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Abstract

By means of a simple conditioning/comparison argument, we derive the chance of a long
lifetime for Brownian motion in a horn-shaped domain.

1 Introduction

Recently several studies of killed Brownian motion in unbounded domains have appeared:

1. Consider the parabolic-type domain in R
d, d ≥ 2,

Pp = {(x1, . . . , xd) ∈ R
d : xd > 1 + A[x2

1 + · · · + x2
d−1]

p/2} (1)

where A > 0 and p > 1. Bañuelos et al. (2001), Li (2003) and Lifshits and Shi (2002) studied
the asymptotic behavior of the lifetime of killed Brownian motion in Pp.

2. An exterior domain in R
d, d ≥ 2, is any domain with a compact complement. Collet et

al. (2000) studied the long time behavior of the transition density of killed Brownian motion
(Dirichlet heat kernel) in an exterior domain. They also derived the asymptotic behavior of
the lifetime of killed Brownian motion for such a domain in two dimensions.

3. Let K be a closed proper subset of a hyperplane in R
d, d ≥ 2. The set R

d\K is known
as a Benedicks domain. Collet et al. (1999) and (2003) proved a ratio limit theorem for the
Dirichlet heat kernel in a Benedicks domain. As a consequence of some of their estimates, they
were also able to obtain asymptotics for the lifetime of killed Brownian motion in the domain.

4. M. van den Berg (2003) showed how subexponential behavior of the lifetime of killed
Brownian motion in an unbounded domain implies subexponential behavior of the Dirichlet
heat kernel. By combining his results with those of Lifshits and Shi (2002), he was able to
derive asymptotics for the Dirichlet heat kernel in parabolic-type domains.
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5. In cylindrical coordinates (r, θ, z) in R
3, consider the horn-shaped region

H = {(r, θ, z) : 1 + z2 < r}.

Note H is obtained by revolving the parabolic region {(y, z) ∈ R
2 : 1 + z2 < y} about the

z-axis. Let τH be the exit time of Brownian motion from H . Collet et al. (2006) proved a
ratio limit theorem for the Dirichlet heat kernel in H . As an added bonus from their proof,
they were also able to show

lim
t→∞

t−1/3 log Px(τH > t) = −C1/2 (2)

where

C1/2 =
3π2

8
.

Here Px is probability associated with Brownian motion started at x. (Note: there is a minor
error in the proof of this theorem concerning the exact value of C1/2. Collet et al. (2006)

study the operator 1
2∆ and use results of van den Berg (2003). The subtle error results from

the fact that van den Berg considers the operator ∆. Once this is accounted for, the correct
value of C1/2 is as stated above.)
The method of Collet et al. works for more general parabolic-type regions {(r, z) : 1+|z|p < r},
p > 1, so it seems (2) ought to take on the corresponding form

lim
t→∞

t(1−p)/(1+p) log Px(τH > t) = −Bp

where

Bp = (1 + p)





π1+2p

23p+3(p − 1)p−1

(

Γ(p−1
2 )

Γ(p
2 )

)2




1/(1+p)

.

In this note we extend (2) to higher dimensions and more general parabolic-type horn-shaped
domains. By a conditioning and comparison argument, our proof sidesteps the difficult es-
timates needed to derive the ratio limit theorem. Before stating the main result, we fix the
notation.
For d ≥ 2 let (r, z, θ) ∈ (0,∞)×R×Sd−1 denote the cylindrical coordinates of a nonzero point
x = (x̃, xd+1) ∈ R

d × R:

r = |x̃|, z = xd+1, θ =
x̃

r
.

Given p > 1 and A > 0, consider the horn-shaped domain

Hp = {(r, z, θ) : 1 + A|z|p < r}.

Denote by τp the exit time of Brownian motion from Hp. Our main result is the following
theorem.

Theorem 1.1. The exit time τp satisfies

lim
t→∞

t(1−p)/(1+p) log Px(τp > t) = −Cp,A (3)

where

Cp,A = (1 + p)





π1+2pA2

23p+3(p − 1)p−1

(

Γ(p−1
2 )

Γ(p
2 )

)2




1/(1+p)

.
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Notice the constant Cp,A is independent of the dimension. In dimension d = 2, the results of
Lifshits and Shi (2002) show that for the parabolic-type region

Pp = {(x, y) : y > 1 + A|x|p},

the exit time ηp(B) of two-dimensional Brownian motion B from Pp satisfies

lim
t→∞

t(1−p)/(1+p) log Px(ηp(B) > t) = −Cp,A. (4)

There is some interesting intuition connected with the equality of the limits in (3) and (4).
Let X2 be a d-dimensional Bessel process (d ≥ 3) and let B2 be one-dimensional Brownian
motion. Let τ(a,∞)(X2) and τ(a,∞)(B2) be the exit times of X2 and B2, respectively, from the
interval (a,∞), a ≥ 1. It is known (Feller (1971)) that for some c1 > 0,

Py(τ(a,∞)(B2) > t) ∼ c1t
−1/2 as t → ∞,

where f ∼ g means f/g → 1. It is easy to show for d ≥ 3 that

Py(τ(a,∞)(X2) = ∞) =
(y

a

)2−d

.

Thus adding a drift d−1
x2

to one-dimensional Brownian motion significantly alters the chance of
a long lifetime in (a,∞), even to the extent that there is a nonzero chance the process never
dies.

