = q + x+
1

2

(

h′′i (0)

ξ
+

f ′′(q)

ξ2

)

x2 +O(x3),

for all x in a bounded neighborhood of 0. We have

1

2

(

h′′1(0)

ξ
+

f ′′(q)

ξ2

)

=
1

2

f ′′(q)

ξ2
> 0

by Lemma 2. From h′′2(0) = 2c and the definition of c it follows

1

2

(

h′′2(0)

ξ
+

f ′′(q)

ξ2

)

=
f ′′(q)

2 ξ (ξ − 1)
+

1

ξ
<

f ′′(q)

2 ξ (ξ − 1)
+ 1 = c.

Thus, there exists an ε > 0 with (8) for all |x| < ε. 2

3 Proof of the theorem

We proof the claims of Theorem 1.

Convergence in distribution: We show that nα(FV (Wn)− q) converges in distribution by
showing that its distribution functions gk, n = d2k, convergence pointwise to a distribution
function g.
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Fix x ∈ R. Since q < z and f ′(q) = ξ > 1 there is k0(x) such that 0 < q + x/ξk < z, for all
k ≥ k0(x). By Lemma 2 the function f is convex on [0, z] and satisfies f(q) = q. Hence, for
all k ≥ k0(x)

f

(

q +
x

ξk

)

≥ f(q) + f ′(q)
x

ξk
= q +

x

ξk−1

and, since fk−1 is monotone increasing,

gk(x) = fk

(

q +
x

ξk

)

= fk−1

(

f

(

q +
x

ξk

))

≥ fk−1

(

q +
x

ξk−1

)

= gk−1(x). (9)

Thus, the sequence (gk(x))k≥k0(x) is monotone increasing and upper bounded, hence conver-
gent. We denote its limit by

g(x) := lim
k→∞

gk(x), x ∈ R.

Since gk is nondecreasing for all k ≥ 1 its limit g is a nondecreasing function. Since gk(0) =
fk(q) = q for every k ≥ 0, we have g(0) = q. Continuity of f and gk(x) = f(gk−1(x/ξ)) yields,
with k →∞, the functional equation g(x) = f(g(x/ξ)).
Monotonicity of g and 0 ≤ g ≤ 1 imply that limx→∞ g(x) and limx→−∞ g(x) exist. Continuity
of f and ξ > 0 yield with the functional equation for g that

lim
x→−∞

g(x) = f
(

lim
x→−∞

g(x)
)

, lim
x→∞

g(x) = f
(

lim
x→∞

g(x)
)

.

Hence, both limits are fixed points of f . Lemma 3 and convergence of gk yield, with ε as in
Lemma,

h1(x) < g(x) < h2(x), −ε < x < ε.

In a left neighborhood of 0 we have h2 < q. Thus, for some x < 0 we have g(x) < q, and for
appropriate x > 0 we have g(x) > h1(x) > q. Since f has only the fixed points 0, q and 1 we
obtain limx→−∞ g(x) = 0 and limx→∞ g(x) = 1.
Hence, ḡ(x) = limy↓x g(y) for x ∈ R is a distribution function with gk(x) → ḡ(x) for all
continuity points x of ḡ. This implies that nα(FV (Wn) − q) → W in distribution with a
random variable W with distribution function FW = ḡ.
Note that up to now we only know g(x) = ḡ(x) for continuity points x of ḡ. (We will see below
that g is continuous, hence g(x) = ḡ(x) = FW (x) for all x ∈ R.) 2

Continuity of g: We show that g is continuous in all x ∈ R by distinguishing the three cases
x < 0, x = 0 and x > 0. Note that for all x ∈ R it is sufficient to show that there exists a
δ > 0 with

sup
{

g′k(y)
∣

∣

∣
|x− y| < δ, k ≥ 0

}

=: C <∞. (10)

From this we obtain |gk(x)−gk(y)| ≤ C|x−y| for all k ∈ N and |x−y| < δ, hence |g(x)−g(y)| ≤
C|x− y|, in particular g is continuous in x.
Case x < 0: The chain rule and induction imply

g′k(x) =
1

ξk

k−1
∏

i=0

f ′
(

fi

(

q +
x

ξk

))

. (11)
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For x ≤ 0 we have fi(q + x/ξk) ≤ q. Since f ′ is monotone increasing on (−∞, q] we obtain
g′k(x) ≤ (f ′(q)/ξ)k = 1 for all x ≤ 0 and k ≥ 0. Hence, for all x < 0 we have (10) with C = 1.
Case x = 0: By Lemma 3 and ḡ(x) = g(x) for all x < 0 we obtain

