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Abstract

Let U (N) denote the maximal length of arithmetic progressions in a random uniform subset
of {0, 1}N

. By an application of the Chen-Stein method, we show that U (N) − 2 log N/ log 2
converges in law to an extreme type (asymmetric) distribution. The same result holds for
the maximal length W (N) of arithmetic progressions (mod N). When considered in the
natural way on a common probability space, we observe that U (N)/ log N converges almost
surely to 2/ log 2, while W (N)/ log N does not converge almost surely (and in particular,
lim sup W (N)/ log N ≥ 3/ log 2).

1 Introduction and Statement of Results

In this note we study the length of maximal arithmetic progressions in a random uniform subset
of {0, 1}N . That is, let ξ1, ξ2, . . . , ξN be a random word in {0, 1}N

, chosen uniformly. Consider
the (random) set ΞN of elements i such that ξi = 1. Let U (N) denote the maximal length
arithmetic progression in ΞN , and let W (N) denote the maximal length aperiodic arithmetic
progression (mod N) in ΞN . A consequence of our main result (Theorem 1) is that the
expectation of both U (N) and W (N) is roughly 2 log N/log 2, twice the expectation of the
longest run in ΞN , see [3],[4]. We also show that the limit law of the centered version of both
W (N) and U (N) is of the same extreme type as that of the longest run in ΞN .
We observe two interesting phenomena:
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• Theorem 1 states that the tails of the distribution of W (N) behave differently for positive
and negative deviations from the mean. In particular, the probability that W (N) deviates
by x from its mean, behaves roughly like 1 − exp

(

−2−(x+2)
)

for positive x, and like

exp
(

−2−(x+2)
)

for negative x. Thus, on the positive side of the mean the tail decays
exponentially, and on the negative side of the mean the tail decays doubly-exponential.

• One may construct the sets ΞN on the same probability space by considering an infinite
sequence of i.i.d., Bernoulli random variables {ξi}

∞
i=1. Proposition 2 states that with

such a construction, the sequence W (N)/log N converges in probability to the constant
2/log 2, but a.s. convergence does not hold. This contrasts with the behavior of U (N),
where a.s. convergence of U (N)/log N to 2/log 2 holds. The seemingly small change of
taking arithmetic progressions that “wrap around” the torus, changes the behavior of the
lim sup of the sequence.

The notoriously hard extremal problem, showing that a set of integers of upper positive density
contains unbounded arithmetic progressions, and its finite quantitative versions, is a well
studied topic reviewed recently in [7].

1.1 The Model

Let ξ1, . . . , ξN , . . . , be i.i.d. Bernoulli random variables of mean E [ξi] = 1
2 . For a non-negative

integer N and s, p ∈ {1, 2, . . . , N} define

Ws,p = W (N)
s,p

def
= max

{

1 ≤ k ≤ N
∣

∣ ξs = 0 ,

k
∏

i=1

ξs+ip (mod N) = 1

}

.

That is, we consider all arithmetic progressions (mod N) in {1, 2, . . . , N} starting at s, with
difference p, and check for the longest one of the form 0, 1, 1, . . . (the role of the 0 is to avoid
considering periodic progressions). Ws,p is the length of such progression. We set

W (N) def
= max

s,p
Ws,p,

which is the size of the maximal arithmetic progression (mod N) in {1, 2, . . . , N} of the form
0, 1, 1, . . ..
Similarly, define

Us,p = U (N)
s,p

def
= max

{

1 ≤ k ≤ ⌊
N − s

p
⌋

∣

∣ ξs = 0 ,
k

∏

i=1

ξs+ip = 1

}

,

and
U = U (N) def

= max
s,p≤N

Us,p,

that is we only consider s, p, k such that
{

s + ip
∣

∣ i = 0, 1, . . . , k
}

⊆ {1, . . . , N}.

