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Abstract

Let X be a Banach space. Suppose that for all p ∈ (1,∞) a constant Cp,X depending only on
X and p exists such that for any two X-valued martingales f and g with tangent martingale
difference sequences one has

E‖f‖p ≤ Cp,XE‖g‖p (∗).

This property is equivalent to the UMD condition. In fact, it is still equivalent to the UMD
condition if in addition one demands that either f or g satisfy the so-called (CI) condition.
However, for some applications it suffices to assume that (∗) holds whenever g satisfies the (CI)
condition. We show that the class of Banach spaces for which (∗) holds whenever only g satisfies
the (CI) condition is more general than the class of UMD spaces, in particular it includes the
space L1. We state several problems related to (∗) and other decoupling inequalities.

1 Introduction

Let (Ω,A, P) be a complete probability space. Let X be a Banach space and let (Fn)n≥0 be a
filtration. The (Fn)n≥1-adapted sequences of X-valued random variables (dn)n≥1 and (en)n≥1

are called tangent if for every n = 1, 2, . . . and every A ∈ B(X)

E(1{dn∈A}|Fn−1) = E(1{en∈A}|Fn−1).
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An (Fn)n≥1-adapted sequence of X-valued random variables (en)n≥1 is said to satisfy the (CI)
condition if there exists a σ-field G ⊂ F = σ(∪n≥0Fn) such that for every n ∈ N and every
A ∈ B(X)

E(1{en∈A}|Fn−1) = E(1{en∈A}|G)

and if moreover (en)n≥1 is a sequence of G-conditionally independent random variables, i.e.
for every n = 1, 2, . . . and every A1, . . . , An ∈ B(X) we have

E(1{e1∈A1} · . . . · 1{en∈An}|G) = E(1{e1∈A1}|G) · . . . · E(1{en∈An}|G).

The above concepts were introduced by Kwapień and Woyczyński in [12]. For details on the
subject we refer to the monographs [5, 13] and the references therein. It is also shown there
that for every sequence (dn)n≥1 of (Fn)n≥1-adapted random variables there exists another
sequence (en)n≥1 (on a possibly enlarged probability space) which is tangent to (dn)n≥1 and
satisfies the (CI) condition. One easily checks that this sequence is unique in law. The sequence
(en)n≥1 is usually referred to as the decoupled tangent sequence.

Example 1. Let (ξn)n≥1 be an (Fn)n≥1-adapted sequence of real valued random variables.

Let (ξ̂n)n≥1 be copy of (ξn)n≥1 independent of F∞. Let (vn)n≥1 be an (Fn)n≥0-predictable
sequences of X-valued random variables, i.e. each vn is Fn−1 measurable. For n ≥ 1, define

dn = ξnvn and en = ξ̂nvn. Then (dn)n≥1 and (en)n≥1 are tangent and (en)n≥1 satisfies the
(CI) condition with G = F∞.

For convenience we will assume below that all martingales start at zero. This is not really a
restriction as can be seen as in [2].
Recall that a Banach space X is a UMD space if for some (equivalently, for all) p ∈ (1,∞)
there exists a constant βp,X ≥ 1 such that for every martingale difference sequence (dn)n≥1 in
Lp(Ω;X), and every {−1, 1}-valued sequence (εn)n≥1 we have

(
E

∥∥∥
N∑

n=1

εndn

∥∥∥
p) 1

p

≤ βp,X

(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

, N ≥ 1. (1)

One can show that UMD spaces are reflexive. Examples of UMD spaces are all Hilbert spaces
and the spaces Lp(S) for all 1 < p < ∞ and σ-finite measure spaces (S,Σ, µ). If X is a UMD
space, then Lp(S;X) is a UMD space for 1 < p < ∞. For an overview of the theory of UMD
spaces we refer the reader to [4] and references given therein.
The UMD property can also be characterized using a randomization of the martingale difference
sequence. This has been considered in [6] by Garling. One has that X is a UMD space if and
only if for some (equivalently, for all) p ∈ (1,∞) there exists a constant Cp ≥ 1 such that for
every martingale difference sequence (dn)n≥1 in Lp(Ω;X) we have

C−1
p

(
E

∥∥∥
N∑

n=1

rndn

∥∥∥
p) 1

p

≤
(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

≤ Cp

(
E

∥∥∥
N∑

n=1

rndn

∥∥∥
p) 1

p

, N ≥ 1. (2)

Here (rn)n≥1 is a Rademacher sequence independent of (dn)n≥1. In [6] both inequalities in
(2) have been studied separately. We will consider a different splitting of the UMD property
below. For Paley-Walsh martingales the concepts coincide as we will explain below.

