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Abstract

In this paper, we provide a necessary and sufficient condition for general d-dimensional arrays
of random variables to satisfy strong law of large numbers. Then, we apply the result to
obtain some strong laws of large numbers for d-dimensional arrays of blockwise independent
and blockwise orthogonal random variables.

1 Introduction

Let Z
d
+, where d is a positive integer, denote the positive integer d-dimensional lattice points.

The notation m ≺ n, where m = (m1,m2, ...,md) and n = (n1, n2, ..., nd) ∈ Z
d
+, means that

mi 6 ni, 1 6 i 6 d. Let {αi, 1 6 i 6 d} be positive constants, and let n = (n1, n2, ..., nd) ∈ Z
d
+,

we denote |n| =
∏d

i=1 ni, |n(α)| =
∏d

i=1 nαi

i , I(n) = {(a1, . . . , ad) ∈ Z
d
+ : 2ni−1 6 ai < 2ni , 1 6

i 6 d}, n = (2n1−1, . . . , 2nd−1).
Consider a d-dimensional array {Xn,n ∈ Z

d
+} of random variables defined on a probability

space (Ω,F , P ). Let Sn =
∑

i≺n
Xi, and let {αi, 1 6 i 6 d} be positive constants. In Section

2, we provide a necessary and sufficient condition for

lim
|n|→∞

Sn

|n(α)|
= 0 almost surely (a.s.)

to hold. This condition springs from a recent result of Chobanyan, Levental and Mandrekar
[1] which provided a condition for strong law of large numbers (SLLN) in the case d = 1
(see Chobanyan, Levental and Mandrekar [1, Theorem 3.3]). Some applications to SLLN for
d-dimensional arrays of blockwise independent and blockwise orthogonal random variables are
made in Section 3.

2 Result

We can now state our main result.
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THEOREM 2.1. Let {Xn,n ∈ Z
d
+} be a d-dimensional array of random variables and let

{αi, 1 6 i 6 d} be positive constants. For m = (m1, . . . ,md) ∈ Z
d
+, set

Tm =
1

|m(α)|
max

k∈I(m)

∣

∣

∑

m≺i≺k

Xi

∣

∣.

Then

lim
|m|→∞

Tm = 0 a.s. (2.1)

if and only if

lim
|n|→∞

Sn

|n(α)|
= 0 a.s. (2.2)

Proof. To prove Theorem 2.1, we will need the following lemmma. The proof of the following
lemma is just an application of Kronecker’s lemma with d-dimensional indices as was so kindly
pointed out to the author by the referee.
LEMMA 2.1. Let {xn,n ∈ Z

d
+} be a d-dimensional array of constants, and let {αi, 1 6 i 6 d}

be a collection of positive constants. If

lim
|n|→∞

xn = 0, (2.3)

then

lim
|n|→∞

1

|n(α)|

∑

k≺n

|k(α)|xk = 0. (2.4)

Proof of Theorem 2.1. Let m = (m1, . . . ,md), n = (n1, . . . , nd) ∈ Z
d
+ with n ∈ I(m). Set

n(j) = (n1, . . . , nj−1, 2
mj−1 − 1, nj+1, . . . , nd), 1 6 j 6 d,

S(1)
n

= Sn(1) ,

S(d)
n

=

n1
∑

i1=2m1−1

· · ·

nd−1
∑

id−1=2md−1−1

2md−1−1
∑

id=1

X(i1,...,id),

and

S(j)
n

=

n1
∑

i1=2m1−1

· · ·

nj−1
∑

ij−1=2mj−1−1

2mj−1−1
∑

ij=1

nj+1
∑

ij+1=1

· · ·

nd
∑

id=1

X(i1,...,id), 2 6 j 6 d − 1.

Then

S(j)
n

= Sn(j) −

j−1
∑

k=1

S
(k)

n(j) , 2 6 j 6 d. (2.5)

Assume that (2.1) holds. Since

|Sn|

|n(α)|
6

1

|m(α)|

∑

k≺m

|k(α)|Tk,
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the conclusion (2.2) holds by Lemma 2.1. Thus (2.1) implies (2.2). Now, assume that (2.2)
holds. Then

lim
|m|→∞

max
n∈I(m)

S
(1)
n

|n(α)|
= 0 a.s. (2.6)

For 1 6 j 6 d, by (2.5), (2.6) and the induction method, we obtain

lim
|m|→∞

max
n∈I(m)

S
(j)
n

|n(α)|
= 0 a.s. (2.7)

Since

Sn =
d

∑

j=1

S(j)
n

+

n1
∑

i1=2m1−1

· · ·

nd
∑

id=2md−1

X(i1,...,id),

we have that

|

n1
∑

i1=2m1−1

· · ·

nd
∑

id=2md−1

X(i1,...,id)| 6 |Sn| +

d
∑

j=1

|S(j)
n

|.

