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Abstract

Fix k ≥ 1, and let I(l), l ≥ 1, be a sequence of k-dimensional vectors of multiple Wiener-Itô
integrals with respect to a general Gaussian process. We establish necessary and sufficient
conditions to have that, as l → +∞ , the law of I(l) is asymptotically close (for example,
in the sense of Prokhorov’s distance) to the law of a k-dimensional Gaussian vector having
the same covariance matrix as I(l). The main feature of our results is that they require
minimal assumptions (basically, boundedness of variances) on the asymptotic behaviour of the
variances and covariances of the elements of I(l). In particular, we will not assume that the
covariance matrix of I(l) is convergent. This generalizes the results proved in Nualart and
Peccati (2005), Peccati and Tudor (2005) and Nualart and Ortiz-Latorre (2007). As shown in
Marinucci and Peccati (2007b), the criteria established in this paper are crucial in the study
of the high-frequency behaviour of stationary fields defined on homogeneous spaces.

1 Introduction

Let U (l) = (U1 (l) , ..., Uk (l)), l ≥ 1, be a sequence of centered random observations (not

necessarily independent) with values in R
k. Suppose that the application l 7→ EUi (l)

2
is

bounded for every i, and also that the sequence of covariances cl (i, j) = EUi (l) Uj (l) does
not converge as l → +∞ (that is, for some fixed i 6= j, the limit liml→∞ cl (i, j) does not
exist). Then, a natural question is the following: is it possible to establish criteria ensuring
that, for large l, the law of U (l) is close (in the sense of some distance between probability
measures) to the law of a Gaussian vector N (l) = (N1 (l) , ..., Nk (l)) such that ENi (l) Nj (l) =
EUi (l) Uj (l) = cl (i, j)? Note that the question is not trivial, since the asymptotic irregularity
of the covariance matrix cl (·, ·) may in general prevent U (l) from converging in law toward a
k-dimensional Gaussian distribution.

In this paper, we shall provide an exhaustive answer to the problem above in the special case
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where the sequence U (l) has the form

U (l) = I (l) =
(
Id1

(
f

(1)
l

)
, ..., Idk

(
f

(k)
l

))
, l ≥ 1, (1)

where the integers d1, ..., dk ≥ 1 do not depend on l, Idj
indicates a multiple stochastic integral

of order dj (with respect to some isonormal Gaussian process X over a Hilbert space H – see

Section 2 below for definitions), and each f
(j)
l ∈ H⊙dj , j = 1, ..., k, is a symmetric kernel.

In particular, we shall prove that, whenever the elements of the vectors I (l) have bounded
variances (and without any further requirements on the covariance matrix of I (l)), the following
three conditions are equivalent as l → +∞:

(i) γ (L (I (l)) ,L (N (l))) → 0, where L (·) indicates the law of a given random vector, N (l) is
a Gaussian vector having the same covariance matrix as I (l), and γ is some appropriate
metric on the space of probability measures on R

k;

(ii) for every j = 1, ..., k, E

(
Idj

(
f

(j)
l

)4
)
− 3E

(
Idj

(
f

(j)
l

)2
)2

→ 0;

(iii) for every j = 1, ..., k and every p = 1, ..., dj − 1, the sequence of contractions (to be

formally defined in Section 2) f
(j)
l ⊗p f

(j)
l , l ≥ 1, is such that

f
(j)
l ⊗p f

(j)
l → 0 in H

⊗2(dj−p). (2)

Some other conditions, involving for instance Malliavin operators, are derived in the subsequent
sections. As discussed in Section 5, our results are motivated by the derivation of high-
frequency Gaussian approximations of stationary fields defined on homogeneous spaces – a
problem tackled in [9] and [10].
Note that the results of this paper are a generalization of the following theorem, which combines
results proved in [13], [14] and [15].

Theorem 0. Suppose that the vector I (l) in (1) is such that, as l → +∞,

EIdi

(
f

(i)
l

)
Idj

(
f

(j)
l

)
→ C (i, j) , 1 ≤ i, j ≤ k,

where C = {C (i, j)} is some positive definite matrix. Then, the following four conditions are
equivalent, as l → +∞:

1. I (l)
Law→ N (0,C), where N (0,C) is a k-dimensional centered Gaussian vector with

covariance matrix C;

2. relation (2) takes place for every j = 1, ..., k and every p = 1, ..., dj − 1;

3. for every j = 1, ...k, E

(
Idj

(
f

(j)
l

)4
)

→ 3C (j, j)
2
;

4. for every j = 1, ...k,
∥∥∥D

[
Idj

(
f

(j)
l

)]∥∥∥
2

H

→ dj in L2, where D
[
Idj

(
f

(j)
l

)]
denotes the

Malliavin derivative of Idj

(
f

(j)
l

)
(see the next section).
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The equivalence of Points 1.-3. in the case k = 1 has been first proved in [14] by means of
the Dambis-Dubins-Schwarz (DDS) Theorem (see [16, Ch. V]), whereas the proof in the case
k ≥ 2 has been achieved (by similar techniques) in [15]; the fact that Point 4. is also necessary
and sufficient for the CLT at Point 1. has been recently proved in [13], by means of a Malliavin
calculus approach. For some applications of Theorem 0 (in quite different frameworks), see
e.g. [2], [3], [5], [9] or [11].
The techniques we use to achieve our main results are once again the DDS Theorem, combined
with Burkholder-Davis-Gundy inequalities and some results (taken from [4, Section 11.7])
concerning ‘uniformities’ over classes of probability measures.
The paper is organized as follows. In Section 2 we discuss some preliminary notions concerning
Gaussian fields, multiple integrals and metrics on probabilities. Section 3 contains the state-
ments of the main results of the paper. The proof of Theorem 1 (one of the crucial results of
this note) is achieved in Section 4. Section 5 is devoted to applications.

