A NOTE ON ERGODIC TRANSFORMATIONS OF SELF-SIMILAR VOLTERRA GAUSSIAN PROCESSES

CÉLINE JOST
Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin katu 2b), 00014 University of Helsinki, Finland
email: celine.jost@iki.fi
Submitted February 14, 2007, accepted in final form July 30, 2007
AMS 2000 Subject classification: 60G15; 60G18; 37A25
Keywords: Volterra Gaussian process; Self-similar process; Ergodic transformation; Fractional Brownian motion

Abstract

We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra, i.e. of type $X_{t}=\int_{0}^{t} z_{X}(t, s) d W_{s}, t \in[0, \infty)$, where z_{X} is a deterministic kernel and W is a standard Brownian motion.

1 Introduction

Let $\left(X_{t}\right)_{t \in[0, \infty)}$ be a continuous Volterra Gaussian process on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. This means that

$$
\begin{equation*}
X_{t}=\int_{0}^{t} z_{X}(t, s) d W_{s}, \text { a.s., } t \in[0, \infty) \tag{1.1}
\end{equation*}
$$

where the kernel $z_{X} \in L_{\text {loc }}^{2}\left([0, \infty)^{2}\right)$ is Volterra, i.e. $z_{X}(t, s)=0, s \geq t$, and $\left(W_{t}\right)_{t \in[0, \infty)}$ is a standard Brownian motion. Clearly, X is centered and

$$
R^{X}(s, t):=\operatorname{Cov}_{\mathbb{P}}\left(X_{s}, X_{t}\right)=\int_{0}^{s} z_{X}(s, u) z_{X}(t, u) d u, 0 \leq s \leq t<\infty
$$

We assume that X is β-self-similar for some $\beta>0$, i.e.

$$
\begin{equation*}
\left(X_{a t}\right)_{t \in[0, \infty)} \stackrel{d}{=}\left(a^{\beta} X_{t}\right)_{t \in[0, \infty)}, a>0 \tag{1.2}
\end{equation*}
$$

where $\stackrel{d}{=}$ denotes equality of finite-dimensional distributions. Furthermore, we assume that z_{X} is non-degenerate in the sense that the family $\left\{z_{X}(t, \cdot) \mid t \in(0, \infty)\right\}$ is linearly independent and generates a dense subspace of $L^{2}([0, \infty))$. Then

$$
\begin{equation*}
\Gamma_{t}(X):=\overline{\operatorname{span}\left\{X_{s} \mid s \in[0, t]\right\}}=\Gamma_{t}(W), t \in(0, \infty) \tag{1.3}
\end{equation*}
$$

where the closure is in $L^{2}(\mathbb{P})$, or equivalently,

$$
\mathbb{F}^{X}=\mathbb{F}^{W}
$$

where $\mathbb{F}^{X}:=\left(\mathcal{F}_{t}^{X}\right)_{t \in[0, \infty)}$ denotes the completed natural filtration of X.
We assume implicitly that $(\Omega, \mathcal{F}, \mathbb{P})$ is the coordinate space of X, which means that $\Omega=$ $\{\omega:[0, \infty) \rightarrow \mathbb{R} \mid \omega$ is continuous $\}, \mathcal{F}=\mathcal{F}_{\infty}^{X}:=\sigma\left(X_{t} \mid t \in[0, \infty)\right)$ and \mathbb{P} is the probability measure with respect to which the coordinate process $X_{t}(\omega)=\omega(t), \omega \in \Omega, t \in[0, \infty)$, is a centered Gaussian process with covariance function R^{X}. Recall that a measurable map

$$
\begin{aligned}
\mathcal{Z}:(\Omega, \mathcal{F}, \mathbb{P}) & \rightarrow \\
X(\omega) & \mapsto \mathcal{Z}(X(\omega))
\end{aligned}
$$

is a measure-preserving transformation, or endomorphism, on $(\Omega, \mathcal{F}, \mathbb{P})$ if $\mathbb{P}^{\mathcal{Z}}=\mathbb{P}$, or equivalently, if $\mathcal{Z}(X) \stackrel{d}{=} X$. If \mathcal{Z} is also bijective and \mathcal{Z}^{-1} is measurable, then it is an automorphism.

