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1 Introduction

This work contributes to the series of papers [13, 15], [3, 4], [6], [20] and [19] which are devoted
to the qualitative study of the Newton equations driven by random noise. For related results
see also [5], [23], [26, 27], [1], [22] and the references given there. Newton equations of this type
are interesting in their own right: as models for the dynamics of particles moving in random
media (cf. [25]), in the theory of interacting particles (cf. [28], [29]) or in the theory of random
matrices (cf. [24]), to mention but a few. On the other hand, the study of these equations
fits nicely into the the larger context of (stochastic) partial differential equations, in particular
Hamilton-Jacobi, heat and Schrédinger equations, driven by random noise (see [32, 33| and
14, 16, 17, 18)).

In most papers on this subject the driving stochastic process is a diffusion process with con-
tinuous sample paths, usually a standard Wiener process. Motivated by the recent growth of
interest in Lévy processes, which can be observed both in mathematics literature and in appli-
cations, the present authors started in [20] and [19] the analysis of Newton systems driven by
jump processes, in particular symmetric stable Lévy processes. In [20] we studied the rate of
escape of a “free” particle driven by a stable Lévy process and its applications to the scattering
theory of a system describing a particle driven by a stable noise and a (deterministic) external
force.

In this paper we study non-explosion and transience of Newton systems of the form

d.’L’t = Pt dt
: (1)
dpy = OV (z) df — Oc(xy) )
Oz Ox

where & = (€},...,£&%) is a d-dimensional Lévy process, ¢ € C2(R% R?), V € C2(R?), V > 0
and (ac(mt) dft) = S Geilay) d{g is an It6 stochastic differential.

ox j=1 Ox;
In Section 3 we give conditions under which the solutions do not explode in finite time. For
symmetric a-stable driving processes & = LSO[) we show in Section 4 that the solution process
of the system (1) is always transient in dimensions d > 3. We consider it as an interesting open
problem to find necessary and sufficient conditions for transience and recurrence for the system
(1) in dimensions d < 3. Even in the case of a driving Wiener process (white noise) only some

partial results are available for d = 1, see [4, 3].

2 Lévy Processes

The driving processes for our Newtonian system will be Lévy processes. Recall that a d-
dimensional Lévy process {&:}i>0 is a stochastic process with state space R? and independent
and stationary increments; its paths t — & are continuous in probability which amounts to
saying that there are almost surely no fixed discontinuities. We can (and will) always choose
a modification with cadlag (i.e., right-continuous with finite left limits) paths and &y = 0. Un-
less otherwise stated, we will always consider the augmented natural filtration of {{;}+>0 which
satisfies the “usual conditions”. Because of the independent increment property the Fourier



transform of the distribution of & is of the form
E(eMe) = e M t>0, neRY,

with the characteristic exponent v : R* — C which is given by the Lévy-Khinchine formula

¥(n) = —ifn +nQn + / (1= e +iynlyy<ry) v(dy). (2)
R4\ {0}
Here f € R?, Q = (gi5) € R4 is a positive semidefinite matrix and v is a Lévy measure, i.e., a

Radon measure on R?\ {0} with fyﬂ) ly|? A 1v(dy) < oo. The Lévy-triple (3, @Q,v) can also be
used to obtain the Lévy decomposition of &,

e=w+ [ N+ [ yNas o 3)

[0,¢] x{o<]y|<1} [0,¢]x{|y|>1}
where A& = & — §t_~, §o— = &0, N(dy,ds) = > o<i<s Liae,£0)0(a¢, 1) (dy, ds), is the canon-
ical jump measure, N(dy,ds) = N(dy,ds) — v(dy)ds is the compensated jump measure,
WtQ is a Brownian motion with covariance matrix @ and [t is a deterministic drift with

6 =E (51 — ngl A551{|A55|>1}). Notice that the first two terms in the above decomposition
(3) are martingales.