2 Preliminaries

We present a brief review of the main notions and results that are needed in the subsequent
sections. The reader is referred to [6] or [12, Ch. 1] for any unexplained definition.

Hilbert spaces. In what follows, the symbol H indicates a real separable Hilbert space, with
inner product 〈·, ·〉

H
and norm ‖·‖

H
. For every d ≥ 2, we denote by H⊗2 and H⊙2,

respectively, the nth tensor product of H and the nth symmetric tensor product of H.
We also write H⊗1 = H⊙1 = H.

Isonormal Gaussian processes. We write X = {X (h) : h ∈ H} to indicate an isonormal
Gaussian process over H. This means that X is a collection of real-valued, centered
and (jointly) Gaussian random variables indexed by the elements of H, defined on a
probability space (Ω,F , P) and such that, for every h, h′ ∈ H,

E [X (h) X (h′)] = 〈h, h′〉
H

.

We denote by L2 (X) the (Hilbert) space of the real-valued and square-integrable func-
tionals of X.

Isometry, chaoses and multiple integrals. For every d ≥ 1 we will denote by Id the isom-
etry between H⊙d equipped with the norm

√
d! ‖·‖

H⊗d and the dth Wiener chaos of X.
In the particular case where H = L2 (A,A, µ), (A,A) is a measurable space, and µ is a
σ-finite and non-atomic measure, then H⊙d = L2

s

(
Ad,A⊗d, µ⊗d

)
is the space of symmet-

ric and square integrable functions on Ad and for every f ∈ H⊙d, Id (f) is the multiple
Wiener-Itô integral (of order d) of f with respect to X, as defined e.g. in [12, Ch. 1]. It is
well-known that a random variable of the type Id(f), where d ≥ 2 and f 6= 0, cannot be
Gaussian. Moreover, every F ∈ L2 (X) admits a unique Wiener chaotic decomposition
of the type F = E (F ) +

∑∞

d=1 Id (fd), where fd ∈ H⊙d, d ≥ 1, and the convergence of
the series is in L2 (X).

Malliavin derivatives. We will use Malliavin derivatives in Section 3, where we generalize
some of the results proved in [13]. The class S of smooth random variables is defined as
the collection of all functionals of the type

F = f (X (h1) , ...,X (hm)) , (3)
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where h1, ..., hm ∈ H and f is bounded and has bounded derivatives of all order. The
operator D, called the Malliavin derivative operator, is defined on S by the relation

DF =

M∑

i=1

∂

∂xi
f (h1, ..., hm) hi,

where F has the form (3). Note that DF is an element of L2 (Ω;H). As usual, we
define the domain of D, noted D

1,2, to be the closure of S with respect to the norm
‖F‖1,2 , E

(
F 2

)
+E ‖DF‖2

H
. When F ∈ D

1,2, we may sometimes write DF = D [F ],
depending on the notational convenience. Note that any finite sum of multiple Wiener-Itô
integrals is an element of D

1,2.

Contractions. Let {ek : k ≥ 1} be a complete orthonormal system of H. For any fixed
f ∈ H⊙n, g ∈ H⊙m and p ∈ {0, ..., n ∧ m}, we define the pth contraction of f and g to
be the element of H⊗n+m−2p given by

f ⊗p g =

∞∑

i1,...,ip=1

〈
f, ei1 ⊗ · · · ⊗ eip

〉
H⊗p ⊗

〈
g, ei1 ⊗ · · · ⊗ eip

〉
H⊗p .

We stress that f ⊗p g need not be an element of H⊙n+m−2p. We denote by f⊗̃pg the
symmetrization of f ⊗p g. Note that f ⊗0 g is just the tensor product f ⊗ g of f and g.
If n = m, then f ⊗n g = 〈f, g〉

H⊗n .

Metrics on probabilities. For k ≥ 1 we define P
(
R

k
)

to be the class of all probability

measures on R
k. Given a metric γ (·, ·) on P

(
R

k
)
, we say that γ metrizes the weak

convergence on P
(
R

k
)

whenever the following double implication holds for every Q ∈
P

(
R

k
)

and every {Ql : l ≥ 1} ⊂ P
(
R

k
)

(as l → +∞): γ (Ql, Q) → 0 if, and only if, Ql

converges weakly to Q. Some examples of metrizing γ are the Prokhorov metric (usually
noted ρ) or the Fortet-Mounier metric (usually noted β). Recall that

ρ (P,Q) = inf{ǫ > 0 : P (A) ≤ Q(Aǫ) + ǫ, for every Borel set A ⊂ R
k} (4)

where Aǫ = {x : ‖x − y‖ < ε for some y ∈ A}, and ‖·‖ is the Euclidean norm. Also,