1.2 Results

Throughout, we set C = 2/ log 2. Our first main result is the following extreme type limit
theorem.
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Theorem 1. Let {xN} be a sequence such that C log N +xN ∈ Z for all N , and infN xN ≥ b,
for some b ∈ R. Then, with λ(x) = 2−(x+2), we have

lim
N→∞

exp (λ(xN )) P

[

W (N) ≤ C log N + xN

]

= 1 . (1)

Similarly, let {yN} be a sequence such that C log N − log(2C log N) + yN ∈ Z for all N , and
infN yN ≥ b, for some b ∈ R. Then,

lim
N→∞

exp (λ(yN )) P

[

U (N) ≤ C log N − log(2C log N) + yN

]

= 1 . (2)

In particular, both W (N)/ log N and U (N)/ log N converge in probability to C.

The dichotomy in the sequential behavior of W (N) and U (N) is captured in the following
proposition.

Proposition 2. U (N)/C log N converges a.s. to 1, while

lim sup
N→∞

W (N)

C log N
≥

3

2
.

In particular, W (N)/C log N does not converge a.s. to 1.

The structure of the note is as follows. In the next section, we introduce dependency graphs
and the Arratia-Goldstein-Gordon version of the Chen-Stein method, and perform preliminary
computations. After these preliminary computations are in place, the short Section 3 is devoted
to the proof of Theorem 1. Section 4 is devoted to the proof of Proposition 2.

2 Preliminaries and auxilliary computations

We introduce the notion of dependency graphs, and the method of Chen and Stein to prove
Poisson convergence, that will play an important role in our proof.

2.1 Dependency Graphs

Let X1,X2, . . . ,XN be N random variables. Let G be a graph with vertices 1, 2, . . . , N . We
use the notation i ∼ j to denote two vertices connected by an edge. As Xi is not independent
of itself, we define i ∼ i for all i (this can be thought of as requiring G to have a self loop at

each vertex). G is called a dependency graph of {Xi}
N
i=1 if for any vertex i,

Xi is independent of the set {Xj : j 6∼ i} . (3)

The notion of dependency graphs has been introduced in connection with the Lovásc Local
Lemma, see [1], Chapter 5. Some other results concerning dependency graphs are [5], [6]. We
emphasize that there can be many dependency graphs associated to a collection of random
variables {Xi}

N
i=1.

We define two quantities associated with a dependency graph G of {Xi}
N
i=1.

B1 = B1(G) =

N
∑

i=1

∑

j:Xj∼Xi

E [Xi] E [Xj ] , (4)
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B2 = B2(G) =

N
∑

i=1

∑

j 6=i:Xj∼Xi

E [XiXj ] . (5)

The following is a simplified version of Theorem 1 in [2], which in turn is an effective way to
apply the Chen-Stein method:

Theorem 3 (Arratia, Goldstein, Gordon). Let {Xi}
N
i=1 be N Bernoulli random variables with

pi = E [Xi] > 0. Set

SN =

N
∑

i=1

Xi, and λ = E [SN ] =

N
∑

i=1

pi.

Let G be a dependency graph of {Xi}
N
i=1, and define B1 and B2 as in (4) and (5).

Let Z be a Poisson random variable with mean E [Z] = λ. Then, for any A ⊂ N,

|P [SN ∈ A] − P [Z ∈ A]| ≤ B1 + B2.

Theorem 3 is useful in proving convergence of sums of “almost” independent variables to the
Poisson distribution.

2.2 Auxilliary Calculations

Recall that C = 2/log 2. Fix ε > 0 and set M = ⌊(C + ε) log N⌋. Define

W ′
s,p = W ′(N)

s,p
def
= max

{

1 ≤ k ≤ M
∣

∣ ξs = 0 ,

k
∏

i=1

ξs+ip (mod N) = 1

}

, (6)

and W ′ = maxs,p W ′
s,p. That is, we take truncated versions of Ws,p and W .

For 1 ≤ s, p ≤ N and x ∈ R define

Is,p(x)
def
= 1{W ′

s,p>C log N+x},

and set
S(x)

def
=

∑

s,p

Is,p(x).

Note that W ′ > C log N + x iff S(x) > 0. For s, p, let A(s, p) = {s + ip}M
i=0 be the arithmetic

progression corresponding to Is,p.