Processes of the above type are a natural generalization of the nowadays in connection with finance and telecommunications extensively studied fractional Brownian motion with Hurst index $H \in(0,1)$, or H - fBm. The H - fBm , denoted by $\left(B_{t}^{H}\right)_{t \in[0, \infty)}$, is the continuous, centered Gaussian process with covariance function

$$
R^{B^{H}}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|s-t|^{2 H}\right), s, t \in[0, \infty)
$$

For $H=\frac{1}{2}$, fBm is standard Brownian motion. H - fBm is H-self-similar and has stationary increments. The non-degenerate Volterra kernel is given by

$$
z_{B^{H}}(t, s)=c(H)(t-s)^{H-\frac{1}{2}} \cdot{ }_{2} F_{1}\left(\frac{1}{2}-H, H-\frac{1}{2}, H+\frac{1}{2}, 1-\frac{t}{s}\right), 0<s<t<\infty
$$

where $c(H):=\left(\frac{2 H \Gamma\left(\frac{3}{2}-H\right)}{\Gamma\left(H+\frac{1}{2}\right) \Gamma(2-2 H)}\right)^{\frac{1}{2}}$ with Γ denoting the Gamma function, and ${ }_{2} F_{1}$ is the Gauss hypergeometric function. In 2003, Molchan (see [8) showed that the transformation

$$
\begin{equation*}
\mathcal{Z}_{t}\left(B^{H}\right):=B_{t}^{H}-2 H \int_{0}^{t} \frac{B_{s}^{H}}{s} d s, t \in[0, \infty) \tag{1.4}
\end{equation*}
$$

is measure-preserving and satisfies

$$
\begin{equation*}
\Gamma_{T}\left(\mathcal{Z}\left(B^{H}\right)\right)=\Gamma_{T}\left(Y^{H}\right), T>0 \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{t}^{H}:=M_{t}^{H}-\frac{t}{T} \xi_{T}^{H}, t \in[0, T] \tag{1.6}
\end{equation*}
$$

Here, $M_{t}^{H}:=\sqrt{2-2 H} \int_{0}^{t} s^{\frac{1}{2}-H} d W_{s}, t \in[0, \infty)$, is the fundamental martingale of B^{H} and $\xi_{T}^{H}:=2 H \int_{0}^{T}\left(\frac{s}{T}\right)^{2 H-1} d M_{s}^{H}$.

In this work, we present a class of measure-preserving transformations (on the coordinate space) of X, which generalizes this result. Moreover, we show that these measure-preserving transformations are ergodic.

A note on ergodic transformations of self-similar Volterra Gaussian processes

2 Ergodic transformations

First, we introduce the class of measure-preserving transformations:
Theorem 2.1. Let $\alpha>\frac{-1}{2}$. Then the transformation

$$
\begin{equation*}
\mathcal{Z}_{t}^{\alpha}(X):=X_{t}-(2 \alpha+1) t^{\beta-\alpha-\frac{1}{2}} \int_{0}^{t} s^{\alpha-\beta-\frac{1}{2}} X_{s} d s, t \in[0, \infty) \tag{2.1}
\end{equation*}
$$

is an automorphism on the coordinate space of X. The inverse is given by

$$
\begin{equation*}
\mathcal{Z}_{t}^{\alpha,-1}(X)=X_{t}-(2 \alpha+1) t^{\alpha+\beta+\frac{1}{2}} \int_{t}^{\infty} X_{s} s^{-\beta-\alpha-\frac{3}{2}} \text { ds, a.s., } t \in[0, \infty) \tag{2.2}
\end{equation*}
$$

The integrals on the right-hand sides are $L^{2}(\mathbb{P})$-limits of Riemann sums.
Proof. First, note that R^{X} is continuous. Furthermore, by combining Hölder's inequality and (1.2), we have that

$$
\left|R^{X}(s, t)\right| \leq \mathrm{E}_{\mathbb{P}}\left(X_{1}\right)^{2} s^{\beta} t^{\beta}, s, t \in(0, \infty)
$$