Lemma 1. Let {&}i>0 be a d-dimensional Lévy process whose jumps are bounded by 2R. Then

i eI < g 2
BE€) <t max gl +¢ [ WPuldn), >0,

0<|y|<2R

where [¢¢,&7], denotes the quadratic (co)variation process.

This Lemma is a simple consequence of the well-known formula

(i) — e (0wl + S agad) =t(w+ [ vivivian)

s<t ly|<2R

It is well-known that Lévy processes are Feller processes. The infinitesimal generator (A, D (A))
of the process (more precisely: of the associated Feller semigroup) is a pseudo-differential oper-
ator A|Cg°(Rd) = —(D) with symbol —1), i.e.,

—y(Dyulx) = —(2m) Y2 / Same dy,  ue CRRY), (4)
Rd

where (1) denotes the Fourier transform of u. The test functions C2°(R?) are an operator core.
Later on, we will also use the following simple fact.



Lemma 2. Let u € C(RY) and up(z) := Ru(%), R > 1. Then

G(D)un(x)| < Cy R / (1 -+ [9l?) [@(0)| d = Cyu R
R

uniformly for all x € R% with an absolute constant Cyu-

Proof. Observe that ig(n) = R 4(Rn). Therefore,

W(D)un(z)| = (2m) 2 / €14 (7) T () iy

R4

< (2m)~°R / R 4p() (R dn

R4
= (2m) d/ZR/\zp ) a(n)| dn

< (2m)"Y%C, R/(
< (2m)"*Cy R /(1+|77|) n)| dn,

Lt B)°) ) dn

where we used that [1(n)| < Cy(1 + |nf?) for all n € R? with some absolute constant Cy, > 0.
Since u € C°(R?), 1 is a rapidly decreasing function which means that the integral in the last
line is finite. O

Our standard references for the analytic theory of Lévy and Feller processes is the book [10]
by Jacob, see also [11]; for stochastic calculus of semimartingales and stochastic differential
equations we use Protter [30].

3 Non-explosion

Let (X¢, P;) = (X(t,x0,p0), P(t,z0,po)) be a solution of the system (1) with initial condition
(z0,p0) € R?® at t = 0, where & = (&,...,£%) is a d-dimensional Lévy process, d > 1,
ce C2(RYRY), Ve C?(RY), V = 0 and dc/dx is uniformly bounded. Clearly, these conditions
ensure local (i.e., for small times) existence and uniqueness of the solution, see e.g., [30].

The random times
T :=inf{s > 0: |X4| V|Ps| > m} (5)

are stopping times w.r.t. the (augmented) natural filtration of the Lévy process {{:}+>0 and so
is the explosion time Ty, := sup,,, Ty, of the system (1).

Theorem 3. Under the assumptions stated above, the explosion time T, of the system (1) is
almost surely infinite, i.e., P(Too = 00) = 1.



Proof. Step 1. Let 7, := inf{s > 0 : |Ps| > m} and 7 := sup,, 7. It is clear that T, < 7,
and so Too < Too. Suppose that T (w) < t < T (w) < Too(w) for some ¢ > 0 and m € N. From
the first equation in (1) we deduce that for every k € N

sup | Xs(w)] < Jxo| +t sup |Ps(w)| < |zo| + tm.
$€[0,Ty (w)] s€[0,1]
On the other hand, since T (w) < Too(w) <t < Too(w), We find that supyey supgepo,r,) [ Xs(w)| =
oo. This, however, leads to a contradiction, and so 7o = Two.

