ON AN EXTENSION OF JUMP-TYPE SYMMETRIC DIRICHLET FORMS

TOSHIHIRO UEMURA¹

School of Business Administration, University of Hyogo, Kobe, 651-2197, Japan email: uemura@biz.u-hyogo.ac.jp

Submitted 29 Nov 2006, accepted in final form 15 Mar 2007

AMS 2000 Subject classification: 31C25; 60J75

Keywords: jump-type Dirichlet form; Siverstein extension; extended Dirichlet space

Abstract

We show that any element from the $(L^2$ -)maximal domain of a jump-type symmetric Dirichlet form can be approximated by test functions under some conditions. This gives us a direct proof of the fact that the test functions is dense in Bessel potential spaces.

1 Introduction

In this note, we are concerned with the following symmetric quadratic form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ defined on $L^2(\mathbb{R}^d)$:

$$\begin{cases}
\mathcal{E}(u,v) := \frac{1}{2} \iint_{x \neq y} (u(x) - u(y))(v(x) - v(y)) n(x,y) dx dy, \\
\mathcal{D}(\mathcal{E}) := \left\{ u \in L^2(\mathbb{R}^d) : \mathcal{E}(u,u) < \infty \right\},
\end{cases} \tag{1}$$

where n(x, y) is a positive measurable function on $x \neq y$.

In order that the form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ makes sense, we assume that the set $\{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d : n(x,y) = \infty\}$ is a Lebesgue null set. In fact, under this condition, we have already shown that the form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a Dirichlet form on $L^2(\mathbb{R}^d)$ in the wide sense (see [11] and [6]). Moreover if we set $C_0^{0,1}(\mathbb{R}^d)$ the totality of all uniformly Lipschitz continuous functions defined on \mathbb{R}^d with compact support, then $\mathcal{D}(\mathcal{E}) \supset C_0^{0,1}(\mathbb{R}^d)$ if and only if the following conditions are satisfied(see [12], [6] and also [3, Example 1.2.4]): For some $\varepsilon > 0$,

$$\Phi_{\varepsilon}(\bullet) := \int_{|h| < \varepsilon} |h|^2 j(\bullet, \bullet + h) dh \in L^1_{loc}(\mathbb{R}^d), \tag{A}$$

$$\Psi_{\varepsilon}(\bullet) := \int_{|h| > \varepsilon} j(\bullet, \bullet + h) dh \in L^{1}_{loc}(\mathbb{R}^{d}),$$
 (B)

¹RESEARCH PARTLY SUPPORTED BY THE GRANT-IN-AID FOR YOUNG SCIENTISTS (B), THE MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY, JAPAN

where j(x,y) = n(x,y) + n(y,x). Then under (A) and (B), the quadratic form $(\mathcal{E},\mathcal{F})$ becomes a regular symmetric Dirichlet form on $L^2(\mathbb{R}^d)$, where \mathcal{F} is the closure of $C_0^{0,1}(\mathbb{R}^d)$ with respect to the norm $\sqrt{\mathcal{E}(\bullet,\bullet) + ||\bullet||_{L^2}^2}$. Note that, from the integral representation of the form \mathcal{E} , we can adopt the test functions, $C_0^{\infty}(\mathbb{R}^d)$, as a core instead of $C_0^{0,1}(\mathbb{R}^d)$ under the conditions (A) and (B). We now give some examples (see e.g., [11, 12]):

Example 1

(1) (symmetric α -stable process) Let

$$n(x,y) = c|x-y|^{-\alpha-d}, \quad x \neq y.$$

Then (A) and (B) hold if and only if $0 < \alpha < 2$ and c > 0. This is nothing but the Dirichlet form corresponding to a symmetric α -stable process on \mathbb{R}^d .