Next consider two-dimensional Brownian motion B = (B1, B2) in the parabolic-type region
Pp and let X = (X1, X2) be the process resulting from addition of a vertical drift d−1

x2

. That
is, X is associated with the differential operator

1

2

∂2

∂x2
1

+
1

2

∂2

∂x2
2

+
1

2

d − 1

x2

∂

∂x2
.

In this two-dimensional case there are competing effects: first, the vertical drift d−1
x2

tends to
push X away from the boundary, trying to significantly increase the chance of a long lifetime.
The recurrence of the horizontal component fights this effect. The natural question is to ask
which effect dominates the other, if at all. Since the influence of the vertical drift on the
vertical component is so strong, as suggested by the one-dimensional case described above, it
is tempting to conjecture the overall chance of a long lifetime in Pp is increased because of the
vertical drift d−1

x2

.

Since the Laplacian in R
d+1 expressed in cylindrical coordinates is

∂2

∂r2
+

d − 1

r

∂

∂r
+

1

r2
∆Sd−1 +

∂2

∂z2
,

it is clear by symmetry that the lifetime of Brownian motion in the horn Hp is the same as the
lifetime of X in Pp. Thus (3) and (4) tell us the effect from the horizontal component tends
to strongly cancel out the effect of the vertical component in the sense that the addition of a
vertical drift of d−1

x2

to a two-dimensional Brownian motion does not change the chance of a
long lifetime, at least up to logarithmic equivalence. Any effect must be very fine indeed.
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2 Proof of Theorem 1.1

With X = (X1, X2) as defined at the end of the introduction, it suffices to prove

lim
t→∞

log P (ηp(X) > t) = −Cp,A,

where ηp(X) is the first exit time of X from Pp.

Lower Bound. For some two-dimensional Brownian motion B = (B1, B2) we can write for
t < ηp(X)

dX1(t) = dB1(t)

dX2(t) = dB2(t) +
d − 1

2X2(t)
dt.

Then by the Comparison Theorem (Ikeda and Watanabe (1989))

Py(ηp(B) > t) ≤ Py(ηp(X) > t). (5)

We will never use the processes X and B simultaneously within the same probability, so we
will abuse the notation Py to indicate the process inside, whatever it might be, starts at y.
Combining (5) with (4), we get

− Cp,A ≤ lim inf
t→∞

t(1−p)/(1+p) log Py(ηp(X) > t). (6)

Upper Bound. This is the heart of our argument. We must distinguish 2 cases: d ≥ 3 and
d = 2. First assume d ≥ 3. Define

L1 =
1

2

∂2

∂x2
1

+
1

2

∂2

∂x2
2

+
1

2

d − 1

x2

∂

∂x2

L2 =
1

2

∂2

∂x2
1

+
1

2

∂2

∂x2
2

.

Then X and B from above are the processes associated with L1 and L2, respectively. Next,
for x = (x1, x2) set

β =
d − 1

2
,

V (x) = −β(β − 1)

2

1

x2
2

,

h(x) = xβ
2 , and

L = L2 + V.

Notice h is L-harmonic: Lh = 0. The h-transform of L is defined to be

Lhf =
1

h
L(hf).

A simple computation shows
Lh = L1. (7)
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Since d ≥ 3, V is nonpositive and consequently there is a diffusion Yt associated with L. Then
if pX(t, x, y) and pY (t, x, y) are the transition densities of X and Y , respectively, by (7) X is
Y conditioned by h and

pX(t, x, y) = pY (t, x, y)h(y)/h(x)

(Pinsky (1995), Theorem 4.1.1). By the Feynman–Kac formula, for any ε > 0,

Px(ηp(X) > t) =

∫

∞

0

pX(t, x, y)dy

=
1

h(x)

∫

∞

0

pY (t, x, y)h(y)dy

=
1

h(x)
Ex[h(Yt)I(ηp(Y ) > t)]

=
1

h(x)
Ex

[

exp

(
∫ t

0

V (B(s))ds

)

h(B(t))I(ηp(B) > t)

]

≤ 1

h(x)
Ex[h(B(t))I(ηp(B) > t)]

≤ 1

h(x)

[

Ex[h(1+ε)/ε(B(t))]
]ε/(1+ε)

[Px(ηp(B) > t)]1/(1+ε)

=
1

h(x)
[Ex[(B2(t))

β(1+ε)/ε]ε/(1+ε)[Px(ηp(B) > t)]1/(1+ε)

=
1

h(x)
tβ/2H

(

x√
t

)

[Px(ηp(B) > t)]1/(1+ε)

where

H(w) =

[

1√
2π

∫

∞

−∞

(u + w)β(1+ε)/εe−u2/2du

]ε/(1+ε)

.

Taking the natural logarithm, dividing by t(1−p)/(1+p), letting t → ∞ and using (4), we get

lim sup
t→∞

t(1−p)/(1+p) log Px(ηp(X) > t) ≤ − 1

1 + ε
Cp,A.

Then let ε → 0 and combine with (6) to get the desired limiting behavior for the case d ≥ 3.
As for d = 2, let Z and X be the processes associated with L1 for d = 3 and d = 2 respectively.
Then by the Comparison Theorem,

Px(ηp(X) > t) ≤ Px(ηp(Z) > t).

By the case d = 3, we get the desired upper bound for the case d = 2. �



Brownian Motion in a Horn-Shaped Domain 139

References
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