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Abstract

In this paper we prove a strong approximation result for a mixing sequence with infinite
variance and logarithmic decay rate of the mixing coefficient. The result is proved under the
assumption that the distribution is symmetric and lies in the domain of attraction of the
normal law. Moreover the function L(x) = EX21{|X|≤x} is supposed to be slowly varying

with remainder (log x)−α(log log)−β(x) with α, β > 1.

1 Introduction

The concept of mixing is a natural generalization of independence and can be viewed as
“asymptotic independence”: the dependence between two random variables in a mixing se-
quence becomes weaker as the distance between their indices becomes larger. There is an
immense amount of literature dedicated to limit theorems for mixing sequences, most of it
assuming that the moments of second order or higher are finite (see e.g. the recent survey
article [3]). One of the most important results in this area is Shao’s strong invariance principle
[14], from which one can easily deduce many other limit theorems.

In this paper we prove a strong approximation result for a mixing sequence of identically
distributed random variables with infinite variance, whose distribution is symmetric and lies
in the domain of attraction of the normal law (DAN). This suggests that it may be possible to
obtain a similar result for the self-normalized sequence. Self-normalized limit theorems have
become increasingly popular in the past few years, but so far only the case of independent
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random variables was considered. Therefore, our result may contain the seeds of future research
in the promising new area of self-normalized limit theorems for dependent sequences; see e.g.
[1], or [12].

Suppose first that {Xn}n≥1 is a sequence of i.i.d. random variables with Sn =
∑n

i=1 Xi and
EX = 0, EX2 =∞ (here X denotes a generic random variable with the same distribution as
Xn). If X ∈ DAN (or equivalently, the function L(x) = EX21{|X|≤x} is slowly varying), then
the “central limit theorem” continues to hold in the form Sn/ηn →d N(0, 1), where {ηn}n is
a nondecreasing sequence of positive numbers satisfying

η2
n ∼ nL(ηn). (1)

(see e.g. [6], IX.8, XVII.5). Moreover, by Theorem 1 of [5], if the distribution ofX is symmetric
then

lim sup
n→∞

Sn

(2η2
n log log ηn)

1/2
= 1 or ∞ a.s.

depending on whether the integral

Ilog log :=

∫ ∞

b

x2

L(x) log log x
dF (x)

converges or diverges (here b := inf{x ≥ 1;L(x) > 0}). Hence Ilog log < ∞ is a minimum
requirement for the “law of the iterated logarithm” in the case of i.i.d. random variables with
infinite variance.

In the 1971 Rietz Lecture, Kesten has discussed Feller’s result and raised the question of its
correctness; see his Remark 9, [8]. Fortunately, he settled this problem, by replacing Feller’s
normalizing constant (η2

n log log ηn)
1/2 with a slightly different constant γn, which behaves

roughly as a root of the equation γ2
n = CnL(γn) log log γn (see Theorem 7). A more general

form of the law of the iterated logarithm for the “trimmed” sum S
(r)
n (i.e. the sum obtained

by deleting from Sn the r-th largest terms) has been recently obtained in [9].

Following these lines, Theorem 2.1 of [11] proved that it is possible to obtain (on a larger
probability space), the strong approximation

Sn − Tn = o(an) a.s. (2)

where Tn =
∑n

i=1 Yi and {Yn}n≥1 is a zero-mean Gaussian sequence (with EY 2
n = τn for

suitable constants τn). His rate an is chosen such that

a2
n ∼ nL(an)v(an), (3)

where v is a nondecreasing slowly varying function with limx→∞ v(x) =∞ and

I := Iv(·) =

∫ ∞

b

x2

L(x)v(x)
dF (x) <∞. (4)

In this paper we prove that a strong approximation of type (2) continues to hold in the mixing
case.

We recall that a sequence {Xn}n≥1 of random variables is called ρ-mixing if

ρ(n) := sup
k≥1

ρ(Mk
1 ,M

∞
k+n)→ 0 as n→∞
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where ρ(Mk
1 ,M

∞
k+n) := sup{|Corr(U, V )|;U ∈ L2(Mn

k ), V ∈ L2(M∞
k+n)} andM

b
a denotes the

σ-field generated by Xa, Xa+1, . . . , Xb.

Here is our result.