Let G be the graph with vertex set {(s, p)}N
s,p=1, and edges defined by the relations

(s, p) ∼ (t, q) ⇐⇒ A(s, p) ∩ A(t, q) 6= ∅.

Fix x ∈ R such that x < ε log N (for large enough N this is always possible). Note that Is,p(x)

is independent of
{

ξj (mod N) : j 6∈ A(s, p)
}

. Thus, G is a dependency graph of {Is,p(x)}N
s,p=1.

Define Ds,p(k) to be the number of pairs t, q with q 6= p such that |A(s, p) ∩ A(t, q)| = k.
The following combinatorial proposition proves to be useful.

Proposition 4. For all s, p the following holds:

Ds,p(k) ≤







(M + 1)2N k = 1
(M + 1)2M2 2 ≤ k ≤ M

2 + 1
0 k > M

2 + 1
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Proof. Fix 1 ≤ s, p ≤ N .

Let k ≥ 2. Assume that A(s, p) ∩ A(t, q) = {x1 < x2 < · · · < xk}. Let L = lcm(p, q)
def
=

min
{

L
∣

∣ ∃ a, b ∈ Z : L = ap = bq
}

.

Claim. {xi}
k
i=1 is an arithmetic progression with xi+1 − xi = L.

Proof. Assume that L = ap = bq, for a 6= b ≥ 1. Fix 1 ≤ i ≤ k − 1. Since xi+1 > xi are both
in A(s, p) ∩ A(t, q), we get that xi+1 − xi = a′p = b′q for nonnegative integers a′ 6= b′ ≥ 1. So
xi+1 − xi ≥ L.
Consider xi +L. Since xi ∈ A(s, p)∩A(t, q), and L = ap = bq, and since xi < xi +L ≤ xi+1, it
follows that xi +L ∈ A(s, p)∩A(t, q). So xi +L ≥ xi+1, concluding the proof of the claim. ⊓⊔

Let a 6= b ≥ 1 be such that L = ap = bq = lcm(p, q). We have the following constraints:

s + (k − 1)ap ≤ x1 + (k − 1)L ≤ s + Mp and t + (k − 1)bq ≤ x1 + (k − 1)L ≤ t + Mq.

Thus, 2 ≤ max {a, b} ≤ M
k−1 , or: k ≤ M

2 + 1.

So for k > M
2 + 1 we get that Ds,p(k) = 0.

Consider k ≤ M
2 + 1. Since there are at most M

k−1 choices for a and for b, and since a choice

of a, b determines q, we have at most M2

(k−1)2 choices for q.

Remark. This can be improved to 2
k+1 · M2

(k−1)2 , with a slightly more careful analysis. We

will not need this improvement.
Since t = x1 − iq = s + jp − iq for some 0 ≤ i, j ≤ M , there are at most (M + 1)2 choices for
t, once we have fixed q.
Thus, altogether, for 2 ≤ k ≤ M

2 + 1,

Ds,p(k) ≤
(M + 1)2M2

(k − 1)2
≤ (M + 1)2M2.

If |A(s, p) ∩ A(t, q)| = 1 then there are at most N choices for q and (M + 1)2 choices for t, so
Ds,p(1) ≤ (M + 1)2N . ⊓⊔

Recall G defined above, a dependency graph of {Is,p(x)}N
s,p=1. Set

B1 = B1(x,G) =
∑

s,p

∑

t,q
It,q∼Is,p

E [Is,p] E [It,q] ,

as in (4). Also, set

B2 = B2(x,G) =
∑

s,p

∑

(s,p) 6=(t,q)
It,q∼Is,p

E [Is,pIt,q] ,

as in (5).