Step 2. We will show that P(7e = oo) = 1. Set H(z,p) := 3p* + V(z) and Hy = H(Xy, P,).
Since H(x,p) is twice continuously differentiable, we can use Itd’s formula (for jump processes
and in the slightly unusual form of Protter [30, p. 71, (***)]). For this observe that only the
quadratic variation of the Lévy process [¢,£] := ([¢%,&%]);; € R4 contributes to the quadratic
variation of {(X¢, P;)}+>o:

(0 0 B 0 0 2dx2d
[(X,P),(X,P)] = <0 [ge g, 2e ]) B (0 (22) [€,€] (%)T> e

Therefore,
T
_ _ X
dH; = P;_ dPt—&—ltr Md[ﬁ,&]t e(Xi-) + WV (Xy) P, dt + %,
2 oz Ox Ox
where )
Si=5 » (P2-P? —2P, (P;—P.)— (P,—P,_)*) =0.
0<s<t

The first equation in (1), dX; = P;dt, implies that X; is a continuous function; the second
equation, dP; = —0V (X})/0x dt — Oc(Xy)/0x d&, gives

T
ity =-p 20 a4 o P e (250 ), (©

Let o :=inf{t > 0 : |[§] > R} be the first exit time of the process {&; }+>o from the ball Br(0).
Then
0=0pmR =LNORN Tm, £,m €N,

is again a stopping time and we calculate from (6) that

He — Hy— _/Pt de(Xy) g, + é /tr(aC(Xt) die. €l <8c(Xt))T> )
0 0

ox ox Ox

=I+1IL

Step 3. Recall that —i(D) is the generator of the Lévy process &. We want to estimate
|E(T)|. For this purpose choose a function ¢ € C°(R? RY) such that ¢(z) = = if |2| < 1,
supp ¢ C {x : |z| < 2} and define ¢p(x) = Ro (%). Clearly,

dr(&) = &, t < og, (8)



and, since ¢ € C(R%) C D(A) is in the domain of the generator of &, we find that
¢
M= 6n(@) + [ H(D)6n(E.)d )
0

is an L?-martingale (w.r.t. the natural filtration of {£;};>0). The stopped process (Mt‘z;w A0)E0

is again an L2-martingale for fixed m, ¢ € N. We can now use (8) and (9) to get

o— o—

e de( X,
1= _/Pt_ (’g:n ) dM/\T net /Pt— émt) Y(D)pg(&)dt =1 +1".
0 0
Clearly, [§ P, (dc(Xy)/0x) thAB; ¢ is a local martingale. Since
[ 0c(X) [ 0e(X,)
[/PS_ Ox deAimM’/PS_ Oz de/meM
0 0 '
t de(X)\?
& S
= [ (T) A", Mo
tATM AL 9 (X) 5
& S
- / Pszf (T) d[M?RvMod)R]s/\-rm/\é
we find for every t > 0
o 8 SATmM’ - SATmAL
0 t
2
<m? ||| E[MER, MER]; < oo,
T oo

where we used that |Ps_| < m if s < ¢ A7y, and that M % is an L2-martingale. This shows that
Jo Pi—(0c(Xy)/0x) ale5 ® is a martingale (cf. [30], p.66 Corollary 3) and we may apply optional
stopping to the bounded stopping time o to get

E(T) = —IE< /a P % thqu) +E (P(, 80((;(") AM;?R)

€z
0
=E <P0_%X‘I) AM?R) :

X
Therefore
, ) 86 ¢ 2 60
E()| < md?| 5 E‘AMUR <2mRd| || (6]l (10)




where we used

AMER| = [6r(€r) — Sr(6)| < 2RI6]
and the notation
dell max su dci(z)
O |~ ij=l..d Ieﬂgd oxj |

Step 4. For the estimate of E(I”), we use Lemma 2 with u = ¢ to get [|¢(D)¢g|loc < Cy 4, and
also o0 </, so

Oc(Xy) Oc

IE(I")| < Cy¢ RE <§1<1p P o )5 < Cy||l=—|| Rmdt. (11)
Put together, the estimates (10), (11) give
|E(I)] < C3Rm (. (12)
Step 5. We proceed with [E(IT)|. From
IAB]loe < d|Allcl|Bllsc, A, B € R,
where ||Al|oc = max; j—1,.. 4|4, we get
r Toe(xy) 9e(X)\ 7 dc|?
[ [ Sl as.a. (25Y) ] <@ |9 e €l
0 [e.e]