Theorem 1 Let {Xn}n≥1 be a ρ-mixing sequence of symmetric identically distributed random
variables with EX = 0, EX2 = ∞ and X ∈ DAN , where X denotes a random variable with
the same distribution as Xn. Assume that

ρ(n) ≤ C(log n)−r for some r > 1. (5)

Let v be a nondecreasing slowly varying function such that v(x) ≥ C log log x for x large; let
τ = min(3, r + 1). Suppose that the function L(x) = EX21{|X|≤x} satisfies (4) and is slowly

varying with remainder (log x)−αv−β(x) for some α > τ/(τ − 2), β > τ/2, i.e. for any
λ ∈ (0, 1) there exists C > 0 such that

(SR) 1−
L(λx)

L(x)
≤ C(log x)−αv−β(x) for x large.

Then without changing its distribution, we can redefine {Xn}n≥1 on a larger probability space
together with a standard Brownian motion W = {W (t)}t≥0 such that for some constants s2n

Sn −W (s2n) = o(an) a.s. (6)

where {an}n is a nondecreasing sequence of positive numbers satisfying (3).

Condition (SR) specifies the rate of convergence of L(λx)/L(x) to 1, for the slowly varying
function L (see p.185 of [2]). It was used in only one place, namely to ensure the convergence
of the sum (28) in the proof of Lemma 11. Unfortunately, we could not avoid it.

We should mention here that a “functional central limit theorem” for ρ-mixing sequences with
infinite variance was obtained by [15] under the condition

∑

n ρ(2
n) <∞. In order to obtain

the strong approximation (6) we needed to impose the logarithmic decay rate of ρ(n).

The remaining part of the paper is dedicated to the proof of Theorem 1: the description of
the general method is given in Section 2, while the technical details are discussed in Sections
3 and 4. Among other ingredients, the proof uses the blocking technique introduced in [13],
according to which the original random variables are replaced by their sums over progressively
larger blocks of integers (separated by smaller blocks, whose length is also progressively larger).

Throughout this work, C denotes a generic constant that does not depend on n but may be
different from place to place. We denote by I(a, b] the measure attributed by the integral I to
the interval (a, b]. We let A(x) = L(x)v(x).

2 Sketch of Proof

As in [4] we may take

ηn = inf{s ≥ b+ 1;
L(s)

s2
≤

1

n
}, an = inf{s ≥ b+ 1;

A(s)

s2
≤

1

n
}.
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Clearly (1) and (3) hold. We have an ≥ ηn and

a2
n ≥ Cη2

nv(ηn) ≥ Cη2
n log log ηn. (7)

Without loss of generality we will assume that η2
n = nL(ηn) and a2

n = nA(an).

The proof is based on a double truncation technique at levels bn := v−p(an)an and an (which
is due to [5]), and a repeated application of the method of [14] on each of the “truncation”
intervals [0, bn], (bn, an].

We assume that p > 1/2. Let

X̂n = XnI{|Xn|≤bn} X ′n = XnI{bn<|Xn|≤an}, X̄n = XnI{|Xn|>an}.

By the symmetry assumption EX̂n = EX ′n = 0; since EXn = 0, it follows that EX̄n = 0. We
have Xn = X̂n +X ′n + X̄n and hence

Sn = Ŝn + S′n + S̄n (8)

where Ŝn, S
′
n, S̄n denote the partial sums of X̂i, X

′
i, respectively X̄i.

By Lemmas 3.2 and 3.3 of [5] (under the symmetry assumption), (4) is equivalent to
∑

n≥1 P (|X| > εan) <∞ for all ε > 0. Hence

S̄n = o(an) a.s. (9)

In Section 3, we show that the central part Ŝn gives us the approximation

Ŝn −W (s2n) = o((η2
n log log ηn)

1/2) a.s. (10)

for some constants s2n. In Section 4 we show that between the two truncations we have

S′n = o(an) a.s. (11)

The conclusion (6) follows immediately by (7)-(11).

3 The Central Part

The goal of this section is to prove relation (10) on a possibly larger probability space on
which the sequence {X̂n}n is redefined (without changing its distribution). In order to do
this, we introduce the blocks H1, I1, H2, I2, . . . of consecutive integers and we decompose the
sum Ŝn into three terms containing the sums over the “small” blocks Ii, the sums over the
“big” blocks Hi, and the remaining X̂j ’s (whose sum is shown to be negligible). The idea is to
construct the blocks Ii small enough to make the term depending on these blocks negligible,
but large enough to give sufficient space between the blocks Hi. The sums ui over the blocks
Hi will provide us with the desired approximation (10), by applying an almost sure invariance
principle (due to [14]) to the martingale differences ξi = ui−E(ui|u1, . . . , ui−1), after proving
that the sum of the terms E(ui|u1, . . . , ui−1) is negligible as well.