β (P,Q) = sup

{∣∣∣∣
∫

fd (P − Q)

∣∣∣∣ : ‖f‖BL ≤ 1

}
, (5)

where ‖·‖BL = ‖·‖L + ‖·‖
∞

, and ‖·‖L is the usual Lipschitz seminorm (see [4, p. 394] for
further details). The fact that we focus on the Prokhorov and the Fortet-Mounier metric
is due to the following fact, proved in [4, Th. 11.7.1]. For any two sequences {Pl} , {Ql} ⊂
P

(
R

k
)
, the following three conditions (A)–(C) are equivalent: (A) liml→+∞ β (Pl, Ql)

= 0; (B) liml→+∞ ρ (Pl, Ql) = 0; (C) on some auxiliary probability space (Ω∗,F∗, P∗),
there exist sequences of random vectors {N∗ (l) : l ≥ 1} and {I∗ (l) : l ≥ 1} such that

L (I∗ (l)) = Pl and L (N∗ (l)) = Ql for every l, and ‖I∗ (l) − N∗ (l)‖ → 0, a.s.-P∗,
(6)

where L (·) indicates the law of a given random vector, and ‖·‖ is the Euclidean norm.
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3 Main results

Fix integers k ≥ 1 and d1, ..., dk ≥ 1, and consider a sequence of k-dimensional random vectors
of the type

I (l) =
(
Id1

(
f

(1)
l

)
, ..., Idk

(
f

(k)
l

))
, l ≥ 1 , (7)

where, for each l ≥ 1 and every j = 1, ..., k, f
(j)
l is an element of H⊙dj . We will suppose the

following:

• There exists η > 0 such that
∥∥∥f

(j)
l

∥∥∥
H

⊙dj
≥ η, for every j = 1, ..., k and every l ≥ 1.

• For every j = 1, ..., k, the sequence

E

[
Idj

(
f

(j)
l

)2
]

= dj !
∥∥∥f

(j)
l

∥∥∥
2

H
⊗dj

, l ≥ 1, (8)

is bounded.

Note that the integers d1, ..., dk do not depend on l. For every l ≥ 1, we denote by N (l) =

(N
(1)
l , ..., N

(k)
l ) a centered k-dimensional Gaussian vector with the same covariance matrix as

I (l), that is,

E

[
N

(i)
l N

(j)
l

]
= E

[
Idi

(
f

(i)
l

)
Idj

(
f

(j)
l

)]
, (9)

for every 1 ≤ i, j ≤ k. For every λ = (λ1, ..., λk) ∈ R
k, we also use the compact notation:

〈λ, I (l)〉k =
∑k

j=1 λjIdj
(f

(j)
l ) and 〈λ,N (l)〉k =

∑k
j=1 λjN

(j)
l . The next result is one of the

main contributions of this paper. Its proof is deferred to Section 4.

Theorem 1. Let the above notation and assumptions prevail, and suppose that, for every
j = 1, ..., k, the following asymptotic condition holds: for every p = 1, ..., dj − 1,

∥∥∥f
(j)
l ⊗p f

(j)
l

∥∥∥
H

⊗2(dj−p)
→ 0, as l → +∞. (10)

Then, as l → +∞ and for every compact set M ⊂ R
k,

sup
λ∈M

|E [exp (i 〈λ, I (l)〉k)] − E [exp (i 〈λ,N (l)〉k)]| → 0. (11)

We now state two crucial consequences of Theorem 1. The first one (Proposition 2) provides
a formal meaning to the intuitive fact that, since (11) holds and since the variances of I (l) do
not explode, the laws of I (l) and N (l) are “asymptotically close”. The second one (Theorem
3) combines Theorem 1 and Proposition 2 to obtain an exhaustive generalization “without
covariance conditions” of Theorem 0 (see the Introduction). Note that in the statement of
Theorem 3 also appear Malliavin operators, so that our results are a genuine extension of the
main findings by Nualart and Ortiz-Latorre in [13]. We stress that multiple stochastic integrals
of the type Id (f), d ≥ 1 and f ∈ H⊙d, are always such that Id (f) ∈ D

1,2.

Proposition 2. Let the assumptions of Theorem 1 prevail (in particular, (10) holds), and
denote by L (I (l)) and L (N (l)), respectively, the law of I (l) and N (l), l ≥ 1. Then, the two
collections {L (N (l)) : l ≥ 1} and {L (I (l)) : l ≥ 1} are tight. Moreover, if γ (·, ·) metrizes the
weak convergence on P

(
R

k
)
, then

lim
l→+∞

γ (L (I (l)) ,L (N (l))) = 0. (12)
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Proof. The fact that {L (N (l)) : l ≥ 1} and {L (I (l)) : l ≥ 1} are tight is a consequence of the

boundedness of the sequence (8) and of the relation E[Idj
(f

(j)
l )2] = E[(N

(j)
l )2]. The rest of the

proof is standard, and is provided for the sake of completeness. We shall prove (12) by contra-
diction. Suppose there exist ε > 0 and a subsequence {ln} such that γ (L (I (ln)) ,L (N (ln))) >
ε for every n. Tightness implies that {ln} must contain a subsequence {ln′} such that L (I (ln′))
and L (N (ln′)) are both weakly convergent. Since (11) holds, we deduce that L (I (ln′)) and
L (N (ln′)) must necessarily converge to the same weak limit, say Q. The fact that γ metrizes
the weak convergence implies finally that

γ (L (I (ln′)) ,L (N (ln′))) ≤ γ (L (I (ln′)) , Q) + γ (L (N (ln′)) , Q) →
n′→+∞

0, (13)

thus contradicting the former assumptions on {ln} (note that the inequality in (13) is just the
triangle inequality). This shows that (12) must necessarily take place.