Proposition 5. For any δ > 0,

sup
x∈(−∞,ε log N)

B1(x,G) + B2(x,G) = O(N δ−1).
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Proof. We have that E [It,q] ≤ 2−(C log N+x+1), for all t, q.
Fix s, p. There is at most one value of t such that |A(s, p) ∩ A(t, p)| = k. Hence, the number
of pairs t, q such that |A(s, p) ∩ A(t, q)| = k is at most Ds,p(k) + 1
Thus,

B1 ≤
∑

s,p

M+1
∑

k=1

(Ds,p(k) + 1)2−2(C log N+x+1)

≤ 2−2(x+1) ·
1

N4

∑

s,p



(M + 1)2N + 1 +
∑

2≤k≤M
2 +1

((M + 1)2M2 + 1)





= O

(

M2N + M5

N2

)

= O
(

N δ−1
)

,

for all δ > 0.
For s, p and t, q such that |A(s, p) ∩ A(t, q)| = k we have E [Is,pIt,q] ≤ 2−2(C log N+x+1)+k. Also,
if q = p and A(s, p) ∩ A(t, q) 6= ∅, then either t ∈ A(s, p) or s ∈ A(t, q). Thus, if t 6= s,

E [Is,pIt,p] ≤ P [ξsξt = 0 , ξsξt = 1] = 0.

Hence,

B2 ≤
∑

s,p

M
∑

k=1

Ds,p(k)2−2(C log N+x+1)+k

≤ 2−2(x+1) ·
1

N4

∑

s,p



2(M + 1)2N + (M + 1)2M2 ·
∑

2≤k≤M
2 +1

2k





= O

(

M2N + M42M/2

N2

)

= O
(

N δ−1
)

,

for all δ > 0. ⊓⊔

3 Arithmetic Progressions: Proof of Theorem 1

Since the proofs are very similar, we only consider the slightly harder W (N). We write W for
W (N) whenever no confusion can occur.
We begin with the following lemma:

Lemma 6. The sequence W (N)/C log N converges to 1 in probability; i.e. for any δ > 0,

lim
N→∞

P

[∣

∣

∣

∣

W (N)

C log N
− 1

∣

∣

∣

∣

> δ

]

= 0.

Further, the convergence is almost sure on the subsequence Nk = 2k. Finally, the statements
hold with U (N) replacing W (N).

Proof of Lemma 6. Again, we consider only W (N). Fix ε > 0. Note that

P [Ws,p > (C + ε) log N ] ≤ 2−(C+ε) log N−1.
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Thus,

P [W > (C + ε) log N ] ≤ N2 · 2−(C+ε) log N−1 =
1

2Nε
−→ 0. (7)

Now let x = −ε log N , and let Z(x) be a Poisson random variable with mean

E [Z(x)] = λ(x) = E [S(x)] = N2 · 2−⌊(C log N+x+2)⌋ ≥ 2ε log N−2.

Note that {W ≤ (C − ε) log N} implies that {W ′ ≤ (C − ε) log N}, so using Theorem 3 and
Proposition 5,

P [W ≤ (C − ε) log N ] ≤ P [S(x) = 0]

≤ B1(x,G) + B2(x,G) + P [Z(x) = 0]

≤ 2−2(x+1) ·
log5 N

N
+ exp

(

−2ε log N−2
)

−→ 0, (8)

for ε < 1
2 log 2 .

So for any positive δ < 1
4 , we get from (7) and (8) that

lim
N→∞

P

[∣

∣

∣

∣

W (N)

C log N
− 1

∣

∣

∣

∣

> δ

]

= 0.

Further, from the same estimates one has that with Yk = W (2k)/C log(2k), for any positive
δ < 1

4 ,
∞
∑

k=1

P [|Yk − 1| > δ] < ∞.

One then deduces from the Borel-Cantelli lemma the claimed almost sure convergence. ⊓⊔

Proof of Theorem 1. As in the proof of Lemma 6, for x ∈ R, let Z(x) be a Poisson random
variable with mean

E [Z(x)] = λ(x) = E [S(x)] = N2 · 2−⌊(C log N+x+2)⌋.