Hence, the double Riemann integrals

$$
\int_{0}^{t} \int_{0}^{t}(u s)^{\alpha-\beta-\frac{1}{2}} R^{X}(u, s) d u d s
$$

and

$$
\int_{t}^{\infty} \int_{t}^{\infty}(u s)^{-\beta-\alpha-\frac{3}{2}} R^{X}(u, s) d u d s
$$

are finite. Thus, the integrals in (2.1) and (2.2) are well-defined (see [5], section 1).
Second, we show that \mathcal{Z}^{α} is a measure-preserving transformation. Let $Y_{t}:=\exp (-\beta t) X_{\exp (t)}$ and $Y_{t}^{\alpha}:=\exp (-\beta t) \mathcal{Z}_{\exp (t)}^{\alpha}(X), t \in \mathbb{R}$, denote the Lamperti transforms of X and $\mathcal{Z}^{\alpha}(X)$, respectively. Hence, the process $\left(Y_{t}\right)_{t \in \mathbb{R}}$ is stationary. By substituting $v:=\ln (s)$, we obtain that

$$
\begin{aligned}
Y_{t}^{\alpha} & =\exp (-\beta t)\left(X_{\exp (t)}-(2 \alpha+1) \exp \left(\left(\beta-\alpha-\frac{1}{2}\right) t\right) \int_{0}^{\exp (t)} s^{\alpha-\beta-\frac{1}{2}} X_{s} d s\right) \\
& =Y_{t}-(2 \alpha+1) \exp \left(\left(-\alpha-\frac{1}{2}\right) t\right) \int_{-\infty}^{t} \exp \left(v\left(\alpha-\beta+\frac{1}{2}\right)\right) X_{\exp (v)} d v \\
& =Y_{t}-(2 \alpha+1) \exp \left(\left(-\alpha-\frac{1}{2}\right) t\right) \int_{-\infty}^{t} \exp \left(v\left(\alpha+\frac{1}{2}\right)\right) Y_{v} d v \\
& =\int_{-\infty}^{\infty} h^{\alpha}(t-v) Y_{v} d v, \text { a.s., } t \in \mathbb{R}
\end{aligned}
$$

where

$$
h^{\alpha}(x):=\delta_{0}(x)-(2 \alpha+1) 1_{(0, \infty)}(x) \exp \left(-\left(\alpha+\frac{1}{2}\right) x\right), x \in \mathbb{R}
$$

Thus, Y^{α} is a linear, non-anticipative, time-invariant transformation of Y. The spectral distribution function of Y^{α} is given by (see [13], p. 151)

$$
d F^{\alpha}(\lambda)=\left|H^{\alpha}(\lambda)\right|^{2} d F(\lambda), \lambda \in \mathbb{R}
$$

where $H^{\alpha}(\lambda):=\int_{\mathbb{R}} \exp (-i \lambda x) h^{\alpha}(x) d x$ denotes the Fourier transform of h^{α} and F is the spectral distribution function of Y. We have that (see [3], p. 14 and p. 72)

$$
\left|H^{\alpha}(\lambda)\right|=\left|1-(2 \alpha+1)\left(\frac{\alpha+\frac{1}{2}-i \lambda}{\left(\frac{1}{2}+\alpha\right)^{2}+\lambda^{2}}\right)\right|=\left|\frac{-\frac{1}{2}-\alpha+i \lambda}{\frac{1}{2}+\alpha+i \lambda}\right|=1, \lambda \in \mathbb{R}
$$

i.e. $F^{\alpha} \equiv F$. It follows from this that $\left(Y_{t}^{\alpha}\right)_{t \in \mathbb{R}} \stackrel{d}{=}\left(Y_{t}\right)_{t \in \mathbb{R}}$, or equivalently, $\left(\mathcal{Z}_{t}^{\alpha}(X)\right)_{t \in[0, \infty)} \stackrel{d}{=}$ $\left(X_{t}\right)_{t \in[0, \infty)}$.
Third, by splitting integrals and using Fubini's theorem, we obtain that

$$
\mathcal{Z}_{t}^{\alpha,-1}\left(\mathcal{Z}^{\alpha}(X)\right)=X_{t}=\mathcal{Z}_{t}^{\alpha}\left(\mathcal{Z}^{\alpha,-1}(X)\right), \text { a.s., } t \in[0, \infty)
$$