Since we have supg; |§s] < R for t < og, the jumps |A&,|, s < t, cannot exceed 2R. Lemma 1
then shows

Bl i) <€ [ ol vld) +£1Ql

0<[y|<2R
and so
|E<H>|<c4z( / |y|2v<dy>+||c2||oo). (13)
0<ly|<2R

Step 6. Combining (7), (12), (13) we obtain

E(Ha_><ﬂo+chme+c4z( / |y\2u<dy>+||czuoo>. (14)
0<|y|<2R

On the other hand, by Jensen’s inequality,

E(Hoo) = SE(PL) +E(V(X,)) > SE(PL)
>3 E(P,- D)’
> % [E (IPoruron—| Lir<tnon)) ]
_ % [E(1Pr, — AP, 1(r<inomy) |



Clearly, | P;,. | = m and, since on {s < or} the driving Lévy process has jumps of size |A&;| < 2R,
we find from (1) that

oc

ox

1{7'm <UNoR}*
)

‘AP‘Fm| 1{7'm<€/\JR} < 2R'

Choosing m sufficiently large, say m > 2R||(0c/0z)| 0, We arrive at

1
E(H,-) > ) [E (m — AP, |) 1{7-m<€/\aR}]2
1 dc 2 2
>§(m_23'%00) (P (1 < LA o) 2 (15)
We can now combine (14) and (15) to find
2(H0 + Cngf)
P (7m ?<
R A O T [ ]S
20,0 / )
+ yl"v(dy) + 1Rl )-
(m—2RI@eonp | W) el
0<lyl<2R

Letting first m — oo and then R — oo shows P(7, < ¢) =0 for all £ € N, so P(7o, = 00) = 1,
and the claim follows. O

4 Transience

We will now prove that the solution {(Xi, P;)}+>0 of the Newton system (1) is transient, at
least if the driving noise is a symmetric stable Lévy process & = §§a) with index a € (0,2).
Symmetric a-stable Lévy processes have no drift, no Brownian part and their Lévy measures
are v(dy) = cq |y| =4 dy, where

0201 (25)

T wAr(i-g) "

Ca

We restrict ourselves to presenting this particular case, but it is clear that, with minor alterations,
the proof of Theorem 6 below remains valid for any driving Lévy process with rotationally
symmetric Lévy measure.

Our proof is be based on the following result which extends a well-known transience criterion
for diffusion processes to jump processes, see for instance [8] or [21].

Denote by {T}}+>0 the operator semigroup associated with a stochastic process and let (A, D(A))
be its generator. The full generator is the set

~

t
A::{(f,g)GCbXCb : th_f:/() ngdS},

see Ethier, Kurtz [7] p. 24. It is clear that (u, Au) € A for all u € D(A).



Lemma 4. Let {n;}+>0 be an R™-valued, cadlag strong Markov process with generator (A, D(A))
and full generator A. Let D C R"™ be a bounded Borel set and assume that there exists a sequence
{uk }ren C Cp(R™) and some function u € C(R™), such that the following conditions are satisfied:

(i) A has an extension /:l such that Auy, is pointwise defined, (ugp, Auy) € A and
limy o0 (ug, Aug) = (u, Au) exists locally uniformly.
(ii)) u>0 andi%fu>a>0f0rsomea>0.

(iii) w(yo) < a for some yo & D.
(iv) Au <0 in D°.

Then {n:}i>0 is transient.