(2) (symmetric stable-like process) For a measurable function $\alpha(x)$ defined on \mathbb{R}^d , set

$$n(x,y) = |x - y|^{-\alpha(x) - d}, \quad x \neq y.$$

Then (A) and (B) hold if and only if the following three conditions are satisfied:

- (i) $0 < \alpha(x) < 2$ a.e.,
- (ii) $1/\alpha$, $1/(2-\alpha) \in L^1_{loc}(\mathbb{R}^d)$,
- (iii) for some compact set K, $\int_{K^c} |x|^{-d-\alpha(x)} dx < \infty$.
- (3) (symmetric Lévy process) For a positive measurable function \tilde{n} defined on $\mathbb{R}^d \{0\}$ satisfying $\tilde{n}(x) = \tilde{n}(-x)$ for any $x \neq 0$, set

$$n(x,y) = \tilde{n}(x-y), \quad x \neq y.$$

(A) and (B) are satisfied if and only if $\int_{h\neq 0} (1 \wedge |h|^2) \tilde{n}(h) dh < \infty$.

In general, we do not know whether the set \mathcal{F} coincides with $\mathcal{D}(\mathcal{E})$. Determining the domains of the Dirichlet form corresponds, in some sense, to solve the boundary problem of the associated Markov processes. This analytic structure was investigated first by Silverstein in [7] and [8], and then by Chen [1] and Kuwae [5].

2 Identification of the domains

In order to classify the domains of the forms, we will consider the following conditions: there exists a positive constant C > 0 such that

$$\Phi_1 \in L^1_{loc}(\mathbb{R}^d), \quad j(x+z,y+z) < Cj(x,y), \quad |x-y| < 1, \ |z| < 1$$
 (A')

or

$$\Phi_1 \in L^{\infty}(\mathbb{R}^d), \quad j(x+z, y+z) \le Cj(x, y), \quad |x-y| \le 1, \ |z| \le 1,$$
 (A")

and

$$\Psi_1(\bullet) = \int_{|h|>1} j(\bullet, \bullet + h) dh \in L^{\infty}(\mathbb{R}^d).$$
 (B')

Note that $(A'')\Rightarrow(A')\Rightarrow(A)$ and $(B')\Rightarrow(B)$.

Theorem 1 Assume that (A") and (B') hold. Then we can show

$$\mathcal{D}(\mathcal{E}) = \{ u \in L^2(\mathbb{R}^d) : \ \mathcal{E}(u, u) < \infty \} = \mathcal{F},$$

that is, any element in $\mathcal{D}(\mathcal{E})$ can be approximated from elements of $C_0^{\infty}(\mathbb{R}^d)$ with respect to \mathcal{E}_1 .

Proof: Take $\rho \in C_0^{\infty}(\mathbb{R}^d)$ satisfying

$$\rho(x) \ge 0$$
, $\rho(x) = \rho(-x)$, $x \in \mathbb{R}^d$, $\operatorname{supp}[\rho] = \overline{B_0(1)}$, $\int_{\mathbb{R}^d} \rho(x) dx = 1$.

For any $\varepsilon > 0$, define $\rho_{\varepsilon}(x) = \varepsilon^{-n} \rho(x/\varepsilon)$ so that $\int_{\mathbb{R}^d} \rho_{\varepsilon} dx = 1$. For $u \in \mathcal{D}(\mathcal{E})$, set the convolution of u and $\rho_{1/n}$:

$$w_n(x) := J_{1/n}(u)(x) := \rho_{1/n} * u(x) = \int_{\mathbb{R}^d} \rho_{1/n}(x-z)u(z)dz, \quad x \in \mathbb{R}^d.$$

Since $u \in L^2(\mathbb{R}^d)$, $w_n \in C^{\infty}(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and

$$||w_n||_{L^2} \le ||\rho_{1/n}||_{L^1}||u||_{L^2} = ||u||_{L^2} \text{ and } ||w_n - u||_{L^2} \to 0 \text{ as } n \to \infty.$$

Let $\psi_n(t)$, $t \geq 0$, be non-negative C^{∞} -functions such that

$$\psi_n(t) = 1, \ 0 \le t \le n, \quad \psi_n(t) = 0, \quad t \ge n+2, \quad -1 \le \psi_n'(t) \le 0, \quad t \le n+2.$$