If C log N + x ∈ Z, then λ(x) = 2−(x+2).
Note that W ′ > C log N + x iff S(x) > 0. By Theorem 3 and Proposition 5,

|P [W ′ > C log N + x] − P [Z(x) 6= 0]| = |P [S(x) > 0] − P [Z(x) > 0]|

≤ B1(x,G) + B2(x,G) = O
(

N δ−1
)

.

We also have the equality

{W > C log N + x} = {W > (C + ε) log N}
⋃

{W ′ > C log N + x} .

Thus, for 0 < δ < 1,
∣

∣

∣
P [W ≤ C log N + x] − e−λ(x)

∣

∣

∣

≤ P [W > (C + ε) log N ] + |P [W ′ > C log N + x] − P [Z(x) 6= 0]|

≤ O
(

N−ε
)

+ O
(

N δ−1
)

.

Let {xN} be a sequence such that C log N + xN ∈ Z for all N . If infN xN ≥ b ∈ R, then
exp (λ(xN )) is a bounded sequence. Thus,

∣

∣

∣exp (λ(xN )) P

[

W (N) ≤ C log N + x
]

− 1
∣

∣

∣ = O
(

N−ε
)

−→ 0.

⊓⊔
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4 Convergence in Probability vs. a.s. Convergence

We begin with the following easy consequence of Lemma 6 applied to U (N).

Proposition 7. U (N)/C log N converges a.s. to 1.

Proof. The main observation is that U (N) is a monotone increasing sequence. That is, a.s. for
all N , U (N) ≤ U (N+1). Thus, a.s. for all N , setting k = ⌊log2 N⌋, we have

U (2k)

log(2k)
·

log(2k)

log(2k+1)
≤

U (N)

log N
≤

U (2k+1)

log(2k+1)
·
log(2k+1)

log(2k)

Since U (2k)/log(2k) converges a.s. to C and log(2k)/log(2k+1) converges a.s. to 1, we get a.s.

convergence of U(N)

log N to C. ⊓⊔

We turn to the

Proof of Proposition 2. In view of Proposition 7, it remains only to consider the statement
concerning W (N). Toward this end, fix 0 < β < 1. Let MN = ⌈(2 + β) log2 N⌉. So N2+β ≤
2MN ≤ 2N2+β . Define

I(s, p,N) = 1n

W
(N)
s,p ≥MN

o.

That is, I(s, p,N) is the indicator function of the event that ξs = 0 and
∏MN

i=1 ξs+ip (mod N) = 1.
Set

Cov((s, p,N), (s′, p′, N ′)) = E [I(s, p,N)I(s′, p′, N ′)] − E [I(s, p,N)] E [I(s′, p′, N ′)] .

For simplicity of notation, for a, b ∈ Z, we denote [a, b] =
{

z ∈ Z
∣

∣ a ≤ z ≤ b
}

. Let Ln =
{(s, p,N) : N ∈ [n, 2n], s ∈ [1, N ], p ∈ [N/6, N/5]}.

Lemma 8. The following holds:

∑

(s,p,N)∈Ln

∑

(s′,p′,N ′)∈Ln

Cov((s, p,N), (s′, p′, N ′)) ≤ O
(

n1−β log7(n)
)

.

Proof. For any N,N ′ ∈ [n, 2n], s, p ∈ [1, N ] and s′, p′ ∈ [1, N ′], we have that

Cov((s, p,N), (s′, p′, N ′)) ≤ 2−(MN+MN′ )
(

2k − 1
)

, (9)

with
k =

∣

∣

∣{s + ip (mod N)}i∈[1,MN ] ∩ {s′ + jp′ (mod N ′)}j∈[1,MN′ ]

∣

∣

∣ .