Remarks. (i) A result analogous to the arguments used in the proof of Proposition 2 is stated
in [4, Exercise 3, p. 419]. Note also that, without tightness, a condition such as (11) does
not allow to deduce the asymptotic relation (12). See for instance [4, Proposition 11.7.6] for a
counterexample involving the Prokhorov metric on P(R).
(ii) Since (12) holds in particular when γ is equal to the Prokhorov metric or the Fortet-Mounier
metric (as defined in (4) and (5)), Proposition 2 implies that, on some auxiliary probability
space (Ω∗,F∗, P∗), there exist sequences of random vectors {N∗ (l) : l ≥ 1} and {I∗ (l) : l ≥ 1}
such that

I∗ (l)
law
= I (l) and N∗ (l)

law
= N (l) for every l, and ‖I∗ (l) − N∗ (l)‖ → 0, a.s.-P∗, (14)

where ‖·‖ stands for the Euclidean norm (see (6), as well as [4, Theorem 11.7.1]).

Theorem 3. Suppose that the sequence I (l), l ≥ 1, verifies the assumptions of this section
(in particular, for every j = 1, ..., k, the sequence of variances appearing in (8) is bounded).
Then, the following conditions are equivalent.

1. As l → +∞, relation (10) is satisfied for every j = 1, ..., k and every p = 1, ..., dj − 1;

2.
lim

l→+∞

ρ (L (I (l)) ,L (N (l))) = lim
l→+∞

β (L (I (l)) ,L (N (l))) = 0 (15)

where ρ and β are, respectively, the Prokhorov metric and the Fortet-Mounier metric, as
defined in (4) and (5);

3. as l → +∞, for every j = 1, ..., k,

E

[
Idj

(
f

(j)
l

)4
]
− 3E

[
Idj

(
f

(j)
l

)2
]2

= E

[
Idj

(
f

(j)
l

)4
]
− 3(dj !)

2
∥∥∥f

(j)
l

∥∥∥
4

H
⊗dj

→ 0;

4. for every j = 1, ..., k,

lim
l→+∞

ρ
(
L

(
Idj

(
f

(j)
l

))
,L

(
N

(j)
l

))
= lim

l→+∞

β
(
L

(
Idj

(
f

(j)
l

))
,L

(
N

(j)
l

))
= 0, (16)

where ρ and β are the Prokhorov and Fortet-Mounier metric on R;
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5. for every j = 1, ..., k,

∥∥∥D
[
Idj

(
f

(j)
l

)]∥∥∥
2

H

− dj (dj !)
∥∥∥f

(j)
l

∥∥∥
2

H
⊗dj

→ 0, in L2 (X) , (17)

as l → +∞, where D is the Malliavin derivative operator defined in Section 2.

Proof. The implication 1. =⇒ 2., is a consequence of Theorem 1 and Proposition 2. Now
suppose (15) is in order. Then, according to [4, Theorem 11.7.1], on a probability space

(Ω∗,F∗, P∗), there exist sequences of random vectors N∗ (l) = (N
∗,(1)
l , ..., N

∗,(j)
l ), l ≥ 1, and

I∗ (l) = (I
∗,(1)
l , ..., I

∗,(k)
l ), l ≥ 1, such that (14) takes place. Now

3E

[
Idj

(
f

(j)
l

)2
]2

= 3E

[(
N

(j)
l

)2
]2

= E

[(
N

(j)
l

)4
]

= E
∗

[(
N

∗,(j)
l

)4
]

,

for every j = 1, ..., k, so that

E

[
Idj

(
f

(j)
l

)4
]
− 3E

[
Idj

(
f

(j)
l

)2
]2

= E
∗

[(
I
∗,(j)
l

)4

−
(
N

∗,(j)
l

)4
]

→
l→+∞

0. (18)

The convergence to zero in (18) is a consequence of the boundedness of the sequence (8),

implying that the family A∗

l = (I
∗,(j)
l )4 − (N

∗,(j)
l )4, l ≥ 1, is uniformly integrable. To see why

{A∗

l } is uniformly integrable, one can use the fact that, since each I
∗,(j)
l has the same law as

an element of the djth chaos of X and each N
∗,(j)
l is Gaussian, then (see e.g. [6, Ch. VI]) for

every p ≥ 2 there exists a universal positive constant Cp,j (independent of l) such that