We put $v_n(x) = \psi_n(|x|), x \in \mathbb{R}^d$. Then $v_n \in C_0^{\infty}(\mathbb{R}^d)$ and

$$V_n(x) := \int_{|x-y| \le 1} (v_n(x) - v_n(y))^2 j(x, y) dy, \quad x \in \mathbb{R}^d$$

satisfies the following inequality:

$$V_n(x) \le d \int_{|x-y|<1} |x-y|^2 j(x,y) dy = d\Phi_1(x), \quad x \in \mathbb{R}^d.$$
 (2)

Then we see that

$$v_n(x) \nearrow 1$$
, $x \in \mathbb{R}^d$ and $M := \sup_n \sup_{x \in \mathbb{R}^d} V_n(x) \le d||\Phi_1||_{\infty} < \infty$

and

$$||w_n v_n - u||_{L^2} \le ||w_n v_n - u v_n||_{L^2} + ||u v_n - u||_{L^2}$$

 $\le ||w_n - u||_{L^2} + ||u v_n - u||_{L^2} \to 0 \text{ as } n \to \infty.$

Now we estimate $\mathcal{E}(w_n v_n, w_n v_n)$:

$$\mathcal{E}(w_n v_n, w_n v_n) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \left(w_n(x) v_n(x) - w_n(y) v_n(y) \right)^2 j(x, y) dx dy$$

$$= \left(\iint_{|x-y| < 1} + \iint_{|x-y| \ge 1} \right) \left(w_n(x) v_n(x) - w_n(y) v_n(y) \right)^2 j(x, y) dx dy$$

$$=: (I) + (II).$$

$$(II) = \iint_{|x-y| \ge 1} (w_n(x)v_n(x) - w_n(y)v_n(y))^2 j(x,y) dx dy$$

$$\le 2 \iint_{|x-y| > 1} ((w_n(x))^2 v_n(x)^2 + (w_n(y))^2 v_n(y)^2) j(x,y) dx dy$$

Since j(x, y) = j(y, x), we see

$$(II) \leq 4 \iint_{|x-y| \ge 1} (w_n(x))^2 j(x,y) dx dy$$

$$= 4 \int_{\mathbb{R}^d} (J_{1/n}(u)(x))^2 dx \int_{|x-y| \ge 1} j(x,y) dy$$

$$= 4 \int_{\mathbb{R}^d} (J_{1/n}(u)(x))^2 \Psi_1(x) dx$$

$$\leq 4 ||\Psi_1||_{L^{\infty}} \int_{\mathbb{R}^d} (J_{1/n}(u)(x))^2 dx \le 4 ||\Psi_1||_{L^{\infty}} ||u||_{L^2}^2.$$

Now we estimate (I).

$$(I) = \iint_{|x-y|<1} (w_n(x)v_n(x) - w_n(y)v_n(y))^2 j(x,y) dxdy$$

$$\leq 2 \iint_{|x-y|<1} (w_n(x) - w_n(y))^2 (v_n(x))^2 j(x,y) dxdy$$

$$+2 \iint_{|x-y|<1} (v_n(x) - v_n(y))^2 (w_n(y))^2 j(x,y) dxdy$$

$$\leq 2 \iint_{|x-y|<1} \left(\int_{\mathbb{R}^d} \rho_{1/n}(z) \left(u(x-z) - u(y-z) \right) dz \right)^2 j(x,y) dxdy$$

$$+2 \int_{\mathbb{R}^d} (w_n(y))^2 \int_{|x-y|<1} \left(v_n(x) - v_n(y) \right)^2 j(x,y) dxdy$$

$$=: 2(I-1) + 2(I-2).$$

Since supp $[\rho_{1/n}] \subset \overline{B_{1/n}(0)} \subset \overline{B_1(0)}$ for $n \in \mathbb{N}$, we see