Thus, the proof of the lemma is based on controlling the cardinality of the collection of triples
(s′, p′, N ′) ∈ Ln, whose associated arithmetic progression intersects in a prescribed number
of points the arithmetic progression associated with a given triple (s, p,N) ∈ Ln. We divide
our estimates into three: intersection at one point, intersection at two points or more, and
intersection at 2C log(2n)/5 points or more.
For N,N ′ ∈ [n, 2n] and p ∈ [1, N ] define T (N,N ′, p) to be the set of all triples (s, s′, p′) such
that s ∈ [1, N ], s′, p′ ∈ [1, N ′] and

∣

∣

∣
{s + ip (mod N)}i∈[1,MN ] ∩ {s′ + jp′ (mod N ′)}j∈[1,MN′ ]

∣

∣

∣
= 1. (10)
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Similarly, define S(N,N ′, p) to be the set of all such triples (s, s′, p′) such that

∣

∣

∣{s + ip (mod N)}i∈[1,MN ] ∩ {s′ + jp′ (mod N ′)}j∈[1,MN′ ]

∣

∣

∣ ≥ 2. (11)

Finally, define U(s, p,N) the set of all triples (s′, p′, N ′) ∈ Ln such that

∣

∣

∣
{s + ip (mod N)}i∈[1,MN ] ∩ {s′ + jp′ (mod N ′)}j∈[1,MN′ ]

∣

∣

∣
≥ 2MN ′/5. (12)

We have the following estimates.

Proposition 9. For large enough n, the following holds: for all N,N ′ ∈ [n, 2n] and p ∈ [1, N ],

|T (N,N ′, p)| ≤ n2 log5(n).

Proposition 10. For large enough n, the following holds: for all N,N ′ ∈ [n, 2n] and p ∈
[1, N ],

|S(N,N ′, p)| ≤ n log9(n).

Proposition 11. For large enough n, the following holds: for all (s, p,N) ∈ Ln,

|U(s, p,N)| ≤ log7(n).

Assuming Propositions 9, 10, 11, we have

∑

(s,p,N)∈Ln

∑

(s′,p′,N ′)∈Ln

Cov((s, p,N), (s′, p′, N ′)) (13)

≤
2N
∑

N,N ′=n

N
∑

p=1

2−(MN+MN′ ) |T (N,N ′, p)| +
2n
∑

N,N ′=n

N
∑

p=1

2−(MN+MN′ ) |S(N,N ′, p)| 22MN′/5

+
∑

(s,p,N)∈Ln

|U(s, p,N)| 2−Mn

≤ O(n1−2β log5(n)) + O(n4/5−8β/5 log9(n)) + O(n1−β log7(n)) ≤ O(n1−β log7(n)) ,

which completes the proof of the lemma. ⊓⊔

Returning to the proof of Proposition 2, let

Λ(n) =
∑

(s,p,N)∈Ln

I(s, p,N)

and note that for all large enough n,

E[Λ(n)] =
∑

(s,p,N)∈Ln

E [I(s, p,N)] = Ω
(

n1−β
)

(14)

while from Lemma 8,

Var (Λ(n)) = Var





∑

(s,p,N)∈Ln

[I(s, p,N)]



 = O
(

n1−β log7(n)
)

. (15)
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Thus,

P [Λ(n) = 0] ≤
Var (Λ(n))

(E Λ(n))
2 = O

(

nβ−1 log7(n)
)

. (16)

Since

P

[

∃ N ∈ [n, 2n] : W (N) >
2 + β

log 2
log N

]

≥ P [Λ(n) > 0] ,

it follows from (16) that

∞
∑

k=0

P

[

max
N∈[2k,2k+1]

W (N)

log N
≤

2 + β

log 2

]

< ∞.

By the Borel-Cantelli lemma, we get that a.s.

lim sup
N→∞

W (N)

log N
≥ lim sup

k→∞
max

N∈[2k,2k+1]

W (N)

log N
>

2 + β

log 2
.

Since β ∈ (0, 1) is arbitrary, this completes the proof of Proposition 2. ⊓⊔

Proof of Proposition 9. If (s, s′, p′) ∈ T (N,N ′, p) then (10) implies that there exist i ∈ [1,MN ],
j ∈ [1,MN ′ ], ki ∈ [0,MN ] and k′

j ∈ [0,MN ′ ] such that

s + ip − kiN = s′ + jp′ − k′
jN

′ (17)

There are at most (2n)2 choices for s′ and p′. There exists some universal constant K such that
there are at most K log(n) choices for each of i, j, ki, k

′
j . Choosing s′, p′, i, j, ki, k

′
j determines s.