E [|A∗

l |
p
]
1/p

= E
∗

[∣∣∣∣
(
I
∗,(j)
l

)4

−
(
N

∗,(j)
l

)4
∣∣∣∣
p]1/p

≤ E
∗

[(
I
∗,(j)
l

)4p
]4/4p

+ E

[(
N

∗,(j)
l

)4p
]4/4p

≤ Cp,jE
∗

[(
I
∗,(j)
l

)2
]2

+ Cp,jE
∗

[(
N

∗,(j)
l

)2
]2

= 2Cp,j × (dj !)
2
∥∥∥f

(j)
l

∥∥∥
4

H
⊗dj

≤ 2Cp,jMj ,

where Mj = supl (dj !)
2 ‖f (j)

l ‖4
H

⊗dj
< +∞, due to (8). This proves that 2. =⇒ 3.. The

implication 3. =⇒ 1. can be deduced from the formula (proved in [14, p. 183])

E

[
Idj

(
f

(j)
l

)4
]
− 3E

[
Idj

(
f

(j)
l

)2
]2

= E

[
Idj

(
f

(j)
l

)4
]
− 3 (dj !)

2
∥∥∥f

(j)
l

∥∥∥
4

H
⊗dj

=

dj−1∑

p=1

(dj !)
4

(p! (dj − p)!)
2

{∥∥∥f
(j)
l ⊗p f

(j)
l

∥∥∥
2

H
⊗2(dj−p)

+

(
2 (dj − p)

dj − p

)∥∥∥f
(j)
l ⊗̃pf

(j)
l

∥∥∥
2

H
⊗2(dj−p)

}
,

The equivalence 1. ⇐⇒ 4. is an immediate consequence of the previous discussion.
To conclude the proof, we shall now show the double implication 1. ⇐⇒ 5.. To do this, we
first observe that, by performing the same calculations as in [13, Proof of Lemma 2] (which
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are based on an application of the multiplication formulae for multiple integrals, see [12,
Proposition 1.1.3]), one obtains that

∥∥∥D
[
Idj

(
f

(j)
l

)]∥∥∥
2

H

= dj (dj !)
∥∥∥f

(j)
l

∥∥∥
2

H
⊗dj

+d2
j

dj−1∑

p=1

(p − 1)!

(
n − 1

p − 1

)2

I2(dj−p)

(
f

(j)
l ⊗̃pf

(j)
l

)
.

Since
∥∥∥f

(j)
l ⊗p f

(j)
l

∥∥∥
2

H
⊗2(dj−p)

≥
∥∥∥f

(j)
l ⊗̃pf

(j)
l

∥∥∥
2

H
⊗2(dj−p)

, the last relation implies immediately

that 1. ⇒ 5.. To prove the opposite implication, first observe that, due to the boundedness
of (8) and the Cauchy-Schwarz inequality, there exists a finite constant M (independent of j
and l) such that ∥∥∥f

(j)
l ⊗p f

(j)
l

∥∥∥
2

H
⊗2(dj−p)

≤
∥∥∥f

(j)
l

∥∥∥
4

H
⊗dj

≤ M .

This implies that, for every sequence {ln}, there exists a subsequence {ln′} such that the

sequences
∥∥∥f

(j)
ln′

⊗p f
(j)
ln′

∥∥∥
2

H
⊗2(dj−p)

and dj !
∥∥∥f

(j)
ln′

∥∥∥
2

H
⊗dj

are convergent for every j = 1, ..., k and

every p = 1, ..., dj − 1 (recall that, by assumption, there exists a constant η > 0, such that∥∥∥f
(j)
ln′

∥∥∥
H

⊗dj
≥ η, for every j and l). Now we apply Theorem 4 in [13], which implies that, if

(17) takes place and dj !
∥∥∥f

(j)
ln′

∥∥∥
2

H
⊗dj

→ c > 0, then necessarily
∥∥∥f

(j)
ln′

⊗p f
(j)
ln′

∥∥∥
2

H
⊗2(dj−p)

→ 0,

thus proving our claim. This shows that 5. ⇒ 1..

The next result says that, under the additional assumption that the variances of the elements
of I (l) converge to one, the asymptotic approximation (15) is equivalent to the fact that each
component of I (l) verifies a CLT. The proof is elementary, and therefore omitted.

Corollary 4. Fix k ≥ 2, and suppose that the sequence I (l), l ≥ 1, is such that, for every
j = 1, ..., k, the sequence of variances appearing in (8) converges to 1, as l → +∞. Then, each
one of Conditions 1.-5. in the statement of Theorem 3 is equivalent to the following: for every
j = 1, ..., k,

Idj

(
f

(j)
l

)
Law→

l→+∞

N (0, 1) , (19)

where N (0, 1) is a centered Gaussian random variable with unitary variance.

Remark. The results of this section can be suitably extended to deal with the Gaussian

approximations of random vectors of the type (F
(1)
l (X) , ..., F

(k)
l (X)), where F

(j)
l (X), j =

1, ..., k, is a general square integrable functional of the isonormal process X, not necessarily
having the form of a multiple integral. See [10, Th. 6] for a statement containing an extension
of this type.

4 Proof of Theorem 1

We provide the proof in the case where

H = L2 ([0, 1] ,B ([0, 1]) , dx) = L2([0, 1]), (20)
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where dx stands for Lebesgue measure. The extension to a general H is obtained by using
the same arguments outlined in [14, Section 2.2]. If H is as in (20), then for every d ≥ 2

one has that H⊙d = L2
s([0, 1]

d
), where the symbol L2

s([0, 1]
d
) indicates the class of symmetric,

real-valued and square-integrable functions (with respect to the Lebesgue measure) on [0, 1]
d
.