We define the blocks H1, I1, H2, I2, . . . of consecutive integers such that

card(Hi) = [aia−1 exp(ia)], card(Ii) = [aia−1 exp(ia/2)] ∀i ≥ 1
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with a = 1/α. Note that (1 − a)τ > 2. Let Nm :=
∑m

i=1 card(Hi ∪ Ii) ∼ exp(ma) and
Nmn

≤ n < Nmn+1
. Clearly Nmn

∼ n, mn ∼ (log n)1/a.

We define

ui =
∑

j∈Hi

X̂j , vi =
∑

j∈Ii

X̂j , ξi = ui − E(ui|Gi−1)

where Gm = σ({ui; i ≤ m}), and write

Ŝn =

mn
∑

i=1

vi +

n
∑

j=Nmn+1

X̂j +

mn
∑

i=1

E(ui|Gi−1) +

mn
∑

i=1

ξi. (12)

The first three terms will be of order o(ηn). The last term will give us the desired approximation
with rate o((η2

n log log ηn)
1/2).

We begin with two elementary lemmas.

Lemma 2 There exists C > 0 such that bn ≤ Cηn for n large, and hence

nL(bn) ≤ Cη2
n for n large. (13)

Proof. The relation bn ≤ Cηn for n large, can be written as an/ηn ≤ Cvp(an) for n large;
using the definitions of an and ηn, this in turn is equivalent to:

L(an)

L(ηn)
≤ Cv2p−1(an) for n large. (14)

Since L is slowly varying, it follows by Potter’s Theorem (Theorem 1.5.6.(i) of [2]) that for
any C > 1, δ > 0 we have

L(an)

L(ηn)
≤ C

(

an
ηn

)δ

= C

(

L(an)v(an)

L(ηn)

)δ/2

for n large

and hence
(

L(an)

L(ηn)

)1−δ/2

≤ Cvδ/2(an) for n large.

This is exactly relation (14) with δ = 2−1/p. Relationship (13) follows using the fact that L is
nondecreasing and slowly varying, and the definition of ηn: nL(bn) ≤ nL(Cηn) ≤ CnL(ηn) =
Cη2

n. ¤

Lemma 3 For any integer λ > 0 there exists C = Cλ > 0 such that aλn ≤ Can and bλn ≤ Cbn
for n large, and hence

L(aλn) ≤ CL(an) and L(bλn) ≤ CL(bn) for n large. (15)

Proof. Using the definition of an and Potter’s theorem, we get: for any C > 1, δ ∈ (0, 2)

a2
λn

a2
n

=
λnA(aλn)

nA(an)
≤ λC

(

aλn
an

)δ

for n large
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and hence aλn/an ≤ Cλ1/(2−δ) for n large. By the definition of bn and Potter’s theorem, we
have: for any C > 1, ε > 0

bλn
bn

=
aλn
an

·

(

v(an)

v(aλn)

)p

≤ C

(

aλn
an

)1+pε

≤ Cλ(1+pε)/(2−δ) for n large.

The last statement in the lemma follows since L is slowly varying. ¤

We are now ready to treat the first three terms in the decomposition (12).

Lemma 4 We have
∑m

i=1 vi = o(m2 exp( 1
3m

a)L1/2(bNm
)) a.s. and hence

∑mn

i=1 vi = o(ηn)
a.s.

Proof. We have Ev2
i ≤ Ccard(Ii) · maxj∈Ii

EX̂2
j ≤ Cia−1 exp( 1

2 i
a)L(bNm

) for all i ≤ m.

Hence E(
∑m

i=1 vi)
2 ≤ m

∑m
i=1 Ev

2
i ≤ CmL(bNm

) exp( 2
3m

a). The first statement in the lemma
follows by the Chebyshev’s inequality and the Borel-Cantelli lemma. The second statement
follows using mn ∼ (log n)1/a and relation (13). ¤

To simplify the notation, we let ci = exp(ia)L(b[exp(ia)]) and di = η2
[exp(ia)]. By (13), ci ≤ Cdi

for i large.