$$\begin{aligned} &(\text{I-1}) & \leq & \iint_{|x-y|<1} \left(\int_{\mathbb{R}^d} \left(u(x-z) - u(y-z) \right)^2 \rho_{1/n}(z) dz \right) j(x,y) dx dy \\ & = & \int_{\mathbb{R}^d} \left(\iint_{|x-y|<1} \left(u(x-z) - u(y-z) \right)^2 j(x,y) dx dy \right) \rho_{1/n}(z) dz \\ & = & \int_{\mathbb{R}^d} \left(\iint_{|x-y|<1} \left(u(x) - u(y) \right)^2 j(x+z,y+z) dx dy \right) \rho_{1/n}(z) dz \\ & \leq & \int_{\mathbb{R}^d} \left(\iint_{|x-y|<1} \left(u(x) - u(y) \right)^2 Cj(x,y) dx dy \right) \rho_{1/n}(z) dz \\ & = & C \iint_{|x-y|<1} \left(u(x) - u(y) \right)^2 j(x,y) dx dy \leq C \mathcal{E}(u,u) < \infty. \end{aligned}$$

In the first inequality, we used the Jensen inequality for the measure $\rho_{1/n}(z)dz$, while the second is from the Fubini theorem, the third is by translation and the fourth is obtained by the assumption (A").

$$(I-2) = \int_{\mathbb{R}^d} (w_n(y))^2 \int_{|x-y|<1} (v_n(x) - v_n(y))^2 j(x,y) dx dy$$
$$= \int_{\mathbb{R}^d} (w_n(y))^2 V_n(y) dy \le M \int_{\mathbb{R}^d} (w_n(y))^2 dy \le M ||u||_{L^2}^2.$$

Summarizing the calculus done above, we see

$$\mathcal{E}(w_n v_n, w_n v_n) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} (w_n(x) v_n(x) - w_n(y) v_n(y))^2 j(x, y) dx dy
\leq 4||\Psi_1||_{L^{\infty}} ||u||_{L^2}^2 + 2C \mathcal{E}(u, u) + 2M||u||_{L^2}^2
= 2(C \mathcal{E}(u, u) + (2||\Psi_1||_{L^{\infty}} + M)||u||_{L^2}^2) < \infty.$$

That is, $\mathcal{E}(w_n v_n, w_n v_n)$ are uniformly bounded. Moreover we have seen that $||w_n v_n||_{L^2}$ are also uniform bounded and $w_n v_n$ converges to u in $L^2(\mathbb{R}^d)$. Thus the Cesàro means of a subsequence of $\{w_n v_n\}$ are \mathcal{E}_1 -Cauchy and convergent to u a.e. Hence $u \in \mathcal{F}$. Thus

$$\{u\in L^2(\mathbb{R}^d):\ \mathcal{E}(u,u)<\infty\}=\mathcal{F}:=\overline{C_0^\infty(\mathbb{R}^d)}^{(\mathcal{E}(\bullet,\bullet)+||\bullet||_{L^2}^2)^{1/2}}.$$

Example 2

- (1) Let $n(x,y) = c|x-y|^{-d-\alpha}$, $x \neq y$ for some $0 < \alpha < 2$ and c > 0. For this n, we can easily see that the conditions (A") and (B') hold. In this case, the L^2 -maximal domain $\mathcal{D}(\mathcal{E})$ is nothing but the "Bessel potential space" $\mathcal{L}^2_{\alpha/2}(\mathbb{R}^d)$ (see Proposition V. 4 in [9]).
- (2) For $0 < \alpha < 2$ and $c_i > 0$ (i = 1, 2), we assume

$$|c_1|x-y|^{-d-\alpha} \le n(x,y) \le |c_2|x-y|^{-d-\alpha}, \quad 0 < |x-y| \le 1.$$

and

$$\sup_{x} \int_{|x-y|>1} \left(n(x,y) + n(y,x) \right) dy < \infty.$$

Then this satisfies the conditions (A") and (B'). A Markov process corresponding to the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is called "stable-like process" by Chen-Kumagai[2].