Remark 2.2. Theorem 2.1] generalizes (1.4). In fact, $\mathcal{Z}^{H-\frac{1}{2}}\left(B^{H}\right)=\mathcal{Z}\left(B^{H}\right), H \in(0,1)$.
Remark 2.3. Theorem 2.1 holds true for general continuous centered β-self-similar Gaussian processes.
Next, we present two auxiliary lemmas concerning the structure of z_{X} :
Lemma 2.4. Let $\left(X_{t}\right)_{t \in[0, \infty)}$ be a Volterra Gaussian process with a non-degenerate Volterra kernel z_{X}. Then the following are equivalent:

1. X is β-self-similar, i.e.

$$
\int_{0}^{s} z_{X}(a t, a u) z_{X}(a s, a u) d u=a^{2 \beta-1} \int_{0}^{s} z_{X}(t, u) z_{X}(s, u) d u, 0<s \leq t<\infty, a>0
$$

2. It holds that

$$
z_{X}(a t, a s)=a^{\beta-\frac{1}{2}} z_{X}(t, s), 0<s<t<\infty, a>0
$$

3. There exists $F_{X} \in L^{2}\left((0,1),(1-x)^{2 \beta-1} d x\right)$ such that

$$
z_{X}(t, s)=(t-s)^{\beta-\frac{1}{2}} F_{X}\left(\frac{s}{t}\right), 0<s<t<\infty
$$

Proof. $1 \Rightarrow 2$: For $a>0$, let $z_{Y(a)}(t, s):=a^{\frac{1}{2}-\beta} z_{X}(a t, a s), 0<s<t<\infty$, and let $Y_{t}(a):=$ $\int_{0}^{t} z_{Y(a)}(t, s) d W_{s}, t \in[0, \infty)$. Clearly, $z_{Y(a)}$ is non-degenerate. From (1.3), we obtain that $\Gamma_{t}(Y(a))=\Gamma_{t}(W), t \in(0, \infty)$. From part 1, it follows that $X \stackrel{d}{=} Y(a)$. Thus, the process $W_{t}^{\prime}:=$ $\int_{0}^{t} z_{X}^{*}(t, s) d Y_{s}(a), t \in[0, \infty)$, where z_{X}^{*} is the reciprocal of z_{X} and the integral is an abstract Wiener integral, is a standard Brownian motion with $\Gamma_{t}\left(W^{\prime}\right)=\Gamma_{t}(Y(a)), t \in(0, \infty)$. Hence, $\Gamma_{t}(W)=\Gamma_{t}\left(W^{\prime}\right)$, i.e. W and W^{\prime} are indistinguishable. Therefore, $Y_{t}(a)=\int_{0}^{t} z_{X}(t, s) d W_{s}$, a.s., $t \in(0, \infty)$, i.e. $Y_{t}(a)=X_{t}$, a.s., $t \in[0, \infty)$. In particular, $0=\mathrm{E}_{\mathbb{P}}\left(Y_{t}(a)-X_{t}\right)^{2}=$ $\int_{0}^{t}\left(z_{Y(a)}(t, s)-z_{X}(t, s)\right)^{2} d s, t \in(0, \infty)$. Thus, $z_{X}(t, \cdot) \equiv z_{Y(a)}(t, \cdot), t \in(0, \infty)$.
$2 \Rightarrow 3$: Let $G_{X}(t, s):=(t-s)^{\frac{1}{2}-\beta} z_{X}(t, s), 0<s<t<\infty$. From part 2, it follows that $G_{X}(a t, a s)=G_{X}(t, s), 0<s<t<\infty, a>0$. Hence, for every $(t, s), s<t$, the function G_{X} is constant on the line $\{(a t, a s) \mid a \in(0, \infty)\}$, which depends only on the slope $\frac{s}{t}$. Thus, $G_{X}(t, s)=F_{X}\left(\frac{s}{t}\right), 0<s<t<\infty$, for some $F_{X} \in L^{2}\left((0,1),(1-x)^{2 \beta-1} d x\right)$.
$3 \Rightarrow 1$: This is trivial.
Lemma 2.5. Let $\alpha>\frac{-1}{2}$. Then we have that