P(W < 0) = lim
`→∞

P
(

W ≤ −1

`

)

= lim
`→∞

ḡ

(

−1

`

)

= lim
`→∞

g

(

−1

`

)

≥ lim
`→∞

h1

(

−1

`

)

= q. (12)

Since g is a monotone function it has at most countably many discontinuity points. Hence
there exists a sequence (x`)`≥1 of continuity points of g with x` ↓ 0. Then, with Lemma 3 we
obtain

P(W > 0) = 1− lim
`→∞

P (W ≤ x`) = 1− lim
`→∞

ḡ (x`) = 1− lim
`→∞

g (x`)

≥ 1− lim
`→∞

h2 (x`) = 1− q. (13)

Inequalities (12) and (13) together imply P(W = 0) = 0, hence g is continuous in x = 0. Since
we have g(0) = q this implies FW (0) = g(0) = q.
Case x > 0: We first show the following assertion:
Claim: There exists a 0 < ε ≤ z − q such that g′k is a monotone increasing function on [0, ε]
for all k ≥ 0.
The claim is shown as follows: Since g is continuous in 0 and g(0) = q < z there exists a
0 < ε < z− q with g(y) ≤ z for all 0 ≤ y ≤ ε. By monotonicity of the fi, we have for all k ≥ 0,
0 ≤ i ≤ k and 0 < y′ < y ≤ ε

fi(q + y′/ξk) ≤ fi(q + y/ξk) ≤ fi(q + y/ξi) = gi(y) ≤ g(y) ≤ z.

For the second last inequality in the latter display note that (gi)i≥0 is increasing on (−∞, z−q),
cf. (9). Since f ′ is monotone increasing on (−∞, z] this yields

f ′(fi(q + y′/ξk)) ≤ f ′(fi(q + y/ξk)),

thus by (11) we obtain g′k(y
′) ≤ g′k(y) which implies the claim.

Now, assume g is discontinuous in some x′ > 0. Let ε be as in the previous claim. Note that
all the points x′/ξk, k ≥ 0, are discontinuities of g by the functional equation g(x) = f(g(x/ξ))
and continuity of f . Hence there exists a discontinuity 0 < x < ε/2 of g. By (10), we have for
all 0 < δ < (ε/2− x) ∧ x,

sup
{

g′k(y)
∣

∣

∣
y : |y − x| < δ, k ≥ 0

}

=∞. (14)

Fix such a δ. By (14) and the claim we have g′m(x+ δ) ≥ 4/ε for a sufficiently large m. Now,
the claim implies g′m(y) ≥ 4/ε for all y ∈ [ε/2, ε]. Then,

gm(ε)− gm(ε/2) =

∫ ε

ε/2

g′m(y) dy ≥
∫ ε

ε/2

4

ε
dy = 2.

This is a contradiction, since gm is a distribution function. 2

0 < FW < 1: Assume that FW (x) = g(x) ∈ {0, 1} for some x ∈ R. Then g(x/ξk) = g(x) for
all k ≥ 0. Hence by continuity of g, we obtain g(0) ∈ {0, 1}. Since g(0) = q ∈ (0, 1) this is a
contradiction. 2
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[2] Devroye, L. and Kamoun, O. Random minimax game trees. Random discrete structures
(Minneapolis, MN, 1993), 55–80, IMA Vol. Math. Appl., 76, Springer, New York, 1996

[3] Karp, R. M. and Zhang, Y. Bounded branching process and AND/OR tree evaluation.
Random Structures Algorithms 7 (1995), 97–116.

[4] Knuth, D. E. and Moore, R. W. An analysis of alpha-beta pruning. Artificial Intelligence 6

(1975), 293–326.

[5] Nau, D. S. The last player theorem. Artificial Intelligence 18 (1982), 53–65.

[6] Nau, D. S. An investigation of the causes of pathology in games. Artificial Intelligence 19

(1982), 257–278.

[7] Nau, D. S. Pathology on game trees revisited, and an alternative to minimaxing. (English)
Artificial Intelligence 21 (1983), 221–244 (1983).

[8] Pearl, J. Asymptotic properties of minimax trees in game-searching procedures. Aritificial
Intelligence 14 (1980), 113–126.

[9] Saks, M. and Wigderson, A. Probabilistic boolean decision trees and the complexity of
evaluating game trees. Proceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, 29–38, Toronto, Ontario, 1986.

[10] Snir, M. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci. 38

(1985), 69-82.

[11] Zhang, Y. The variance of two game tree algorithms. J. Algorithms 28 (1998), 21–39.