Lemma 5 We have maxNm<n≤Nm+1

∣

∣

∣

∑n
j=Nm+1 X̂j

∣

∣

∣
= o(c

1/2
m ) a.s. and hence

maxNmn<n≤Nmn+1

∣

∣

∣

∑n
j=Nmn+1 X̂j

∣

∣

∣ = o(ηn) a.s.

Proof. The second statement follows by (13). For the first part, it is enough to prove that
for any ε > 0

∑

k≥1

P



 max
Nk<n≤Nk+1

∣

∣

∣

∣

∣

∣

n
∑

j=Nk+1

X̂j

∣

∣

∣

∣

∣

∣

> εc
1/2
k



 <∞. (16)

For this we apply Lemma 2.4 of [14] with

q = τ, B = k−a(τ+2)/(τ−2)c
1/2
k , x = εc

1/2
k ,

n = Nk+1 −Nk, m = [k−a(τ+2)/(τ−2)ek
a

].

For every j = Nk + 1, . . . , Nk+1 we have EX̂2
j 1{|X̂j |>B} = EX21{B<|X|≤bj} ≤ L(bj) ≤

L(bNk+1
) ≤ CL(b[exp(ka)]) = C(xB)/m, using (15) for the last inequality. Relation (16) follows

as (2.20) of [14] provided we show that:

∑

k≥1

ka−1e−(τ−2)ka/2 L−τ/2(b[exp(ka)])E|X|
τ1{|X|≤2b[exp(ka)]} <∞. (17)

Let αj = a[exp(ja)] and βj = b[exp(ja)]. The sum in (17) becomes

∑

k≥1

ka−1e−(τ−2)ka/2L−τ/2(βk)(E|X|
τ1{|X|≤2β0} +

k
∑

j=1

E|X|τ1{2βj−1<|X|≤2βj})

≤ C
∑

j≥1

E|X|τ1{2βj−1<|X|≤2βj}L
−τ/2(βj)e

−(τ−2)ja/2
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≤ C
∑

j≥1

I(βj−1, βj ] · β
τ−2
j A(βj)L

−τ/2(βj)e
−(τ−2)ja/2, (18)

where for the last inequality we used: E|X|τ1{a<|X|≤b} ≤ I(a, b] · bτ−2A(b). By Potter’s
Theorem (Theorem 1.5.6.(i) of [2]):

v(bn)

v(an)
≤ C

(

bn
an

)−µ

= Cvpµ(an),

b2n
nL(bn)

=
L(an)

L(bn)
v−(2p−1)(an) ≤ C

(

an
bn

)δ

v−(2p−1)(an) = Cv−(2p−1−pδ)(an),

for any µ, δ > 0 and n large. Hence

βτ−2
j A(βj)L

−τ/2(βj)e
−(τ−2)ja/2 = v(βj)

(

β2
j

exp(ja)L(βj)

)(τ−2)/2

≤ Cv1+pµ(αj) · v
−(τ−2)(2p−1−pδ)/2(αj) = Cv−γ(αj) ≤ C, (19)

where we selected µ, δ such that γ := −1− pµ+ (τ − 2)(2p− 1− pδ)/2 > 0. From (18), (19)
we see that the sum in (17) is smaller than C

∑

j≥i I(βj−1, βj ] <∞, using (4). ¤

Lemma 6 We have
∑m

i=1 E(ui|Gi−1) = o(m−(r−1/2)a · (logm)3 · exp( 1
2m

a) · L1/2(bNm
)) a.s.

and hence
∑mn

i=1 E(ui|Gi−1) = o(ηn) a.s.

Proof. Let Tm =
∑m

i=1 E(ui|Gi−1) and αm = m−(r−1/2)a(logm)3 exp( 1
2m

a) · L1/2(bNm
).

For any i ≤ m we have

Eu2
i ≤ C · card(Hi) ·max

j∈Hi

EX̂2
j ≤ Cia−1 exp(ia)L(bNm

). (20)

By (2.26) of [14] and (5), we get: E(maxl≤m T 2
l ) ≤ C(logm)4m−2ar · exp(ma)L(bNm

). Let
mk = [k1/a]. Using Chebyshev’s inequality we get

∑

k≥1

P (max
l≤mk

|Tl| > εαmk
) ≤

∑

k≥1

E(maxl≤mk
T 2
l )

ε2α2
mk

≤ C
∑

k≥1

1

ma
k(logmk)2

<∞.