$$
t^{\beta-\alpha-\frac{1}{2}} \int_{s}^{t} u^{\alpha-\beta-\frac{1}{2}} z_{X}(u, s) d u=s^{\alpha} \int_{s}^{t} z_{X}(t, u) u^{-\alpha-1} d u, 0<s<t<\infty
$$

A note on ergodic transformations of self-similar Volterra Gaussian processes

Proof. From Lemma 2.4 it follows that the Volterra kernel of X can be written as

$$
z_{X}(t, s)=(t-s)^{\beta-\frac{1}{2}} F_{X}\left(\frac{s}{t}\right), 0<s<t<\infty
$$

for some function F_{X}. By substituting first $x:=\frac{s}{u}$ and then $v:=t x$, we obtain that

$$
\begin{aligned}
t^{\beta-\alpha-\frac{1}{2}} \int_{s}^{t} u^{\alpha-\beta-\frac{1}{2}} z_{X}(u, s) d u & =t^{\beta-\alpha-\frac{1}{2}} \int_{s}^{t} u^{\alpha-\beta-\frac{1}{2}}(u-s)^{\beta-\frac{1}{2}} F_{X}\left(\frac{s}{u}\right) d u \\
& =t^{\beta-\alpha-\frac{1}{2}} s^{\alpha} \int_{\frac{s}{t}}^{1} x^{-\alpha-1}(1-x)^{\beta-\frac{1}{2}} F_{X}(x) d x \\
& =s^{\alpha} \int_{s}^{t}(t-v)^{\beta-\frac{1}{2}} F_{X}\left(\frac{v}{t}\right) v^{-\alpha-1} d v \\
& =s^{\alpha} \int_{s}^{t} z_{X}(t, v) v^{-\alpha-1} d v .
\end{aligned}
$$

The next lemma is the key result for deriving the ergodicity of the measure-preserving transformations:

Lemma 2.6. Let $\alpha>\frac{-1}{2}$. Then

$$
\mathcal{Z}_{t}^{\alpha}(X)=\int_{0}^{t} z_{X}(t, s) d \mathcal{Z}_{s}^{\alpha}(W), \text { a.s., } t \in[0, \infty)
$$

Proof. By combining (1.1) and the stochastic Fubini theorem, using Lemma [2.5] again the stochastic Fubini theorem, and finally using partial integration, we obtain that

$$
\begin{aligned}
\mathcal{Z}_{t}^{\alpha}(X) & =X_{t}-(2 \alpha+1) \int_{0}^{t}\left(t^{\beta-\alpha-\frac{1}{2}} \int_{u}^{t} s^{\alpha-\beta-\frac{1}{2}} z_{X}(s, u) d s\right) d W_{u} \\
& =X_{t}-(2 \alpha+1) \int_{0}^{t}\left(u^{\alpha} \int_{u}^{t} z_{X}(t, s) s^{-\alpha-1} d s\right) d W_{u} \\
& =X_{t}-(2 \alpha+1) \int_{0}^{t} z_{X}(t, s) s^{-\alpha-1} \int_{0}^{s} u^{\alpha} d W_{u} d s \\
& =X_{t}-(2 \alpha+1) \int_{0}^{t} z_{X}(t, s)\left((-\alpha) s^{-\alpha-1} \int_{0}^{s} u^{\alpha-1} W_{u} d u d s+s^{-1} W_{s} d s\right) \\
& =\int_{0}^{t} z_{X}(t, s) d \mathcal{Z}_{s}^{\alpha}(W), \text { a.s., } t \in(0, \infty) .
\end{aligned}
$$