For a subclass \mathcal{B} of all measurable functions on \mathbb{R}^d , we denote by \mathcal{B}_b the bounded functions in \mathcal{B} . In the following, we always assume that (A) and (B) hold. Then a symmetric Dirichlet form $(\eta, \mathcal{D}(\eta))$ on $L^2(\mathbb{R}^d)$ is said to be an *extension* of the Dirichlet form $(\mathcal{E}, \mathcal{F})$ if $\mathcal{D}(\eta) \supset \mathcal{F}$ and $\eta(u, u) = \mathcal{E}(u, u)$ whenever $u \in \mathcal{F}$. Denote by $\mathcal{A}(\mathcal{E}, \mathcal{F})$ the totality of the extensions of $(\mathcal{E}, \mathcal{F})$. By this definition, $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is an element of $\mathcal{A}(\mathcal{E}, \mathcal{F})$. An element $(\eta, \mathcal{D}(\eta))$ of $\mathcal{A}(\mathcal{E}, \mathcal{F})$ is called a Silverstein extension if \mathcal{F}_b is an algebraic ideal in $\mathcal{D}(\eta)_b$. For the probabilistic counterpart or an application of Silverstein extensions, see, for example, [8], [10] and [4].

Theorem 2 Suppose that (A') and (B) hold. Then the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a Silverstein extension of the form $(\mathcal{E}, \mathcal{F})$. That is, \mathcal{F}_b is an ideal of $\mathcal{D}(\mathcal{E})_b$.

Proof: It is enough to show that $u \cdot f \in \mathcal{F}_b$ whenever $u \in \mathcal{D}(\mathcal{E})_b$ and $f \in C_0^{\infty}(\mathbb{R}^d)$. Let ρ and ρ_{ε} be the same functions in the proof of the preceding theorem. Take the convolution of functions uf and $\rho_{1/n}: w_n = \rho_{1/n}*(uf)$. Then $w_n \in C_0^{\infty}(\mathbb{R}^d)$, w_n converges to uf in the L^2 -space and the inequality $||w_n||_{L^{\infty}} \leq ||uf||_{L^{\infty}}$ holds.

Denote by K the support of the function f. As in the proof of the preceding theorem, we estimate $\mathcal{E}(w_n, w_n)$ as follows:

$$\mathcal{E}(w_{n}, w_{n}) = \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} (w_{n}(x) - w_{n}(y))^{2} j(x, y) dx dy$$

$$= \left(\iint_{|x-y| < 1} + \iint_{|x-y| \ge 1} \right) (w_{n}(x) - w_{n}(y))^{2} j(x, y) dx dy$$

$$=: (I) + (II).$$

$$(II) = \iint_{|x-y| \ge 1} (w_{n}(x) - w_{n}(y))^{2} j(x, y) dx dy$$

$$\leq 2 \iint_{|x-y| \ge 1} ((w_{n}(x))^{2} + (w_{n}(y))^{2}) j(x, y) dx dy.$$

Since j(x, y) = j(y, x), we see

$$(II) \leq 4 \iint_{|x-y| \ge 1} (w_n(x))^2 j(x,y) dx dy$$

$$= 4 \int_{\mathbb{R}^d} (w_n(x))^2 dx \int_{|x-y| \ge 1} j(x,y) dy$$

$$= 4 \int_{K_n} (w_n(x))^2 \Psi_1(x) dx$$

$$\leq 4 ||w_n||_{L^{\infty}}^2 \int_{K_1} \Psi_1(x) dx \le 4 ||uf||_{L^{\infty}}^2 ||\Psi_1 \mathbf{1}_{K_1}||_{L^1},$$

where $K_n = \{x + y \in \mathbb{R}^d : x \in K, y \in B(0, 1/n)\}.$ Now we estimate (I).