From here we conclude that

∑

k≥1

P (Tmk
> εαmk

) <∞ and
∑

k≥1

P ( max
mk−1<m≤mk

|Tm − Tmk
| > εαmk

) <∞

for all ε > 0. By the Borel-Cantelli lemma, it follows that

Tmk

αk
→ 0 a.s., max

mk−1<m≤mk

|Tm − Tmk
|

αmk

→ 0 a.s.

and hence Tm/αm → 0 a.s. ¤

Our last theorem gives us the desired approximation for the last term in (12). To prove this
theorem we need two lemmas. Let σ∗2i = Eξ2i , s

∗2
m =

∑m
i=1 σ

∗2
i , s2n = s∗2mn

.
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Lemma 7 We have
∑

i≥1 d
−τ/2
i E|ξi|

τ <∞.

Proof. It is enough to prove the lemma with ci instead of di, and ui instead of ξi. By
Lemma 2.3 of [14] we have

E|ui|
τ ≤ C{(card(Hi))

τ/2 ·max
j∈Hi

(EX̂2
j )

τ/2 + card(Hi) ·max
j∈Hi

E|X̂j |
τ} ≤

C
{

(ia−1 exp(ia))τ/2Lτ/2(b[exp(ia)]) + ia−1 exp(ia)E|X|τ1{|X|≤2b[exp(ia)]}

}

=

Cc
τ/2
i

{

i−(1−a)τ/2 + ia−1e−(τ−2)ia/2L−τ/2(b[exp(ia)])E|X|
τ1{|X|≤2b[exp(ia)]}

}

. (21)

The lemma follows by (17). ¤

Lemma 8 We have
∑m

i=1(E(ξ2i |Gi−1)−Eξ2i ) = o(dm) a.s.

Proof. It is enough to prove the lemma with cm instead of dm. Let u∗i = u2
i 1{|ui|≤c

1/2
i }

and

u∗∗i = u2
i 1{|ui|>c

1/2
i }

. The conclusion will follow from:

m
∑

i=1

(E(u∗∗i |Gi−1) + Eu∗∗i ) = o(cm) a.s. (22)

Um :=

m
∑

i=1

(E(u∗i |Gi−1)− Eu∗i ) = o(m−(r−1/2)a(logm)3cm) a.s. (23)

m
∑

i=1

(E2(ui|Gi−1) + EE2(ui|Gi−1)) = o(m−(2r−1)a(logm)2cm) a.s. (24)

To prove (22), note that E|ui|
τ ≥ E|ui|

τ1
{|ui|>c

1/2
i }

≥ c
(τ−2)/2
i Eu∗∗i . Relationship (22) follows

by Kronecker’s lemma, (21) and (17).
To prove (23), let βm = m−(r−1/2)a(logm)3cm. For any i ≤ m

Eu∗2i = Eu4
i 1{|ui|≤c

1/2
i }

≤ ciEu
2
i ≤ Cia−1 exp(ia)L(b[exp(ma)])cm

where we used (20) in the last inequality. By (2.34) of [14] and (5),we get: E(maxl≤m U2
l ) ≤

C(logm)4m−2ar exp(ma)L(b[exp(ma)])cm. Let mk = [k1/a]. Using the same argument based
on a subsequence convergence criterion as in the proof of Lemma 6, we get Um = o(βm) a.s.
It remains to prove (24). By the mixing property, (20) and (5), we have EE2(ui|Gi−1) ≤
Ci−(2r−1)a−1 exp(ia)L(b[expia ]) = Ci−(2r−1)a−1ci. Relation (24) follows by the Kronecker’s
lemma. ¤

Here is the main result of this section.

Theorem 9 Without changing its distribution, we can redefine the sequence {ξi}i≥1 on a
larger probability space together with a standard Brownian motion W = {W (t)}t≥0 such that

mn
∑

i=1

ξi −W (s2n) = o((η2
n log log ηn)

1/2) a.s.
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Proof. By Theorem 2.1 of [14], Lemma 7 and Lemma 8, we can redefine the sequence {ξi}i≥1

on a larger probability space together with a standard Brownian motion W = {W (t)}t≥0 such
that

m
∑

i=1

ξi −W (s∗2m ) = o({dm(log
s∗2m
dm

+ log log dm)}1/2) a.s. (25)