Proof. Since (uy, Auy,) € g, we know that

t
Mtk = ug(n) — //Nluk(ns) ds, keN,
0

are martingales, see Ethier, Kurtz [7, p. 162, Prop. 4.1.7]. We set
mp=inf{t >0 : n, € D} and or=inf{t >0 : |p, —no| > R}

and from an optional stopping argument we find for any fixed 7" > 0

B (ME pppnr ) = B (ME) = E* (ug(mo)).
On the other hand,

TD/\O'R/\T

E¥° (MfD/\UR/\T) =E* uk(nTD/\UR/\T) - / Auk(ns)ds ’
0

and because of assumption (i) we can pass to the limit k¥ — oo to get

a > u(yp) = lUm ug(yo)
k—o0
Tp Ao RrNT

= lim EY | up(Nrpropat) — fluzc(ns)ds

k—o0
0

Tp Ao RNAT

E [ w(opnonnt) — / Au(ns)ds
0

Yo (u(nTD/\O'R/\T))
]EyO (U(TITD/\UR/\T) 1{TD<OO}) )

VWV

where we used in the penultimate step that Au

e <O0.



As u € C*T(R™), we may use dominated convergence and let T'— oo and Fatou’s Lemma to let
R — o00. Thus,

a > u(yO) P hRHi}oréf [Eve (U(TITD/\O'R)]‘{TD<OO}) > E¥ (U(T/TD)]‘{TD<OO})
> (i%f u) P (1p < 00) > alP¥(1p < 00).
Therefore, PY (7p < 00) < 1, and, see e.g [2], {n:}+>0 is transient. O

We will now turn to the task to determine the infinitesimal generator of the solution process
{(Xt, Py)}t>0. The following result is, in various settings, common knowledge. We could not
find a precise reference in our situation, though. Since we need some technical details of the
proof, we include the standard argument.

Lemma 5. Let {&}i>0 be a d-dimensional Lévy process with characteristic exponent v and
Lévy triple (o, Q,v). The (pointwise) infinitesimal generator of the process (X P) =
(X(taanpO)?P(tamOap[))) SOl’U?;TLg (1) is Of the form

ou(z,p) ou(z,p) (OV(x) Oc(z)
or U~ Op ( Ox * Ox ﬁ)

(T (e ()
) < (= 50— o) + SEB y1{|y|<1}) v(dy).
R4\ {0}

Au(x,p) =

for all u € C2(R% x RY) and with § = E° (51 — Zogsgl A&, 1{\A£s|>1})- In particular, the pairs
(u, Au), u € C2(R? x RY), are in the full generator A of the process.

Proof. For u = u(z,p) € C2(R% x R%) we can use Ito’s formula (for jump processes, now in the
usual form [30, p. 70, Theorem I1.32]) and get with a similar calculation to the one made in the
proof of Theorem 3

t t
ou ou oV ou Oc
w(X¢,Pr) — u(zo, po) 2/—xPsds—/a—_x o B 13
0 0
¢
41 /t Ou
2 ' Op? Bac
0

£ Y (0P~ 0l o) + S P 5 8.

Here we used the fact that the continuous martingale part of & is WtQ, and so [§,&]f =
(W W], = Qt. Note that we suppressed arguments in those places where no ambiguity

10



is possible. Since P, = P;_ + AP; = P;_ — g—; A& we find, using the Lévy decomposition (3),

u(Xy, Py) — u(xo, po)

t t
ou ou oV 8u oc 8u oc
_ [ 2= _ | Er vvye Q
/ xPsds /8}9 xds ap 0z B ds 8 7 awy
0 0
Fou o 1 / a? ) oe\ T
u Oc ~ c c
0 0<y|<1 0

c ou(Xs,Ps—) de \7
+ / <u(X87 P — g_x y) - u(X87 Ps—) + %g_x Y 1{|y\<1}) N(dy, ds)

Xs,Ps
/ w(Xg, P — 22 y) — ul(Xy, Py ) + 20 0 y1{|y‘<1}) v(dy) ds

with the double integrals ranging over [0,¢] x R?\ {0}. The function u has compact support,
and we may take expectations on both sides of the above relation and differentiate in ¢. Since
the terms driven by N(dy, ds) or dW< are martingales, we find

d

B (u(Xe, ) »