In the following, let $\mathcal{Z}^{\alpha, n}:=\left(\mathcal{Z}^{\alpha}\right)^{n}$ denote the n-th iterate of $\mathcal{Z}^{\alpha}, n \in \mathbb{Z}$. Also, let

$$
\Gamma_{\infty}(X):=\overline{\operatorname{span}\left\{X_{t} \mid t \in[0, \infty)\right\}}
$$

For $\alpha>-\frac{1}{2}$, let

$$
N_{t}^{\alpha}:=\int_{0}^{t} s^{\alpha} d W_{s}, t \in[0, \infty)
$$

Clearly, N^{α} is an $\left(\alpha+\frac{1}{2}\right)$-self-similar \mathbb{F}^{X}-martingale. From Lemma 2.6 it follows that

$$
\begin{equation*}
\mathcal{Z}_{t}^{\alpha}(X)=\int_{0}^{t} z_{X}(t, s) s^{-\alpha} d \mathcal{Z}_{s}^{\alpha}\left(N^{\alpha}\right), \text { a.s., } t \in(0, \infty) \tag{2.3}
\end{equation*}
$$

The next lemma is an auxiliary result, which was obtained in [7, section 3.2 and Theorem 5.2. (The automorphism \mathcal{Z}^{α} on the coordinate space of N^{α} here corresponds to the (ergodic) automorphism $\mathcal{T}^{(1)}$ on the coordinate space of the martingale M with $M:=N^{\alpha}$ in [7].)
Lemma 2.7. Let $\alpha>\frac{-1}{2}$ and $T>0$.

1. It holds that

$$
\Gamma_{T}\left(\mathcal{Z}^{\alpha}\left(N^{\alpha}\right)\right)=\Gamma_{T}\left(N^{\alpha, T}\right)
$$

where $N_{t}^{\alpha, T}:=N_{t}^{\alpha}-\left(\frac{t}{T}\right)^{2 \alpha+1} N_{T}^{\alpha}, t \in[0, T]$, is a bridge of N^{α}, i.e. a process satisfying $\operatorname{Law}_{\mathbb{P}}\left(N^{\alpha, T}\right)=\operatorname{Law}_{\mathbb{P}}\left(N^{\alpha} \mid N_{T}^{\alpha}=0\right)$, and $\Gamma_{T}\left(N^{\alpha, T}\right):=\overline{\operatorname{span}\left\{N_{t}^{\alpha, T} \mid t \in[0, T]\right\}}$.
2. We have that

$$
\begin{equation*}
\Gamma_{T}\left(N^{\alpha}\right)=\overline{\perp_{n \in \mathbb{N}_{0}} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, n}\left(N^{\alpha}\right)\right\}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{\infty}\left(N^{\alpha}\right)=\overline{\perp_{n \in \mathbb{Z}} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, n}\left(N^{\alpha}\right)\right\}} . \tag{2.5}
\end{equation*}
$$

Here, \perp denotes the orthogonal direct sum.
By combining (2.3) and part 1 of Lemma 2.7 we obtain the following:
Lemma 2.8. Let $\alpha>\frac{-1}{2}$ and $T>0$. Then

$$
\Gamma_{T}\left(\mathcal{Z}^{\alpha}(X)\right)=\Gamma_{T}\left(N^{\alpha, T}\right)
$$

Remark 2.9. Lemma 2.8 is a generalization of identity (1.5). Indeed, we have that $Y_{t}^{H}=$ $\sqrt{2-2 H} \int_{0}^{t} s^{1-2 H} d N_{s}^{H-\frac{1}{2}, T}$, a.s., $t \in[0, T]$, where Y^{H} is the process defined in (1.6). Y^{H} is a bridge (of some process) if and only if $H=\frac{1}{2}$.
The following generalizes part 2 of Lemma 2.7
Lemma 2.10. Let $\alpha>\frac{-1}{2}$ and $T>0$. Then we have that

$$
\Gamma_{T}(X)=\overline{\oplus_{n \in \mathbb{N}_{0}} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}}
$$

and

$$
\Gamma_{\infty}(X)=\overline{\oplus_{n \in \mathbb{Z}} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}}
$$