$$(I) = \iint_{|x-y|<1} (w_n(x) - w_n(y))^2 j(x,y) dx dy$$

$$= \iint_{|x-y|<1} \left(\int_{\mathbb{R}^d} \rho_{1/n}(z) ((uf)(x-z) - (uf)(y-z)) dz \right)^2 j(x,y) dx dy$$

$$\leq \iint_{|x-y|<1} \left(\int_{\mathbb{R}^d} ((uf)(x-z) - (uf)(y))^2 \rho_{1/n}(z) dz \right) j(x,y) dx dy$$

$$\leq \int_{\mathbb{R}^d} \left(\iint_{|x-y|<1} ((uf)(x) - (uf)(y))^2 j(x+z,y+z) dx dy \right) \rho_{1/n}(z) dz$$

$$\leq C \iint_{|x-y|<1} ((uf)(x) - (uf)(y))^2 j(x,y) dx dy \int_{\mathbb{R}^d} \rho_{1/n}(z) dz$$

$$\leq 2 C (||u||_{L^{\infty}}^2 \mathcal{E}(f,f) + ||f||_{L^{\infty}}^2 \mathcal{E}(u,u)).$$

Combining the estimates (II) and (I), we have

$$\mathcal{E}(w_n, w_n) \le 2 C \left(||u||_{L^{\infty}}^2 \mathcal{E}(f, f) + ||f||_{L^{\infty}}^2 \mathcal{E}(u, u) \right) + 4||uf||_{L^{\infty}}^2 ||\Psi_1 \mathbf{1}_{K_1}||_{L^1} < \infty.$$

So $\mathcal{E}(w_n, w_n)$ are uniformly bounded. We have already known that $w_n \in C_0^{\infty}(\mathbb{R}^d)$ converges to uf in L^2 . Then by making use of the Banach-Saks theorem, the Cesàro means of a subsequence of $\{w_n\}$ are \mathcal{E}_1 -Cauchy and converges to uf a.e. Hence $uf \in \mathcal{F}$. This shows that \mathcal{F}_b is an ideal of $\mathcal{D}(\mathcal{E})_b$, whence $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a Silverstein extension of $(\mathcal{E}, \mathcal{F})$.

Remark 1 If the form $(\mathcal{E}, \mathcal{F})$ is moreover conservative, then, using a theorem from [5], we can show that the Silverstein extension is unique. Hence this implies that $\mathcal{F} = \mathcal{D}(\mathcal{E})$. In [6], we showed that under some conditions (which includes the condition (B')), the form $(\mathcal{E}, \mathcal{F})$ is conservative. So, we have an alternative proof of Theorem 1 under (A") and (B').

In the following, we consider 'the homogeneous' Dirichlet space:

$$\mathcal{D}_0(\mathcal{E}) = \{ u \in L^0(\mathbb{R}^d) : \ \mathcal{E}(u, u) < \infty \},\$$

where \mathcal{E} is defined in §1 and $L^0(\mathbb{R}^d)$ is the family of all measurable functions on \mathbb{R}^d . We assume (A) and (B) hold. Since \mathcal{E} is defined as an integral form, we can easily see that $\mathcal{D}_0(\mathcal{E}) \cap L^{\infty}(\mathbb{R}^d) =: \mathcal{D}_{\infty}(\mathcal{E})$ is dense in $\mathcal{D}_0(\mathcal{E})$ with respect to quasi-norm \mathcal{E} .

We now want to consider when any function in $\mathcal{D}_{\infty}(\mathcal{E})$ (hence, in $\mathcal{D}_{0}(\mathcal{E})$) can be approximated from a sequence of the test functions with respect to \mathcal{E} . Of couse, this relates the notion of 'the extended Dirichlet space' \mathcal{F}_{e} . In general,

$$\mathcal{D}_0(\mathcal{E})\supset \mathcal{F}_e\supset \mathcal{F}:=\overline{C_0^{0,1}(\mathbb{R}^d)}^{\mathcal{E}_1}.$$