Also, the isonormal process X coincides with the Gaussian space generated by the standard
Brownian motion

t 7→ Wt , X
(
1[0,t]

)
, t ∈ [0, 1] .

This implies in particular that, for every d ≥ 2, the Wiener-Itô integral Id (f), f ∈ L2
s

(
[0, 1]

d
)
,

can be rewritten in terms of an iterated stochastic integral with respect to W , that is:

Id (f) = d!

∫ 1

0

∫ t1

0

· · ·
∫ td−1

0

f (t1, ..., td) dWtd
· · · dWt2dWt1 . (21)

We also have that I1 (f) =
∫ 1

0
f (s) dWs for every f ∈ L2

s([0, 1]
1
) ≡ L2 ([0, 1]). Note that the

RHS of (21) is just an iterated adapted stochastic integral of the Itô type. Finally, for every

f ∈ L2
s([0, 1]

d
), every g ∈ L2

s([0, 1]
d′

) and every p = 0, ..., d∧d′, we observe that the contraction

f ⊗p g is the (not necessarily symmetric) element of L2([0, 1]
d+d′

−2p
) given by:

f ⊗p g (y1, ..., yd+d′−2p) =

∫

[0,1]p
f (y1, ..., yd−p, a1, ..., ap) × (22)

× g (yd−p+1, ..., yd+d′−2p, a1, ..., ap) da1...dap.

In the framework of (20), the proof of Theorem 1 relies on some computations contained in
[15], as well as on an appropriate use of the Burkholder-Davis-Gundy inequalities (see for
instance [16, Ch. IV §4]). Fix λ = (λ1, ..., λk) ∈ R

k, and consider the random variable

〈λ, I (l)〉k =
k∑

j=1

λjdj !

∫ 1

0

· · ·
∫ udj−1

0

f
(j)
l

(
u1, ..., udj

)
dWud j

· · · dWu1

,

k∑

j=1

λjdj !J
1
dj

(
f

(j)
l

)
=

∫ 1

0




k∑

j=1

λjdj !J
u
dj−1

(
f

(j)
l (u, ·)

)

 dWu

=

∫ 1

0




k∑

j=1

λjdjIdj−1

(
f

(j)
l (u, ·)1[0,u]dj−1

)

 dWu,

where, for every d ≥ 1, every t ∈ [0, 1] and every f ∈ L2
s

(
[0, 1]

d
)
, we define J t

d (f) =

Id

(
f1[0,t]d

)
/d! (for every c ∈ R, we also use the conventional notation J t

0 (c) = c). We

start by recalling some preliminary results involving Brownian martingales. Start by setting,

for every u ∈ [0, 1], φλ,l (u) =
∑k

j=1 λjdjIdj−1

(
f

(j)
l (u, ·)1[0,u]dj−1

)
, and observe that the

random application

t 7→
k∑

j=1

λjdj !J
t
dj

(
f

(j)
l

)
=

∫ t

0

φλ,l (u) dWu, t ∈ [0, 1] ,



Gaussian Approximations of Multiple Integrals 359

defines a (continuous) square-integrable martingale started from zero, with respect to the
canonical filtration of W , noted

{
FW

t : t ∈ [0, 1]
}
. The quadratic variation of this martingale

is classically given by t 7→
∫ t

0
φλ,l (u)

2
du, and a standard application of the Dambis, Dubins

and Schwarz Theorem (see [16, Ch. V §1]) yields that, for every l ≥ 1, there exists a standard

Brownian motion (initialized at zero) W (λ,l) =
{

W
(λ,l)
t : t ≥ 0

}
such that

〈λ, I (l)〉k =

∫ 1

0

φλ,l (u) dWu = W
(λ,l)
R

1

0
φλ,l(u)2du

.

Note that, in general, the definition of W (λ,l) strongly depends on λ and l, and that W (λ,l) is
not a FW

t -Brownian motion. However, the following relation links the two Brownian motions

W (λ,l) and W : there exists a (continuous) filtration
{
G(λ,l)

t : t ≥ 0
}

such that (i) W
(λ,l)
t is

a G(λ,l)
t -Brownian motion, and (ii) for every fixed s ∈ [0, 1] the positive random variable∫ s

0
φλ,l (u)

2
du is a G(λ,l)

t -stopping time. Now define the positive constant (which is trivially a

G(λ,l)
t -stopping time)

q (λ, l) =

∫ 1

0

E(φλ,l (u)
2
)du,

and observe that the usual properties of complex exponentials and a standard application of
the Burkholder-Davis-Gundy inequality (in the version stated in [16, Corollary 4.2, Ch. IV ])
yield the following estimates:

∣∣∣E [exp (i 〈λ, I (l)〉k)] − E

[
exp

(
iW

(λ,l)
q(λ,l)

)]∣∣∣ =
∣∣∣E

[
exp

(
iW

(λ,l)
R

1

0
φλ,l(u)2du

)]
− E

[
exp

(
iW

(λ,l)
q(λ,l)

)]∣∣∣

≤ E

[∣∣∣W (λ,l)
R

1

0
φλ,l(u)2du

− W
(λ,l)
q(λ,l)