Using the mixing property, (20) and (13), we obtain:

s∗2m =

m
∑

i=1

Eu2
i −

m
∑

i=1

E(ui)E(ui|Gi−1) ≤ C

m
∑

i=1

Eu2
i ≤ C exp(ma)L(bNm

) ≤ Cη2
Nm

The result now follows by noting that dmn
= η2

n. ¤

4 Between the Two Truncations

This section is dedicated to the proof of relation (11): S ′n/an → 0 a.s. For this we consider
the same blocks Hi, Ii as in Section 3 and we decompose the sum S ′n into three components,
depending on the sums over the blocks Ii, the sums over the blocks Hi and the remaining
terms X ′j . The sums u′i over the blocks Hi are once again approximated by the corresponding
martingale differences ξ′i and relation (11) follows by a martingale subsequence convergence
criterion.

Let H1, I1, H2, I2, . . . be the blocks introduced in Section 3. We define

u′i =
∑

j∈Hi

X ′j , v′i =
∑

j∈Ii

X ′j , ξ′i = u′i − E(u′i|G
′
i−1)

where G′m = σ({u′i; i ≤ m}), and write

S′n =

mn
∑

i=1

v′i +

n
∑

j=Nmn+1

X ′j +

mn
∑

i=1

E(u′i|G
′
i−1) +

mn
∑

i=1

ξ′i. (26)

We will prove that all the 4 terms in the above decomposition are of order o(an).

We begin by treating the first three terms. Note that EX
′2
j = L(aj) − L(bj) ≤ L(aj) and

nL(an) ≤ Ca2
n.

Lemma 10 We have
∑m

i=1 v
′
i = o(m2 exp( 1

3m
a)L1/2(aNm

)) a.s. and hence
∑mn

i=1 v
′
i = o(an)

a.s.

Proof. Same argument as in Lemma 4. ¤

Lemma 11 We have maxNm<n≤Nm+1

∣

∣

∣

∑n
j=Nm+1 X

′
j

∣

∣

∣ = o(exp( 1
2m

a)L1/2(a[exp(ma)])) a.s. and

hence maxNmn<n≤Nmn+1

∣

∣

∣

∑n
j=Nmn+1 X

′
j

∣

∣

∣ = o(an) a.s.

Proof. Using the same argument as in Lemma 5, it suffices to show that

∑

k≥1

ka−1e−(τ−2)ka/2L−τ/2(a[exp(ka)])E|X|
τ1{|X|≤2a[exp(ka)]} <∞. (27)
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Let nj = [exp(ja)] and αj = anj
. Note that the sum in (27) is smaller than

C
∑

j≥1

E|X|τ1{2αj−1<|X|≤2αj}L
−τ/2(αj)e

−(τ−2)ja/2 ≤

C
∑

j≥1

(L(2αj)− L(2αj−1)) · α
τ−2
j L−τ/2(αj)e

−(τ−2)ja/2,

where we used the inequality: E|X|τ1{a<|X|≤b} ≤ (L(b)− L(a))bτ−2. Note that

ατ−2
j L−τ/2(αj)e

−(τ−2)ja/2 = L−1(αj)

(

α2
j

exp(ja)L(αj)

)(τ−2)/2

≤ CL−1(2αj) · v
(τ−2)/2(αj).

Since αj ∼ αj−1, we have 2αj−1 ≥ αj for j large. We conclude that the sum in (27) is smaller
than

C
∑

j≥1

[

1−
L(αj)

L(2αj)

]

v(τ−2)/2(αj). (28)

Using (SR) and the fact that αj ≥ Cn
1/2
j and v(x) ≥ C log log x, we get

∑

j≥1

(

1−
L(αj)

L(2αj)

)

v(τ−2)/2(αj) ≤ C
∑

j≥1

(logαj)
−1/av−d(αj) ≤

C
∑

j≥1

(log nj)
−1/a(log log nj)

−d ≤ C
∑

j≥1

j−1(log j)−d <∞,

where d := β − (τ − 2)/2 > 1 (and we recall that a = 1/α). This concludes the proof of (27).
¤

Lemma 12 We have
∑m

i=1 E(u′i|G
′
i−1) = o(m−(r−1/2)a · (logm)3 · exp( 1

2m
a) ·L1/2(aNm

)) a.s.
and hence

∑mn

i=1 E(u′i|G
′
i−1) = o(an) a.s.

Proof. Same argument as in Lemma 6. ¤

For our last result, we will need the following martingale subsequence convergence criterion
(which is probably well-known).