Proof. We assume that $X \neq N^{\alpha}$. By iterating (2.3) and (2.4), we obtain that

$$
\mathcal{Z}_{T}^{\alpha, n}(X) \in \Gamma_{T}\left(\mathcal{Z}^{\alpha, n}(X)\right)=\Gamma_{T}\left(\mathcal{Z}^{\alpha, n}\left(N^{\alpha}\right)\right)=\overline{\perp_{i \geq n} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, i}\left(N^{\alpha}\right)\right\}}, n \in \mathbb{Z}
$$

Moreover, $X_{T} \not \perp N_{T}^{\alpha}$, hence $\mathcal{Z}_{T}^{\alpha, n}(X) \not \perp \mathcal{Z}_{T}^{\alpha, n}\left(N^{\alpha}\right), n \in \mathbb{Z}$, and therefore,

$$
\mathcal{Z}_{T}^{\alpha, n}(X) \notin \overline{\perp_{i \geq n+1} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, i}\left(N^{\alpha}\right)\right\}}, n \in \mathbb{Z}
$$

From (2.4) and (2.5), it follows that the systems $\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}_{n \in \mathbb{Z}}$ are free and complete in $\Gamma_{T}(X)$ and $\Gamma_{\infty}(X)$, respectively.
Remark 2.11. The process X is an \mathbb{F}^{X}-Markov process if and only if there exists $\alpha>\frac{-1}{2}$ and a constant $c(X)$, such that

$$
\begin{equation*}
X_{t}=c(X) \cdot t^{\beta-\frac{1}{2}-\alpha} \int_{0}^{t} s^{\alpha} d W_{s}, \text { a.s., } t \in(0, \infty) \tag{2.6}
\end{equation*}
$$

The free complete system $\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}_{n \in \mathbb{Z}}$ is orthogonal if and only if (2.6) is satisfied.

A note on ergodic transformations of self-similar Volterra Gaussian processes

From Lemma 2.10 we obtain the following:
Corollary 2.12. Let $\alpha>\frac{-1}{2}$ and $T>0$. Then

$$
\mathcal{F}_{T}^{X}=\bigvee_{n \in \mathbb{N}_{0}} \sigma\left(\mathcal{Z}_{T}^{\alpha, n}(X)\right)
$$

Furthermore,

$$
\mathcal{F}=\mathcal{F}_{\infty}^{X}=\bigvee_{n \in \mathbb{Z}} \sigma\left(\mathcal{Z}_{T}^{\alpha, n}(X)\right)
$$

Recall that an automorphism \mathcal{Z} is a Kolmogorov automorphism, if there exists a σ-algebra $\mathcal{A} \subseteq \mathcal{F}$, such that $\mathcal{Z}^{-1} \mathcal{A} \subseteq \mathcal{A}, \vee_{m \in \mathbb{Z}} \mathcal{Z}^{m} \mathcal{A}=\mathcal{F}$ and $\cap_{m \in \mathbb{N}_{0}} \mathcal{Z}^{-m} \mathcal{A}=\{\Omega, \emptyset\}$. A Kolmogorov automorphism is strongly mixing and hence ergodic (see [11, Propositions 5.11 and 5.9 on p . 63 and p. 62). The ergodicity of \mathcal{Z}^{α} is hence a consequence of the following:

Theorem 2.13. Let $\alpha>\frac{-1}{2}$ and $T>0$. The automorphisms \mathcal{Z}^{α} and $\mathcal{Z}^{\alpha,-1}$ are Kolmogorov automorphisms with $\mathcal{A}=\vee_{n \in-\mathbb{N}} \sigma\left(\mathcal{Z}_{T}^{\alpha, n}(X)\right)$ and $\mathcal{A}=\mathcal{F}_{T}^{X}$, respectively.