_ Ou(wo,po)  Ou(xo,po) OV (z0)  Ou(zo, po) Ic(zo) 3
ox bo Op ox Op ox

N ltr 82u(x0,p0) c(zo) 0 Oc(zg) T
2 Op? 0z ox
+ / (U(:Eo,po — 2m0) 4y — (g, po) + %;po)ac(m) Y 1{\y|<1}) v(dy),

RH\{0}

which is what we claimed. Notice, that the convergence is pointwise, so that it is not clear
that C%(R? x R?) is in the domain of the generator. However, our calculation shows that
Au € Cyp(R? x RY) and

Eu(Xy, Py) — u(zo, po) :/0 E (Au)(Xg, Ps)ds

which means that (u, Au) is in the full generator A O

If the driving Lévy process has no drift, no Brownian part and a rotationally symmetric Lévy

measure, the form of the infinitesimal generator becomes much simpler. In this case we have for
all u € C2(R? x R%)

du(x,p)  Odu(z,p) OV (z)
or V Op Or

+ V.p./ (u(x,p — ag—(;) y) — u(x,p)) v(dy),

Rd

Au(x,p) = (17)

11



where v.p. [pa f(y) v(dy) := lim._¢ fly\>8 f(y) v(dy) stands for the principal value integral. It is
not hard to see that

v [ (ule.p = %2 0) ~ ula,p) vidy
Rd
= [ (utop— 22 0) — utarp) + 20D y 1y, y) vl
R4\{0}

or also

1

—5 [ (wwr=220) ¢ utep+ %2 0) - 2u(wp)) vldy)

RA\{0}

holds. The latter two representations do exist in the sense of ordinary integrals (just use a
simple Taylor expansion for u up to order two) and are frequently used in the literature. For
our purposes, formula (17) is better suited. Notice that all three representations extend A onto
C?.

Theorem 6. Letd >3, V € C*(R?), c € C*(RY,R?) and {&}i>0 be a symmetric a-stable Lévy
process, 0 < a < 2. Then the process {(X¢, P;) }+>0 solving (1) is transient.

Proof. We want to apply Lemma 4. Take the function
U'y(lll,p) = (H(I’,p) - Vv(])_ﬂ/ = (%pQ + V(l‘) - Vb)_fy

with Vo = inf V — 1 and with a parameter v > 0 which we will choose later. It is not hard to
see that for this v = u,(x,p) and

D= {(%p)eRQd x|+ |pl <1}, a::% min_u.(z,p)
(z,p)eD

conditions (ii), (iii) of Lemma 4 are satisfied.

Moreover, we have

Ouy Ouy OV
J— p —_— e =
ox Op Ox
Since {&:}i>0 is a symmetric a-stable process, its Lévy measure is of the form v(dy) =
Co [y| 74 dy with ¢, given by (16), and (17) shows that
A Oc dy
Auy(x,p) = o V.D. (uﬁ, (az,p + 3% y) — ufy(x,p)) W.
R4
We will see in Corollary 9 below (with B = d¢/dx and b = 2(V (z) — Vj)) that we can choose

~v > 0 in such a way that fluv(aﬁ, p) < 0. This, however, means that also condition (iv) of Lemma
4 is met.

Let xx € CX(RY) be a cut-off function with 1,00 < Xk < 1p,0) and set u(z,p) =
wy(z,p)xk(®)xe(p). Clearly, ur € C2(R? x RY) and we know from Lemma 5 that the pair

12



(ug, Aug) is in the full generator A. The following considerations are close to those in [31]. Write
lglla = llg14lloo- Using a Taylor expansion we find for some 0 < 6 < 1 and all f € C?(R? x R%)

f(z,p+ 2y) — f(z,p)
. 92f(x 0 9c
_Ufep) 0cl) | 1 Pfap 055 0) <6> <8 )j

dp ox Op;iOp; ox Y ox Y

1,j=1

and, therefore, for all compact sets K C R? and (z,p) € K x K,

V-p-/ (f (z,p+ %y) — f(z,p)) V(dy)’