∣∣∣
]

≤ E

[∣∣∣W (λ,l)
R

1

0
φλ,l(u)2du

− W
(λ,l)
q(λ,l)

∣∣∣
4
] 1

4

≤ CE

[∣∣∣∣
∫ 1

0

φλ,l (u)
2
du − q (λ, l)

∣∣∣∣
2
] 1

4

, (23)

where C is some universal constant independent of λ and l. To see how to obtain the inequality

(23), introduce first the shorthand notation T (λ, l) ,
∫ 1

0
φλ,l (u)

2
du (recall that T (λ, l) is a

G(λ,l)
t -stopping time), and then write

∣∣∣W (λ,l)
R

1

0
φλ,l(u)2du

− W
(λ,l)
q(λ,l)

∣∣∣ =

∣∣∣∣∣

∫ T (λ,l)∨q(λ,l)

T (λ,l)∧q(λ,l)

dW (λ,l)
u

∣∣∣∣∣ =

∣∣∣∣∣

∫ T (λ,l)∨q(λ,l)

0

H (u) dW (λ,l)
u

∣∣∣∣∣ ,

where H (u) is the G(λ,l)
u -predictable process given by H (u) = 1 {u ≥ T (λ, l) ∧ q (λ, l)}, so

that
∣∣∣∣∣

∫ T (λ,l)∨q(λ,l)

0

H (u)
2
du

∣∣∣∣∣ = |T (λ, l) ∨ q (λ, l) − T (λ, l) ∧ q (λ, l)|

= |T (λ, l) − q (λ, l)| =

∣∣∣∣
∫ 1

0

φλ,l (u)
2
du − q (λ, l)

∣∣∣∣ .
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In particular, relation (23) yields that the proof of Theorem 1 is concluded, once the following

two facts are proved: (A) for every λ ∈ R
k and every l ≥ 1, the random variables W

(λ,l)
q(λ,l) and

〈λ,N (l)〉k have the same law; (B) the sequence

E

[∣∣∣∣
∫ 1

0

φλ,l (u)
2
du − q (λ, l)

∣∣∣∣
2
]

, l ≥ 1,

converges to zero, uniformly in λ, on every compact set of the type M = [−T, T ]
k
, where

T ∈ (0,+∞). The proof of (A) is immediate: indeed, W (λ,l) is a standard Brownian motion
and, by using the isometric properties of stochastic integrals and the fact that the covariance
structures of N (l) and I (l) coincide,

q (λ, l) =

∫ 1

0

E(φλ,l (u)
2
)du = E

[(∫ 1

0

φλ,l (u) dWu

)2
]

= E

[
〈λ, I (l)〉2k

]
= E

[
〈λ,N (l)〉2k

]
.

To prove (B), use a standard version of the multiplication formula between multiple stochastic
integrals (see for instance [12, Proposition 1.5.1])

∫ 1

0

φλ,l (u)
2
du =

∫ 1

0




k∑

j=1

λjdjIdj−1

(
f

(j)
l (u, ·)1[0,u]dj−1

)



2

du

=

∫ 1

0

k∑

j,i=1

λjλidjdiIdi−1

(
f

(i)
l (u, ·)1[0,u]di−1

)
Idj−1

(
f

(j)
l (u, ·)1[0,u]dj−1

)
du

= q (λ, l) +

k∑

j,i=1

λjλidjdi

∫ 1

0

D(i,j)∑

p=0

(
di − 1

p

)(
dj − 1

p

)
(24)

× Idi+dj−2−2p

(
(f

(i)
l (u, ·)1[0,u]di−1) ⊗p (f

(j)
l (u, ·)1[0,u]dj−1)

)
,

where the index D (i, j) is defined as

D (i, j) =

{
di − 2 if di = dj

min (di, dj) − 1 if di 6= dj .

Formula (24) implies that, for every λ ∈ [−T, T ]
k

(T > 0),

E

[∣∣∣∣
∫ 1

0

φλ,l (u)
2
du − q (λ, l)

∣∣∣∣
2
] 1

2

≤ (T max
i

di)
2

k∑

i,j=1

D(i,j)∑

p=0

(
di − 1

p

)(
dj − 1

p

)
(25)

×E

[(∫ 1

0

Idi+dj−2−2p

(
(f

(i)
l (u, ·)1[0,u]di−1) ⊗p (f

(j)
l (u, ·)1[0,u]dj−1)

)
du

)2
] 1

2

(note that the RHS of (25) does not depend on λ). Finally, a direct application of the
calculations contained in [15, p. 253-255] yields that, for every i, j = 1, ..., k and every
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p = 0, ...,D (i, j),

E

[(∫ 1

0

Idi+dj−2−2p

(
(f

(i)
l (u, ·)1[0,u]di−1) ⊗p (f

(j)
l (u, ·)1[0,u]dj−1)

)
du

)2
] 1

2

→ 0, (26)

as l → +∞. This concludes the proof of Theorem 1. ¥

Remark. By inspection of the calculations contained in [15, p. 253-255], it is easily seen that,
to deduce (26) from (10), it is necessary that the sequence of variances (8) is bounded.