Lemma 13 Let {Sn,Fn}n≥1 be a zero-mean martingale and {an}n≥1 a nondecreasing se-
quence of positive numbers with limn an = ∞. If there exists a subsequence {nk}k such that
ank

/ank−1
≤ C for all k, and

∑

k≥1

E|Snk
− Snk−1

|p

apnk

<∞ for some p ∈ [1, 2], (29)

then Sn = o(an) a.s.
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Proof. Note that {Snk
,Fnk

}k≥1 is a martingale. From (29) it follows that Snk
/ank

→ 0
a.s. (see Theorem 2.18 of [7]). By the extended Kolmogorov inequality (see p. 65 of [10]), we
have

∑

k≥1

P ( max
nk−1<n≤nk

|Sn − Snk
| > εank

) ≤
∑

k≥1

E|Snk
− Snk−1

|p

εpapnk

<∞

for every ε > 0, and hence Tk := a−1
nk

maxnk−1<n≤nk
|Sn − Snk

| → 0 a.s. Finally for nk−1 <
n ≤ nk we have:

|Sn|

an
≤
|Snk−1

|

ank−1

+
|Sn − Snk−1

|

ank−1

≤
|Snk−1

|

ank−1

+
ank

ank−1

· Tk ≤
|Snk−1

|

ank−1

+ C · Tk → 0 a.s.

¤

Finally, we treat the last term in the decomposition (26).

Theorem 14 We have
mn
∑

i=1

ξ′i = o(an) a.s.

Proof. Let Un :=
∑mn

i=1 ξ
′
i and note that {Un,G

′
mn
}n≥1 is a zero-mean martingale. By

Lemma 13, it is enough to prove that for a suitable subsequence {nk}k we have

∑

k≥1

E|Unk
− Unk−1

|2

a2
nk

<∞. (30)

Similarly to the proof of Lemma 2.3 of [11], we take a subsequence {nk}k satisfying nk ∼
nk−1(1 + φ−1(k)), where the function φ is chosen such that limk→∞ φ(k) =∞ and

1

φ(k) + 1
· I(bnk

, ank
] ≤ CI(ank−1

, ank
]. (31)

Clearly nk ∼ nk+1 and hence ank
∼ ank+1

and bnk
∼ bnk+1

.
We proceed now with the proof of (30). Let

Zk := Unk
− Unk−1

=
∑

mnk−1
<i≤mnk

ξ′i.

By the martingale property

EZ2
k =

∑

mnk−1
<i≤mnk

Eξ
′2
i ≤ (mnk

−mnk−1
) max
mnk−1

<i≤mnk

Eξ
′2
i . (32)

Using Lemma 2.3 of [14] we have: for every mnk−1
< i ≤ mnk

,

Eξ
′2
i ≤ Eu

′2
i ≤ Cia−1ei

a

·max
j∈Hi

EX
′2
j ≤ C(log nk)

(a−1)/ank ·max
j∈Hi

EX
′2
j . (33)

Now for any j ∈ Hi and mnk−1
< i ≤ mnk

we have

EX
′2
j ≤ A(aj)I(bj , aj ] ≤ A(aNi

)I(bNi−1
, aNi

] ≤ CA(ank
)I(bnk

, ank
]. (34)
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Using (34) and (33) we get: for every mnk−1
< i ≤ mnk

,

Eξ
′2
i ≤ C(log nk)

(a−1)/ank ·A(ank
)I(bnk

, ank
] = C(log nk)

(a−1)/aa2
nk
I(bnk

, ank
]. (35)

From (32) and (35) and recalling that mn ∼ (log n)1/a, we get

EZ2
k

a2
nk

≤ C[(log nk)
1/a − (log nk−1)

1/a] · (log nk)
(a−1)/aI(bnk

, ank
]

≤ C(log nk−1)
(1−a)/a 1

nk−1
(nk − nk−1) · (log nk)

(a−1)/aI(bnk
, ank

]

= C
nk − nk−1

nk−1
I(bnk

, ank
] ≤ C

1

φ(k) + 1
I(bnk

, ank
] ≤ CI(ank−1

, ank
],

where we used the inequality f(y) − f(x) ≤ f ′(x)(y − x) for the concave function f(x) =
(log x)1/a for the second inequality, and the choice (31) of the function φ for the last inequality.
Relationship (30) follows by (4). ¤
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