If the form $(\mathcal{E}, \mathcal{F})$ is transient, then $\mathcal{F} = \mathcal{F}_e \cap L^2(\mathbb{R}^d)$ (see Theorem 1.5.2(iii) in [3]). It is not easy to see whether the 'homogeneous' domain $\mathcal{D}_0(\mathcal{E})$ coincides with \mathcal{F}_e except the special cases. In order to consider this, we introduce a little bit stronger condition as follows: there exists a positive function $\tilde{n}(x)$ defined on $\mathbb{R}^d - \{0\}$ satisfying the condition in Example 1 (3) so that for some constants $c_i > 0$ (i = 1, 2),

$$c_1 \,\tilde{n}(x-y) \le n(x,y) \le c_2 \,\tilde{n}(x-y), \quad x \ne y. \tag{C}$$

Proposition 1 Suppose that (C) holds. Moreover, we assume the Dirichlet form $(\mathcal{E}, \mathcal{F})$ is recurrent. Then any element in $\mathcal{D}_{\infty}(\mathbb{R}^d)$ (hence, in $\mathcal{D}_0(\mathcal{E})$) can be approximated from the test functions with respect to \mathcal{E} . That is, $\mathcal{D}_0(\mathcal{E}) = \mathcal{F}_e$.

Proof: First note that a similar argument developed in the proof of Theorem 2 gives us that $\varphi \cdot u \in \mathcal{D}_0(\mathcal{E})$ provided that $u \in \mathcal{D}_0(\mathcal{E})$ and $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. Take the test function ρ defined in the proof of Theorem 1. And also consider the function $\rho_{1/n}$ for each n. Then considering the

convolution u_n of u and $\rho_{1/n}$, we have the following estimate:

$$\mathcal{E}(u_{n}, u_{n}) = \iint_{x \neq y} (u_{n}(x) - u_{n}(y))^{2} j(x, y) dx dy$$

$$= \iint_{x \neq y} \left(\int_{\mathbb{R}^{d}} (\varphi(x - z) u(x - z) - \varphi(y - z) u(y - z)) \rho_{n}(z) dz \right)^{2} j(x, y) dx dy$$

$$\leq \int_{\mathbb{R}^{d}} \left(\iint_{x \neq y} (\varphi(x - z) u(x - z) - \varphi(y - z) u(y - z))^{2} j(x, y) dx dy \right) \rho_{n}(z) dz$$

$$= \int_{\mathbb{R}^{d}} \left(\iint_{x \neq y} (\varphi(x) u(x) - \varphi(y) u(y))^{2} j(x + z, y + z) dx dy \right) \rho_{n}(z) dz$$

$$\leq C \int_{\mathbb{R}^{d}} \left(\iint_{x \neq y} (\varphi(x) u(x) - \varphi(y) u(y))^{2} j(x, y) dx dy \right) \rho_{n}(z) dz$$

$$\leq C \left(||\varphi||_{L^{\infty}}^{2} \iint_{x \neq y} (u(x) - u(y))^{2} j(x, y) dx dy + ||u||_{L^{\infty}}^{2} \int_{x \neq y} (\varphi_{n}(x) - \varphi_{n}(y))^{2} j(x, y) dx dy \right)$$

$$\leq C (||\varphi||_{L^{\infty}}^{2} \mathcal{E}(u, u) + ||u||_{L^{\infty}}^{2} \mathcal{E}(\varphi, \varphi)).$$

In the first inequality, we used the Schwarz inequality, and the second follows from (C). Accordingly, we see that the sequence $\{u_n\}$ is \mathcal{E} -bounded. Since $||u_n-\varphi u||_{L^2}$ converges to 0, a subsequence of u_n converges to φu almost everywhere. So we can find the Casaro mean $\{\tilde{u}_{n_k}\}$ of some subsequence from $\{u_n\}_n$ so that $\mathcal{E}(\tilde{u}_{n_k}-u,\tilde{u}_{n_k}-u)$ converges to 0 and $\tilde{u}_{n_k}\to\varphi u$ a.e. This means that there exists a sequence from test functions which converges to φu with respect to \mathcal{E} and with respect to almost everywhere convergence.