Let X be a UMD Banach space and let p ∈ (1,∞). Let (dn)n≥1 and (en)n≥1 in Lp(Ω;X) be
tangent martingale differences, where (en)n≥1 satisfies the (CI) condition. In [15] McConnell



Tangent martingale difference sequences 423

and independently Hitczenko in [8] have proved that there exists a constant C = C(p,X) such
that

C−1
(
E

∥∥∥
N∑

n=1

en

∥∥∥
p) 1

p

≤
(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

≤ C
(
E

∥∥∥
N∑

n=1

en

∥∥∥
p) 1

p

, N ≥ 1. (3)

Moreover, one may take C to be the UMD constant βp,X . The proof of (3) is based on the
existence of a biconcave function for UMD spaces constructed by Burkholder in [3]. In [16]
Montgomery-Smith has found a proof based on the definition of the UMD property. The
right-hand side of inequality (3) also holds for p = 1 as we will show in Proposition 2.

If (3) holds for a space X, then specializing to Paley-Walsh martingales will show that X

has the UMD property (cf. [15]). Therefore, (3) is naturally restricted to the class of UMD
spaces. Recall that a Paley-Walsh martingale is a martingale that is adapted with respect to
the filtration (σ(r1, . . . , rn))n≥1, where (rn)n≥1 is a Rademacher sequence. In this note we
study the second inequality in (3). This seems to be the most interesting one for applications
and we will show that it holds for a class of Banach spaces which is strictly wider than UMD.

Let (S,Σ, µ) be a σ-finite measure space. We will show that the right-hand side inequality in
(3) also holds for X = L1(S). More generally one may take X = L1(S;Y ), where Y is a UMD
space (see Theorem 14 below). Notice that X is not a UMD space, since it is not reflexive in
general. It is not clear how to extend the proofs in [8, 15, 16] to this setting.

The right-hand side of (3) has several applications. For instance it may be used for developing
a stochastic integration theory in Banach spaces [17]. With the same methods as in [17] one can
obtain sufficient conditions for stochastic integrability and one-sided estimates for stochastic
integrals for L1-spaces.

Let us recall some convenient notation. For a sequence of X-valued random variables (ξn)n≥1

we will write ξ∗n = sup1≤m≤n ‖ξm‖ and ξ∗ = supn≥1 ‖ξn‖.

2 Results

We say that a Banach space X has the decoupling property for tangent m.d.s. (martingale
difference sequences) if for all p ∈ [1,∞) there exists a constant Cp such that for all martingales
difference sequences (dn)n≥1 in Lp(Ω;X) and its decoupled tangent sequence (en)n≥1 the
estimate

(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

≤ Cp

(
E

∥∥∥
N∑

n=1

en

∥∥∥
p) 1

p

, N ≥ 1 (4)

holds.

Let p ∈ [1,∞). Notice that if a martingale difference sequence (en)n≥1 in Lp(Ω;X) satisfies
the (CI) property, then

(
E sup

N≥1

∥∥∥
N∑

n=1

en

∥∥∥
p) 1

p

h sup
N≥1

(
E

∥∥∥
N∑

n=1

en

∥∥∥
p) 1

p

. (5)

This is well-known and easy to prove. Indeed, let (ẽn)n≥1 be an independent copy of (en)n≥1.

Expectation with respect to (ẽn)n≥1 will be denoted by Ẽ. It follows from Jensen’s inequality
and the Lévy-Octaviani inequalities for symmetric random variables (cf. [13, Section 1.1])
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applied conditionally that

(
E sup

N≥1

∥∥∥
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∥∥∥
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p
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∥∥∥Ẽ
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p) 1

p
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∥∥∥
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p) 1

p

≤ 21+ 1
p sup

N≥1

(
E

∥∥∥
N∑
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en

∥∥∥
p) 1

p

.