Thus, we have shown that |T (N,N ′, p)| ≤ 4Kn2 log4(n) ≤ n2 log5(n) for large enough n. ⊓⊔

Proof of Proposition 10. If (s, s′, p′) ∈ S(N,N ′, p) then (11) implies that there exist i, r ∈
[1,MN ] and j, ℓ ∈ [1,MN ′ ] such that (i, j) 6= (r, ℓ) and

s + ip (mod N) = s′ + jp′ (mod N ′) (18)

and s + rp (mod N) = s′ + ℓp′ (mod N ′).

Note that for any i ∈ [1,MN ] there exists ki ∈ [0,MN ] such that s+ip (mod N) = s+ip−kiN .
Similarly, for any j ∈ [1,MN ′ ] there exists k′

j ∈ [0,MN ′ ] such that s′ + jp′ (mod N ′) =
s′ + jp′ − k′

jN
′. Plugging this into (18), and subtracting equations, we get that there exist

i, r ∈ [1,MN ], j, ℓ ∈ [1,MN ′ ], ki, kr ∈ [0,MN ] and k′
j , k

′
ℓ ∈ [0,MN ′ ] such that

(r − i)p + (ki − kr)N = (ℓ − j)p′ + (k′
j − k′

ℓ)N
′. (19)

There exists some universal constant K such that there are at most K log(n) choices for each
of i, r, j, ℓ, ki, kr, k

′
j , k

′
ℓ, and 2n choices for s. After choosing i, r, j, ℓ, ki, kr, k

′
j , k

′
ℓ, s, (18) and

(19) determine s′ and p′. Thus, we have shown that for large enough n,

|S(N,N ′, p)| ≤ 2n (K log(n))
8 ≤ n log9(n).

⊓⊔
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Proof of Proposition 11. Let A =
{

s + ip (mod N)
∣

∣ i ∈ [1,MN ]
}

, and let (s′, p′, N ′) ∈ U(s, p,N).
For i = 1, 6, 11, . . ., let

Zi =
{

s′ + (i + r)p′ (mod N ′)
∣

∣ r = 0, 1, . . . , 4
}

.

This is a partition of the arithmetic progression into packets of five elements. We then have,
by the definition of U(s, p,N),

2MN ′

5
≤

∑

i

|Zi| ≤
MN ′

5
max

i
|Zi| .

So there exists some set Zi such that |Zi| ≥ 2. This implies that there exist x < y ∈ A∩ [1, N ′],
i ∈ [1,MN ′ ], and r ∈ [1, 4] such that

s + ip′ (mod N ′) = x , (20)

s + (i + r)p′ (mod N ′) = y.

Subtracting equations, and using the fact that rp′ < N ′, we get that

rp′ = y − x. (21)

Moreover, (12) also implies that there must exist an integer j (perhaps negative) with 1
5MN ′ ≤

|j| ≤ MN ′ , and z ∈ A ∩ [1, N ′], such that

s + (i + j)p′ (mod N ′) = z. (22)

For large enough n, we have that |j| ≥ 7. Since 7p′ > N ′, we get by subtracting (20) from
(22),

jp′ + kN ′ = z − x, (23)

for some k 6= 0, such that |k| ≤ MN ′ .

Since kr 6= 0, equations (21) and (23) have at most one solution for p′, N ′, in terms of x, y, z, r, j
and k. Since there are at most |A|3 ≤ M3

N choices for x, y and z, at most 4 choices for r,
and at most 4M2

N ′ choices for j and k, we get that there are at most 16|A|3M2
N ′ choices for

p′, N ′. Also, there are at most MN ′ choices for i in (20), and fixing p′, N ′, x and i determines
s′. Thus,

|U((s, p,N))| ≤ 16M3
NM3

N ′ .

⊓⊔

Open Problem. We conjecture that in fact,

lim sup
N→∞

W (N)

log N
=

3

2
.
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