On the other hand, the Dirichlet form $(\mathcal{E}, \mathcal{F})$ is recurrent, we can construct a sequence $\{\varphi_k\} \subset C_0^{\infty}(\mathbb{R}^d)$ satisfying

$$0 \le \varphi_k \to 1$$
 a.e., $||\varphi_k||_{L^{\infty}} \le 1$ and $\mathcal{E}(\varphi_k, \varphi_k) \to 0$.

Note that $\varphi_k \cdot u \in \mathcal{D}(\mathcal{E}) \cap L^2(\mathbb{R}^d)$ for each k because $\varphi_k \in C_0^{\infty}(\mathbb{R}^d)$. Similarly, noting the following estimates and the property of φ_k , we can see that the cesaro means $\tilde{\varphi}_{n_k}u$ of some subsequence of $\{\varphi_k u\}$ converges to u with respect to \mathcal{E} and with respect to almost everywhere convergence:

$$\mathcal{E}(\varphi_k u, \varphi_k u) < 2 \mathcal{E}(u, u) + 2 ||u||_{L^{\infty}}^2 \mathcal{E}(\varphi_k, \varphi_k).$$

Now for each k, take $f_k \in C_0^{\infty}(\mathbb{R}^d)$ so that $\mathcal{E}(\tilde{\varphi}_{n_k}u - f_k, \tilde{\varphi}_{n_k}u - f_k) < 1/k$, Then we see

$$\mathcal{E}(f_k - u, f_k - u)^{1/2} \leq \mathcal{E}(f_k - \tilde{\varphi}_{n_k} u, f_k - \tilde{\varphi}_{n_k} u)^{1/2} + \mathcal{E}(\tilde{\varphi}_{n_k} u - u, \tilde{\varphi}_{n_k} u - u)^{1/2} \\ \leq 1/k + \mathcal{E}(\tilde{\varphi}_{n_k} u - u, \tilde{\varphi}_{n_k} u - u)^{1/2}.$$

So, taking $k \to \infty$, we see that f_k converges to u with respect to the quasi-norm \mathcal{E} . This concludes the proof. \square

References

- Chen, Z.-Q., On reflected Dirichlet spaces, Probab. Theory Relat. Fields, 94 (1992), 135-162 MR1191106
- [2] Chen, Z.-Q. and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stochastic Process Appl., 108 (2003), 27-62 MR2008600
- [3] Fukushima, M., Oshima, Y. and M. Takeda, *Dirichlet forms and symmetric Markov processes*, de Gruyter Studies in Mathematics, Walter de Gruyter & Co., 1994 MR1303354
- [4] Kawabata, T. and M. Takeda, On uniqueness problem for local Dirichlet forms, *Osaka J. Math.*, **33** (1996), 881-893 MR1435459
- [5] Kuwae, K., Reflected Dirichlet forms and the uniqueness of Silverstein's extension, *Potential Analysis*, 16 (2002), 221-247 MR1885761
- [6] Schilling, R. L. and T. Uemura, On the Feller property of Dirichlet forms generated by pseudo differential operators, to appear in *Tohoku Math. J.*, (preprint 2005) 22 pages
- [7] Silverstein, M.L., The reflected Dirichlet space, Ill. J. Math., 18 (1974), 310-355 MR0356253
- [8] Silverstein, M.L., Symmetric Markov processes, LNM. 426, Springer-Verlag, 1974 MR0386032
- [9] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, Princeton University Press, 1970 MR0290095
- [10] Takeda, M., Two classes of extensions for generalized Schrödinger operators, *Potential Analysis*, 5 (1996), 1-13 MR1373827
- [11] Uemura, T., On some path properties of symmetric stable-like processes for one dimension, Potential Analysis, 16 (2002), 79-91 MR1880349
- [12] Uemura, T., On symmetric stable-like processes: some path properties and generators, J. Theoret. Probab., 17 (2004), 541-555 MR2091550