Notice that Doob’s inequality is only applicable for p ∈ (1,∞).

Proposition 2. If X is a UMD space, then X satisfies the decoupling property for tangent
m.d.s.

Proof. The case that p ∈ (1,∞) is already contained in (3), but the case p = 1 needs some
comment. In [8] it has been proved that for all p ∈ [1,∞) there exists a constant Cp,X such that
for all tangent martingale difference sequences (dn)n≥1 and (en)n≥1 which are conditionally
symmetric one has

C−1
p,X‖g∗n‖Lp(Ω;X) ≤ ‖f∗

n‖Lp(Ω;X) ≤ Cp,X‖g∗n‖Lp(Ω;X), n ≥ 1 (6)

where fn =
∑n

k=1 dk and gn =
∑n

k=1 ek. It is even shown that EΦ(f∗
n) ≤ Cp,X,ΦΦ(g∗n)

for certain convex functions Φ. Since [8] is unpublished we briefly sketch the argument for
convenience. Some arguments are explained in more detail in the proof of Theorem 10.
Let Φ : R+ → R+ be a continuous increasing function such that for some α > 0, Φ(2t) ≤ αΦ(t)
for all t ≥ 0. Let N be an arbitrary index. Let (dn)n≥1 and (en)n≥1 be conditionally symmetric
and tangent martingale difference sequences, with dn = en = 0 for n > N . Let f and g be the
corresponding martingales. By (3) it follows that for all p ∈ (1,∞),

λP(f∗
n ≥ λ) ≤ Cp‖gn‖Lp(Ω;X), λ ≥ 0. (7)

Let an = maxm<n{‖dm‖, ‖em‖}, d′n = dn1‖dn‖≤2an
, d′′n = dn1‖dn‖>2an

, e′n = en1‖en‖≤2an
,

e′′n = en1‖en‖>2an
. By the conditional symmetry, these sequences denote martingale difference

sequences. The corresponding martingales will be denoted by f ′, f ′′, g′, g′′. Then we have
‖d′′n‖ ≤ 2(an+1 − an). Therefore, it follows from aN+1 = 0 and [9, Lemma 1] that

EΦ(f ′′∗
N ) ≤ EΦ

( N∑

n=1

‖d′′n‖
)
≤ αEΦ(a∗

N ) ≤ 2αEΦ(e∗N ). (8)

Now for δ > 0, β > 1 + δ, λ > 0 let

µ = inf{n ≥ 0 : f ′
n > λ}, ν = inf{n ≥ 0 : f ′

n > βλ},

σ = inf{n ≥ 0 : g′n > δλ or an+1 > δλ}.
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As in [1] it follows from (7) applied to f ′ and g′ and [1, Lemma 7.1] that

EΦ(f ′∗
N ) ≤ c(EΦ(g′∗N ) + EΦ(a∗

N )) ≤ c′EΦ(g∗N ). (9)

Now (6) with n = N follows from (8) and (9) with Φ(x) = ‖x‖p.
By (5) and (6) it follows that for all n ≥ 1,

‖fn‖Lp(Ω;X) . Cp,X‖gn‖Lp(Ω;X), n ≥ 1.

By the same symmetrization argument as in [10, Lemma 2.1] we obtain that for all decoupled
tangent martingale difference sequences (dn)n≥1 and (en)n≥1 we have

‖fn‖Lp(Ω;X) . Cp,X‖gn‖Lp(Ω;X), n ≥ 1,

where again f and g are the martingales corresponding to (dn)n≥1 and (en)n≥1. This proves
the result.

Next we give a negative example.

Example 3. For every p ∈ [1,∞) the space c0 does not satisfy (4). In particular c0 does not
satisfy the decoupling property for tangent m.d.s.