Proof. \mathcal{Z}^{α} is a Kolmogorov automorphism with $\mathcal{A}=\vee_{n \in-\mathbb{N}} \sigma\left(\mathcal{Z}_{T}^{\alpha, n}(X)\right)$:
First, $\mathcal{Z}^{\alpha,-1} \mathcal{A}=\vee_{n \in-\mathbb{N}} \sigma\left(\mathcal{Z}_{T}^{\alpha, n-1}(X)\right) \subseteq \mathcal{A}$.
Second, $\vee_{m \in \mathbb{Z}} \mathcal{Z}^{\alpha, m} \mathcal{A}=\vee_{m \in \mathbb{Z}} \vee_{n \in-\mathbb{N}} \sigma\left(\mathcal{Z}_{T}^{\alpha, m+n}(X)\right)=\mathcal{F}$.
Third, let $\left\{Y_{n}\right\}_{n \in-\mathbb{N}}$ denote the Hilbert basis of $\overline{\oplus_{n \in-\mathbb{N}} \operatorname{span}\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}}$ which is obtained from $\left\{\mathcal{Z}_{T}^{\alpha, n}(X)\right\}_{n \in-\mathbb{N}}$ via Gram-Schmidt orthonormalization. By using Kolmogorov's zeroone law (see [12], p. 381), we obtain that $\cap_{m \in \mathbb{N}_{0}} \mathcal{Z}^{\alpha,-m} \mathcal{A}=\cap_{m \in \mathbb{N}_{0}}\left(\vee_{n \leq-m-1} \sigma\left(\mathcal{Z}_{T}^{\alpha, n}(X)\right)\right)=$ $\cap_{m \in \mathbb{N}_{0}}\left(\vee_{n \leq-m-1} \sigma\left(Y_{n}\right)\right)=\{\Omega, \emptyset\}$.
Similarly, one shows that $\mathcal{Z}^{\alpha,-1}$ is a Kolmogorov automorphism with $\mathcal{A}=\mathcal{F}_{T}^{X}$.
Acknowledgements. Thanks are due to my supervisor Esko Valkeila and to Ilkka Norros for helpful comments. I am indebted to the Finnish Graduate School in Stochastics (FGSS) and the Finnish Academy of Science and Letters, Vilho, Yrjö and Kalle Väisäla Foundation for financial support.

References

[1] Deheuvels, P., Invariance of Wiener processes and of Brownian bridges by integral transforms and applications. Stochastic Processes and their Applications 13, 311-318, 1982. MR0671040
[2] Embrechts, P., Maejima, M., Selfsimilar Processes. Princeton University Press, 2002. MR1920153
[3] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Tables of integral transforms, Volume 1. McGraw-Hill Book Company, Inc., 1954.
[4] Hida, T., Hitsuda, M., Gaussian Processes. Translations of Mathematical Monographs 120, American Mathematical Society, 1993. MR1216518
[5] Huang, S.T., Cambanis, S., Stochastic and Multiple Wiener Integrals for Gaussian Processes. Annals of Probability 6(4), 585-614, 1978. MR0496408
[6] Jeulin, T., Yor, M., Filtration des ponts browniens et équations différentielles stochastiques linéaires. Séminaire de probabilités de Strasbourg 24, 227-265, 1990. MR1071543
[7] Jost, C., Measure-preserving transformations of Volterra Gaussian processes and related bridges. Available from http://www.arxiv.org/pdf/math.PR/0701888
[8] Molchan, G.M., Linear problems for a fractional Brownian motion: group approach. Theory of Probability and its Applications, 47(1), 69-78, 2003. MR1978695
[9] Norros, I., Valkeila, E., Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571-587, 1999. MR1704556
[10] Peccati, G., Explicit formulae for time-space Brownian chaos. Bernoulli 9(1), 25-48, 2003. MR1963671
[11] Petersen, K., Ergodic theory. Cambridge University Press, 1983. MR0833286
[12] Shiryaev, A.N., Probability, Second Edition. Springer, 1989. MR1024077
[13] Yaglom, A.M., Correlation Theory of Stationary and Related Random Functions, Volume 1: Basic Results. Springer, 1987. MR0893393