5 Concluding remarks on applications

Theorem 1 and Theorem 3 are used in [10] to deduce high-frequency asymptotic results for
subordinated spherical random fields. This study is strongly motivated by the probabilistic
modelling and statistical analysis of the Cosmic Microwave Background radiation (see [7], [8],
[9] and [10] for a detailed discussion of these applications). In what follows, we provide a brief
presentation of some of the results obtained in [10].
Let S

2 =
{
x ∈ R

3 : ‖x‖ = 1
}

be the unit sphere, and let T = {T (x) : x ∈ S
2} be a real-valued

(centered) Gaussian field which is also isotropic, in the sense that T (x)
Law
= T (Rx) (in the

sense of stochastic processes) for every rotation R ∈ SO (3). The following facts are well
known:

(1) the trajectories of T admit the harmonic expansion T (x) =
∑∞

l=0

∑l
m=−l almYlm (x),

where {Ylm : l ≥ 0, m = −l, ..., l} is the class of spherical harmonics (defined e.g. in
[17, Ch. 5]);

(2) the complex-valued array of harmonic coefficients {alm : l ≥ 0, l ≥ 0, m = −l, ..., l} is

composed of centered Gaussian random variables such that the variances E |alm|2 , Cl

depend exclusively on l (see for instance [1]);

(3) the law of T is completely determined by the power spectrum {Cl : l ≥ 0} defined at the
previous point.

Now fix q ≥ 2, and consider the subordinated field

T (q) (x) , Hq (T (x)) , x ∈ S
2,

where Hq is the qth Hermite polynomial. Plainly, the field T (q) is isotropic and admits the
harmonic expansion

T (q) (x) =
∞∑

l=0

l∑

m=−l

alm;qYlm (x) ,

∞∑

l=0

T
(q)
l (x) ,

where alm;q ,
∫

S2 T (q) (z)Ylm (z)dz. For every l ≥ 0, the field T
(q)
l =

∑l
m=−l alm;qYlm is real-

valued and isotropic, and it is called the lth frequency component of T (q) (see [7] or [10] for a
physical interpretation of frequency components). In [10], the following problem is studied.
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Problem A. Fix q ≥ 2. Find conditions on the power spectrum {Cl : l ≥ 0} to have that the
finite dimensional distributions (f.d.d.’s) of the normalized frequency field

T
(q)

l (x) ,
T

(q)
l (x)

Var
(
T

(q)
l (x)

)1/2
, x ∈ S

2,

are ‘asymptotically close to Gaussian’, as l → +∞.

The main difficulty when dealing with Problem A is that (due to isotropy) one has always that

E

[
T

(q)

l (x) T
(q)

l (y)
]

= Pl (cos 〈x, y〉) , (27)

where Pl is the lth Legendre polynomial, and 〈x, y〉 is the angle between x and y. Indeed,
since in general the quantity Pl (cos 〈x, y〉) does not converge (as l → +∞), one cannot prove

that the f.d.d.’s of T
(q)

l converge to those of a Gaussian field (even if T
(q)

l (x) converges in law
to a Gaussian random variable for every fixed x). However, as an application of Theorem 1
and Proposition 2, one can prove the following approximation result.

Proposition 5. Under the above notation and assumptions, suppose that, for any fixed x ∈ S
2,

T
(q)

l (x)
Law→

l→+∞

N (0, 1) . (28)

Then, for any k ≥ 1, any x1, ..., xk ∈ S
2 and any γ metrizing the weak convergence on P

(
R

k
)
,

γ
(
L

(
T

(q)

l (x1) , ..., T
(q)

l (xk)
)

,N (l)
)

→
l→+∞

0, (29)

where, for every l, N (l) =
(
N

(1)
l , ..., N

(k)
l

)
is a centered real-valued Gaussian vector such that

E

{
N

(i)
l N

(j)
l

}
= Pl (cos 〈xi, xj〉) .

Proof. Since T
(q)

l (x) is a linear functional involving uniquely Hermite polynomials of order q
(written on the Gaussian field T ) one deduces that there exists a real Hilbert space H such
that (in the sense of stochastic processes)

T
(q)

l (x)
Law
= Iq

(
f(q,l,x)

)
,

where the class of symmetric kernels
{
f(q,l,x) : l ≥ 0, x ∈ S

2
}

is a subset of H⊙q , and Iq

(
f(q,l,x)

)
stands for the qth Wiener-Itô integral of f(q,l,x) with respect

to an isonormal Gaussian process over H, as defined in Section 2. Since the variances of the

components of the vector (T
(q)

l (x1) , ..., T
(q)

l (xk)) are all equal to 1 by construction, we can
apply Theorem 3 and Proposition 2. Indeed, by Theorem 3 we know that (28) implies that,
for every p = 1, ..., q − 1 and every j = 1, ..., k,

f(q,l,xj) ⊗p f(q,l,xj) → 0 in H
⊙2(q−p).

Finally, Proposition 2 and (27) imply immediately the desired conclusion.
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The derivation of sufficient conditions to have (28) is the main object of [10]. In particular, it
is proved that sufficient (and sometimes also necessary) conditions for (28) can be neatly ex-
pressed in terms of the so-called Clebsch-Gordan coefficients (see again [17]), that are elements
of unitary matrices connecting reducible representations of SO (3).
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