Proof. We specialize (4) to Paley-Walsh martingales, i.e. dn = rnfn(r1, . . . , rn−1) and en =
r̃nfn(r1, . . . , rn−1), where (rn)n≥1 and (r̃n)n≥1 are two independent Rademacher sequences
and fn : {−1, 1}n−1 → X. It then follows from (4) that

(
E

∥∥∥
N∑

n=1

rnfn(r1, . . . , rn−1)
∥∥∥

p) 1
p

≤ C
(
E

∥∥∥
N∑

n=1

r̃nfn(r1, . . . , rn−1)
∥∥∥

p) 1
p

= C
(
E

∥∥∥
N∑

n=1

r̃nrnfn(r1, . . . , rn−1)
∥∥∥

p) 1
p

, N ≥ 1.

This inequality does not hold for the space c0 as follows from [6, p. 105].

As a consequence of Example 3 and the Maurey-Pisier theorem we obtain the following result.

Corollary 4. If a Banach space X satisfies the decoupling property for tangent m.d.s. then
it has finite cotype.

In [6] Garling studied both inequalities in (2) separately. A space for which both inequalities of
(2) hold is a UMD space. Inequality (3) suggests another way to split the UMD property into
two parts. We do not know how the properties from [6] are related to this. In the following
remark we observe that they are related for certain martingales.

Remark 5.

(i) From the construction in Example 3 one can see that the decoupling property for Paley-
Walsh martingales is the same property as

(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

≤ C
(
E

∥∥∥
N∑

n=1

r̃ndn

∥∥∥
p) 1

p

(10)

from [6] for Paley-Walsh martingales. Here (dn)n≥1 is a Paley-Walsh martingale differ-
ence sequence and (r̃n)n≥1 is a Rademacher sequence independent from (dn)n≥1.
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(ii) One may also consider the relation between the first inequality in (3) and the reverse of
estimate (10). These, too, are equivalent when restricted to Paley-Walsh martingales.
However, on the whole these inequalities are of less interest because there are no spaces
known that satisfy them and do not satisfy the UMD property (cf. [7]).

Problem 6 ([7]). Is there a Banach space which is not UMD, but satisfies the reverse estimate
of (10) ?

It is known that if the reverse of (10) holds for a Banach space X, then X has to be super-
reflexive (cf. [6, 7]).

Problem 7. If (10) holds for all Paley-Walsh martingales, does this imply (10) for arbitrary
Lp-martingales?

Recall from [4, 14] that for (1) such a result holds.

Problem 8. Does (4) for Paley-Walsh martingales (or equivalently (10)) imply (4) for arbi-
trary Lp-martingales?

Recall from [15] that this is true if one considers (3) instead of (4).

Problem 9. If a Banach lattice satisfies certain convexity and smoothness assumptions, does
this imply that it satisfies the decoupling property (4)?

This problem should be compared with the example in [6], where Garling constructs a Banach
lattice which satisfies upper 2 and lower q estimates with q > 4, but which does not satisfy
(10) for arbitrary Lp-martingales.
In the next theorem and remark we characterize the decoupling property for tangent m.d.s.
for a space X.

Theorem 10. Let X be a Banach space. The following assertions are equivalent:

1. X has the decoupling property (4) for tangent m.d.s.

2. There exists a constant C such that for all martingales difference sequences (dn)n≥1 in
L1(Ω;X) and its decoupled tangent sequence (en)n≥1 one has that

E

∥∥∥
N∑

n=1

dn

∥∥∥ ≤ CE

∥∥∥
N∑

n=1

en

∥∥∥, N ≥ 1.

3. There exists a constant C such that for all martingales difference sequences (dn)n≥1 in
L1(Ω;X) and its decoupled tangent sequence (en)n≥1 one has that

λP

(∥∥∥
N∑

n=1

dn

∥∥∥ > λ
)
≤ CE

∥∥∥
N∑

n=1

en

∥∥∥, λ ≥ 0, N ≥ 1.

Although characterizations of the above form are standard in the context of vector valued
martingales (cf. [2, 6]), the proof of the implication (3) ⇒ (1) requires some new ideas.

Remark 11.
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(i) Instead of (2) one could assume that (4) holds for some p ∈ [1,∞). Let us call this
property (2)p. By the Markov inequality (2)p implies in particular that

λp
P

(∥∥∥
N∑

n=1

dn

∥∥∥ > λ
)
≤ CE

∥∥∥
N∑

n=1

en

∥∥∥
p

, N ≥ 1 (11)

which we call (3)p. We do not know whether (2)p or (3)p is equivalent to (1). However
in proof below we actually show that if (3)p holds for some p ∈ [1,∞), then (2)q holds
for arbitrary q ≥ p.