Rd

<'v.p. [ 0 p+ o)~ stem) v(dy>]+2 [ ) 15l

|y|<1 ly|>1
o [ v PI 4 [ v
ax y y 6p2 KXR y KX]Rd7
0<|y|<1 ly|>1

where K = K + {p € R? : |p| < ||0c/dz| k}. Since the estimate of the local part in (17) is

KXK

for any f € C?(R? x R?) with ||f||xxge < oo and with an absolute constant C = C(K,¢, V)
depending only on K, [|0c/dz|k and [|0V/0x||k. Since p +— uy(z,p) vanishes at infinity,
condition (i) of Lemma 4 is satisfied for the sequence (uy, Auy) — (uy, Auy).

1A f i < (Hfuw n H H +\

KxK H HKXK

The theorem follows now directly from Lemma 4. O

Appendix
We will now give the somewhat technical proof that for some v > 0 the function u(z,p) =

(1p* 4+ V(z) — Vp)~” which we used in the proof of Theorem 6 satisfies condition (iv) of Lemma
4. We begin with a few elementary lemmas.

Recall that Euler’s Beta function B(z,y) is given by

1
Bla.y) = / L, ay >0, (18)
0

and satisfies the relations

B(z,y) = B(y,x) and  B(z,y) = % B(z,y +1), (19)
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cf. Gradshteyn and Ryzhik [9, §8.38]. A change of variable in (18) according to t = s? yields
1
Bley) = [0 s,y
-1

Lemma 7. For any v € R\ {0}, a > 1, d > 3 we have

1
J(v) = /(1 - 52)(12;3 In(v? + 2vs + a) ds > In(a) Ta—s (20)
2
“1
Proof. We observe that J(v) = J(—v) and
v v v? v
In(v? 4 2vs + a) — In(a) = In <— +2-s5+ 1> >In (—2 +2-s+ 1> .
a a a a
Therefore, we may assume that « = 1 and v > 0. Since J(0 ( ) = In(a) = 0, it is enough to show

that J(v) is increasing. This is clear for v > 1 since v + v2 4 2vs + 1 increases for all parameter
values |s| < 1. For 0 < v < 1 we calculate the derivative

1

v+ d—3
JW)=2 [ ————(1—-5%) "z ds.
() /112+2vs+1( s°) 2 ds
-1
In the case d = 3 a few lines of simple calculations give

J'(v) = (1—%>1n<1i—3>+%

which is clearly positive. If d > 3, we use the symmetry of the measure (1 — 32)% ds and find

1

, v+S v—S 2, d=3
v) /<v2+203+1+v2—2vs+1>( ) ds

1

21}/ i (1—32)%&9

v2+1)2 41)232
el

1 ,

_ 2 e 20 \¥ 2j 2y 453

~ e [ a3 () -
-1

Jj=0

since 2v(v? +1)~! < 1. The integrand can be written as

0
(v? +1 —2s?) OOE 2 ’ 5%
= v2 41

=0
0 2j 0 2
2v 2v
_ 2 2 2742
w0y () 2> ()
i—=0 =0



j=1
202 — 1) = [ 20 \¥7?
2 2
1 J
(0 + 1)+ =5 ; R
2(v? —1) 2(v? —1) 20 \? st
2 2 1 2
W+ D+ = 211 \P+1) 1-42

2v <B(%,d_1) 2(v? —1) (%’d_l) v -1 8v? B(%,d_?’)).