(ii) The statements (1), (2) and (3) of Theorem 10 are also equivalent to (1), (2) and (3) with∥∥∥
∑N

n=1 dn

∥∥∥ and
∥∥∥

∑N
n=1 en

∥∥∥ replaced by supN≥1

∥∥∥
∑N

n=1 dn

∥∥∥ and supN≥1

∥∥∥
∑N

n=1 en

∥∥∥.

This follows from the proof below, and from (5).

(iii) Condition (3) (in the form with suprema on the left-hand side) clearly implies that there
exists a constant C such that for all martingales difference sequences (dn)n≥1 in L1(Ω;X)
and its decoupled tangent sequence (en)n≥1 one has that

if sup
N≥1

∥∥∥
N∑

n=1

dn

∥∥∥ > 1 a.s. then E sup
N≥1

∥∥∥
N∑

n=1

en

∥∥∥ ≥ C.

The converse holds as well as may be shown with the same argument as in [2, Theorem
1.1].

Problem 12. Does inequality (2)p as defined in part (i) of Remark 11 imply statement (1) in
Theorem 10?

Proof of Theorem 10. The implications (1) ⇒ (2) ⇒ (3) are obvious. Therefore, we only need
to show (3) ⇒ (1). We will actually show what is stated in Remark 11: If (11) holds for some
p ∈ [1,∞), then (4) holds for all q ≥ p. This in particular shows that (3) implies (1).
Assume that for some p ∈ [1,∞), (11) holds for all martingale difference sequences (dn)n≥1

and its decoupled tangent sequence (en)n≥1. Let q ∈ [p,∞) be arbitrary and fix an arbitrary
X-valued martingale difference sequence (dn)n≥1 with its decoupled tangent sequence (en)n≥1.
We will show that there is a constant C such that

(
E

∥∥∥
N∑

n=1

dn

∥∥∥
q) 1

q

≤ C
(
E

∥∥∥
N∑

n=1

en

∥∥∥
q) 1

q

, N ≥ 1. (12)

Fixing N , we clearly may assume that dn and en are non-zero only if n ≤ N . We write
fn =

∑n
k=1 dk, gn =

∑n
k=1 ek and f = limn→∞ fn, g = limn→∞ gn. It suffices to show that

‖f‖Lq ≤ ‖g‖Lq .

Step 1. Concrete representation of decoupled tangent sequences:
By Montgomery-Smith’s representation theorem [16] we can find functions hn ∈ Lp([0, 1]n;X)
for n ≥ 1 such that ∫ 1

0

hn(x1, . . . , xn) dxn = 0

for almost all x1, . . . , xn−1 and such that if we define d̂n, ên : [0, 1]N × [0, 1]N → X as

d̂n((xn)n≥1, (yn)n≥1) = hn(x1, . . . , xn−1, xn)

ên((xn)n≥1, (yn)n≥1) = hn(x1, . . . , xn−1, yn),
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then the sequence (d̂n, ên)n≥1 has the same law as (dn, en)n≥1. Therefore, it suffices to show

(12) with dn and en replaced by d̂n and ên. For convenience set h0 = d0 = e0 = 0.

For all n ≥ 1 let F̂n = Ln ⊗ Ln, where Ln is the minimal complete σ-algebra on [0, 1]N for

which the first n coordinates are measurable. Let Ĝ = σ
(⋃

n≥1 Ln ⊗ L0

)
. Then (d̂n)n≥1 and

(ên)n≥1 are (Fn)n≥0-tangent and (ên)n≥1 satisfies condition (CI) with Ĝ.
We will use the above representation in the rest of the proof, but for convenience we will leave
out the hats in the notation.

Step 2. The Davis decomposition:

We may write hn = h
(1)
n + h

(2)
n , where h

(1)
n , h

(2)
n : [0, 1]N → X are given by

h(1)
n = un − E(un|Ln−1)

h(2)
n = vn − E(un|Ln−1),

where un, vn : [0, 1]n → X are defined as

un(x1, . . . , xn) = hn(x1, . . . , xn)1‖hn(x1,...,xn)‖≤2‖h∗

n−1(x1,...,xn−1)‖

vn(x1, . . . , xn) = hn(x1, . . . , xn)1‖hn(x1,...,xn)‖>2‖h∗

n−1(x1,...,xn−1)‖.

Notice that for the conditional expectation E(un|Ln−1) we may use the representation

(xm)m≥1 7→

∫ 1

0

hn(x1, . . . , xn) dxn.

For i = 1, 2 define
d(i)

n ((xn)n≥1, (yn)n≥1) = h(i)
n (x1, . . . , xn−1, xn)

e(i)
n ((xn)n≥1, (yn)n≥1) = h(i)

n (x1, . . . , xn−1, yn)

Then for i = 1, 2 it holds that (d
(i)
n )n≥1 and (e

(i)
n )n≥1 are tangent and the latter satisfies

condition (CI). For i = 1, 2 write f
(i)
n =

∑n
k=1 d

(i)
n and g

(i)
n =

∑n
k=1 e

(i)
n .

We will now proceed with the estimates. The first part is rather standard, but we include it
for convenience of the reader. The second part is less standard and is given in Step 3. As in
[1, p. 33] one has ∑

n≥1

‖vn‖ ≤ 2‖d∗‖. (13)

It follows from [11, Proposition 25.21] that

∥∥∥
∑

n≥1

E(‖vn‖|Ln−1)
∥∥∥

Lq

≤ q
∥∥∥

∑

n≥1

‖vn‖
∥∥∥

Lq

≤ 2q‖d∗‖Lq . (14)

Now as in [1, p. 33] we obtain that

‖f (2)∗‖Lq ≤
∥∥∥

∑

n≥1

‖vn‖
∥∥∥

Lq

+
∥∥∥

∑

n≥1

‖E(un|Ln−1)‖
∥∥∥

Lq

≤ 2‖d∗‖Lq +
∥∥∥

∑

n≥1

‖E(vn|Ln−1)‖
∥∥∥

Lq

≤ (2 + 2q)‖d∗‖Lq ,

(15)
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where we used (13), (14) and E(un|Ln−1) = −E(vn|Ln−1). By [13, Theorem 5.2.1] and (5)

‖d∗‖Lq ≤ 2
1
q ‖e∗‖Lq ≤ 21+ 1

q ‖g∗‖Lq ≤ cq‖g‖Lq , (16)

where cq is a constant. This shows that

‖f (2)‖Lq ≤ (2 + 2q)cq‖g‖Lq .

Next we estimate f (1). We claim that there exists a constant c′q such that

‖f (1)∗‖Lq ≤ c′q

(
‖g(1)∗‖Lq + ‖d∗‖Lq

)
. (17)

Let us show how the result follows from the claim before we prove it. By (16) we can estimate
‖d∗‖Lq . To estimate ‖g(1)∗‖Lq we write

‖g(1)∗‖Lq ≤ ‖g(2)∗‖Lq + ‖g∗‖Lq .

With the same argument as in (15) it follows that

‖g(2)∗‖Lq ≤ (2 + 2q)‖e∗‖Lq ≤ (4 + 4q)‖g∗‖Lq .

Therefore, (5) gives the required estimate.

Step 3. Proof of the claim (17).
For the proof of the claim we will use [1, Lemma 7.1] with Φ(λ) = λq. To check the conditions
of this lemma we will use our assumption. We use an adaption of the argument in [2, p.
1000-1001].
Choose δ > 0, β > 1 + δ and λ > 0 and define the stopping times

µ = inf{n : ‖f (1)
n ‖ > λ};

ν = inf{n : ‖f (1)
n ‖ > βλ};

σ = inf{n : (E(‖g(1)
n ‖p|G))

1
p > δλ or 4d∗

n > δλ}.

Notice that these are all (Ln)n≥1-stopping times. To see this for σ, use the fact that

(xm)m≥1 7→

∫

[0,1]n

∥∥∥
n∑

k=1

h
(1)
k (x1, . . . , xk−1, yk)

∥∥∥
p

dy1, . . . , dyn

is a version for E(‖g
(1)
n ‖p|G) which it is Ln−1-measurable, so certainly Ln-measurable.