By, 45N =dB(3, %Y and BG40 = 0 BG5S,

and so

(vV2+1)2  d—3 (v2+1)4

2002 = 1)  240%(v? 1)
@12 (@) )

7> i (a4 2oy S D)

It is now straightforward to check that

2002 = 1) 240%(v? - 1)
(’U2—|- 1)2 + (U2+1)4

=0

for all v € R. O

Lemma 8. Let d >3, 0 < a < 2. There exists some v = vy(a,d) > 0 such that

V.p./( ! - ! ) ay <0 (21)
R (lp+Ay2+ 1) ([pP+1)7) [y|*te

holds for all p € R?, X € R.
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Proof. With the reasoning following Lemma 5 it is clear that the integral (21) exists. Without
loss of generality we may assume that A = 1. Denote the left-hand side of (21) by I(y). Changing
to polar coordinates we get

I(y) = / / Z(r)r_l_o‘drd0:|5d_2|oz Z(r) 1= dr,

Sa=2x(0+,00)

(in the sense of an improper integral at the lower limit 0+) where

_ 1 7 1 —52%5
Zw%_[<02+mw+mmw+1w <mP+1w><l )7 ds.

Write Z(r) = |p|=2YZ(r) and observe that with v = r/|p|

1

~ . 1 _ L —32 (12;3 S
Z(T)_—/1<(v2+1+2v8+’p‘_2)7 (1+\p!‘2)7> o)

An application of Lemma 7 with a = 1 + |p|~2 implies

- 1
A _
88(7") = —/ (In(v® + 2vs + a) — In(a)) (1 - 32)% ds
K 7=0 -1
_ (J(v) ~ In(a) I@) <0,
2
and therefore -
I'(0) = —|p| > / (J(v) - ln(a)1@> v dy < 0.
2
0+
Since I(0) = 0, the claim follows. O

Assertion (iv) of Lemma 4 follows finally from

Corollary 9. Let d > 3 and 0 < o < 2. Then there exists some v = y(a,d) > 0 such that for
all BER™ b >0, peR?

1 1 dy
.p. — < 0. 22
V9[<0p+3m2+wv ) 2
R

Proof. An argument similar to the one used in the proof of Lemma 8 shows that the integral
(22) is well-defined for every v > 0. Since

[ (@ w7
V.p. -
S\ UpFBoP 40y (7)) [l

1 / 1 1 dy
= —vVv.p. -
o P @7 By iy (R ) e

R4
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we may assume that b = 1. Depending on the rank of the matrix B we distinguish between
three cases.

Case 1: rank B = 0. Nothing is to prove in this case.

Case 2: rank B = d. We have

1 1 dy
A
W=\ BPvin ~ ot WP in) e

S )
= v.p. —
PPN+ 2 TByP+1y7  (p+olP+1) ) [y

R4
and, therefore,

/l\ir% ATYT(N) <0 and, by Lemma 8, )\lim AT (A) > 0.

Since J () is a continuous function, there exists some A* = A*(p, B) such that J(\*) = 0. Thus,

[ (w5 )
v.p. —
(Ip+ByP+1)  (lp+Ayl>+1)7) [y|+e

R4
1 1 dy
=J(\")+v.p. = <0,
7 ”’R[ (e~ G e

where we used Lemma 8 again.

Case 3: rank B = k, 1 < k < d. In this case we can find an orthogonal matrix S € R%*? such

that .
_of(B 0\ r
pes(® 0)s

where B € RF*F has full rank. Since the measure ly|~~*dy is invariant under orthogonal
/!

0 0

make a change of variables in (22) with p’ = Sp in place of p. Write y = (y1,92) € RF x RI=F,
p= (p1,p2) € R¥ x R“* and set b =1+ |p2|?. Then

transformations we can assume that B is already of the form < ); otherwise we would

= )
V.p. -
de (lp+ Byl +1)7  (Ip+Ayl2+1)7 ) [y[dte
p// < 1 1 > dyy dy»
= V.p. / 2 - 2 dta
J ] \p+ Byt P07 (P 4007/ (g2 + Jy[2)

Vp/( 1 1 > / dy2 dy
g .D. 7 ) - 2 dt+a 1
go NP By 67 P 007/ T (2 o+ [y f?)

= / va/< 1 _ 1 ) dyr
(L+ )55 NPt B0 (lpaf* +0)7 /) g

Rd—k
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where we used the change of variables |y1|n2 = y2 in the last step. Since B’ has full rank, the
claim follows from case 2. O
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