Define the transforms F and G of f (1) and g(1) as Fn =
∑n

k=1 1{µ<k≤ν∧σ}d
(1)
k and Gn =

∑n
k=1 1{µ<k≤ν∧σ}e

(1)
k , for n ≥ 1. Since 1{µ<k≤ν∧σ} is Lk−1-measurable it follows that F and

G are martingales with martingale difference sequences that are decoupled tangent again.
Now consider E(‖G‖p|G) on the sets {σ ≤ µ}, {µ < σ = ∞} and {µ < σ < ∞}. On the first
set we clearly have E(‖Gn‖

p|G) = 0 for any n ≥ 1. On the second set we have for every n ≥ 1

(E(‖Gn‖
p|G))

1
p = (E(‖g

(1)
n∧ν − g

(1)
n∧µ‖

p|G))
1
p

≤ (E(‖g
(1)
n∧ν‖

p|G))
1
p + (E(‖g

(1)
n∧µ‖

p|G))
1
p ≤ 2δλ
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while on the set {µ < σ < ∞} we have

(E(‖gn‖
p|G))

1
p = (E(‖g

(1)
n∧ν∧σ − g

(1)
n∧µ‖

p|G))
1
p

≤ (E(‖e(1)
σ ‖p|G))

1
p + (E(‖g

(1)
n∧ν∧(σ−1)‖

p|G))
1
p + (E(‖g

(1)
n∧µ‖

p|G))
1
p

≤ (E(‖e(1)
σ ‖p|G))

1
p + 2δλ.

Since the difference sequences of f (1) and g(1) are tangent and the difference sequence of g(1)

satisfies the (CI) condition we have

E

(
‖e(1)

σ ‖p|G
)

= E

(
∞∑

n=1

‖e(1)
n ‖p1{σ=n}|G

)
=

∞∑

n=1

E(‖e(1)
n ‖p|G)1{σ=n}

=

∞∑

n=1

E(‖e(1)
n ‖p|Fn−1)1{σ=n}

=

∞∑

n=1

E(‖d(1)
n ‖p|Fn−1)1{σ=n} ≤ 4p

∞∑

n=1

(d∗n−1)
p1{σ=n} ≤ (δλ)p.

Here we used that from Davis decomposition we know that 4d∗
n−1 is an Fn−1-measurable

majorant for ‖d
(1)
n ‖.

On the whole we have

(E(‖Gn‖
p|G))

1
p ≤ 3δλ1{µ<∞} = 3δλ1{f(1)∗>λ},

hence

E‖G‖p ≤ 3pδp
P{f (1)∗ > λ}. (18)

Observe that on the set

{f (1)∗ > βλ, E(‖g(1)‖p|G)∗ ∨ 4d∗ < δλ}

one has µ < ν < ∞ and σ = ∞ and therefore

‖F‖ = ‖f (1)
ν − d(1)

µ − f
(1)
µ−1‖ ≥ ‖f (1)

ν ‖ − ‖d(1)
µ ‖ − ‖f

(1)
µ−1‖ > (β − δ − 1)λ.

Now by the assumption, applied to F and G, and by (18) we obtain

P{f (1)∗ > βλ, (E(‖g(1)‖p|G))
1
p
∗ ∨ 4d∗ < δλ} ≤ P{µ < ν, σ = ∞}

≤ P{‖F‖ > (β − δ − 1)λ} ≤ Cp(β − δ − 1)−pλ−p‖G‖p
Lp

≤ 3pCpδ(β − δ − 1)−p
P{f (1)∗ > λ}.

Applying [1, Lemma 7.1] with Φ(λ) = λq gives some constant Cq depending on C, p and q

such that
‖f (1)∗‖Lq ≤ Cq

∥∥(E(‖g(1)‖p|G))
1
p
∗ ∨ 4d∗

∥∥
Lq

≤ 4Cq

(∥∥(E(‖g(1)‖p|G))
1
p
∗
∥∥

Lq
+ ‖d∗‖Lq

)
.

Since q ≥ p, (17) follows.
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In the above proof we have showed that Theorem 10 (2) implies (4) for all p ∈ [1,∞) with a
constant Cp with limp→∞ Cp = ∞. Using the representation of Step 1 of the proof of Theorem
10 one easily sees that (4) holds for p = ∞ with constant 1 for arbitrary Banach spaces. It
is therefore natural to consider the following problem which has been solved positively by
Hitczenko [10] in the case that X = R.

Problem 13. If X satisfies the decoupling property, does X satisfy (4) with a constant C

independent of p ∈ [1,∞)?

We have already observed that all UMD spaces satisfy the decoupling inequality, thus for
example the Lp-spaces do so for p ∈ (1,∞). The next theorem states that L1-spaces, which
are not UMD, satisfy the decoupling property as well.

Theorem 14. Let (S,Σ, µ) be a σ-finite measure space and let p ∈ [1,∞). Let Y be a UMD
space and let X = L1(S;Y ). Then X satisfies the decoupling property for tangent m.d.s.

The proof is based on Theorem 10 and the following lemma which readily follows from Fubini’s
theorem.

Lemma 15. Let X be a Banach space and let p ∈ [1,∞). Let (S,Σ, µ) be a σ-finite measure
space. If X satisfies (4), then Lp(S;X) satisfies (4).

Proof. Let (dn)n≥1 and (en)n≥1 be decoupled tangent sequences in Lp(Ω;Lp(S;X)). By Fu-

bini’s theorem there exists a sequence (d̃n)n≥1 of functions from Ω × S to X such that for
almost all ω ∈ Ω, for almost all s ∈ S, for all n ≥ 1 we have

dn(ω)(s) = d̃n(ω, s)

and for almost all s ∈ S, d̃n(s)n≥1 is Fn-measurable. We claim that for almost all s ∈ S,

E(d̃n(·, s)|Fn−1) = 0 a.s.

To prove this it suffices to note that for all A ∈ Σ and B ∈ Fn−1,

∫

A

∫

B

d̃n(ω, s) dP (ω) dµ(s) =

∫

A

∫

B

dn(ω)(s) dP (ω) dµ(s) = 0.

Also such (ẽn)n≥1 exists for (en)n≥1. Next we claim that for almost all s ∈ S, (d̃n(·, s))n≥1

and (ẽn(·, s))n≥1 are tangent and (ẽn(·, s))n≥1 satisfies condition (CI). Indeed, for A and B as
before and for a Borel set C ⊂ X we have

∫

A

∫

B

1{d̃n(ω,s)∈C} dP (ω) dµ(s) =

∫

A

∫

B

1{dn(ω)(s)∈C} dP (ω) dµ(s)

=

∫

A

∫

B

1{en(ω)(s)∈C} dP (ω) dµ(s)

=

∫

A

∫

B

1{ẽn(ω,s)∈C} dP (ω) dµ(s).

This clearly suffices. Similarly, one can prove the (CI) condition.
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Now by Fubini’s theorem and the assumption applied for almost all s ∈ S we obtain that

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

Lp(S;X)
=

∫

S

∫

Ω

∥∥∥
N∑

n=1

d̃n(ω, s)
∥∥∥

p

dP(ω) dµ(s)

≤ Cp

∫

S

∫

Ω

∥∥∥
N∑

n=1

ẽn(ω, s)
∥∥∥

p

dP(ω) dµ(s) = E

∥∥∥
N∑

n=1

en

∥∥∥
p

Lp(S;X)
.

Proof of Theorem 14. By Proposition 2 the space Y satisfies the decoupling property. There-
fore, we obtain from Lemma 15 that X = L1(S;Y ) satisfies (4) for p = 1. Now Theorem 10
implies that X satisfies the decoupling property.

For p ∈ [1,∞) let Sp be the Schatten class of operators on a infinite dimensional Hilbert
space. For every p ∈ (1,∞), Sp is a UMD space. Therefore, by Proposition 2 it satisfies the
decoupling property. Since S1 is the non-commutative analogue of L1, it seems reasonable to
state the following problem.

Problem 16. Does the Schatten class S1 satisfy the decoupling property (4)?
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