This implies

Tm 6 2α1+···+αd max
n∈I(m)

|Sn| +
∑d

j=1 |S
(j)
n |

|n(α)|
. (2.8)

The conclusion (2.1) follows immediately from (2.2), (2.7) and (2.8).

3 Applications

In this section, we present some applications of Theorem 2.1. A d-dimensional array of random
variables {Xn,n ∈ Z

d
+} is said to be blockwise independent (resp., blockwise orthogonal) if for

each k ∈ Z
d
+, the random variables {Xi, i ∈ I(k)} is independent (resp., orthogonal). The

concept of blockwise independence for a sequence of random variables was introduced by
Móricz [9]. Extensions of classical Kolmogorov SLLN (see, e.g., Chow and Teicher [2], p. 124)
to the blockwise independence case were established by Móricz [9] and Gaposhkin [4]. Móricz
[9] and Gaposhkin [4] also studied SLLN problem for sequence of blockwise orthogonal random
variables.
Firstly, we establish a blockwise independence and d-dimensional version of the Kolmogorov
SLLN.
THEOREM 3.1. Let {Xn,n ∈ Z

d
+} be a d-dimensional array of mean 0 blockwise independent

random variables and let {αi, 1 6 i 6 d} be positive constants. If

∑

n∈Z
d
+

E|Xn|
p

|n(α)|p
< ∞ for some 0 < p 6 2, (3.1)

then SLLN

lim
|n|→∞

Sn

|n(α)|
= 0 a.s. (3.2)

obtains.
In the case 0 < p 6 1, the independence hypothesis and the hypothesis that EXn = 0,n ∈ Z

d
+

are superfluous.
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Proof. We need the following lemma which was proved by Thanh [11] in the case d = 2. If d
is arbitrary positive integer, then the proof is similar and so is omitted.

LEMMA 3.1. Let n ∈ Z
d
+ and let {Xi, i ≺ n} be a collection of |n| mean 0 independent

random variables. Then there exists a constant C depending only on p and d such that

E(max
k≺n

|Sk|
p) 6 C

∑

i≺n

E|Xi|
p for all 0 < p 6 2.

In the case 0 < p 6 1, the independence hypothesis and the hypothesis that EXi = 0, i ≺ n

are superfluous, and C is given by C = 1. In the case 1 < p < 2, C is given by C = 2
( p

p − 1

)pd
.

In the case p = 2, Lemma 3.1 was proved by Wichura [12] and C is given by C = 4d.
Proof of Theorem 3.1. Define Tm,m ∈ Z

d
+ as in Theorem 2.1. Note that for all m ∈ Z

d
+,

E|Tm|p =
1

|m(α)|p
E

(

max
k∈I(m)

∣

∣

∑

m≺i≺k

Xi

∣

∣

)p

6
C

|m(α)|p

∑

i∈I(m)

E|Xi|
p (by Lemma 3.1)

6 2α1+···+αdC

∑

i∈I(m) E|Xi|
p

|i(α)|p
.

It thus follows from (3.1) that
∑

m∈Z
d
+

E|Tm|p < ∞ whence lim
|m|→∞

Tm = 0 a.s. The conclusion

(3.2) follows immediately from Theorem 2.1.

The following theorem extends Theorem 3.1 and its part (ii) reduces to a result of Smythe [10]
when the {Xn,n ∈ Z

d
+} are independent and α1 = · · · = αd = 1.

THEOREM 3.2. Let {Xn,n ∈ Z
d
+} be a d-dimensional array of random variables and let

{αi, 1 6 i 6 d} be positive constants. Assume that ϕ(x) is a continuous functions on [0,∞),
ϕ(0) > 0, ϕ(x) > 0 for x > 0, and

∑

n∈Z
d
+

E(ϕ(|Xn|))

ϕ(|n(α)|)
< ∞. (3.3)

If either

(i) ϕ(x)/x ↓, and ϕ(x) ↑
or

(ii) {Xn,n ∈ Z
d
+} are blockwise independent and have mean 0, and

ϕ(x)/x ↑, ϕ(x)/x2 ↓,

then SLLN (3.2) obtains.

Proof. For n ∈ Z
d
+, set

Yn = XnI(|Xn| 6 |n(α)|),

Zn = XnI(|Xn| > |n(α)|).
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Consider the case (i) first. It follows from (3.3) that

∑

n∈Z
d
+

E|Yn|

|n(α)|
6

∑

n∈Z
d
+

E(ϕ(|Yn|))

ϕ(|n(α)|)
(by the first condition of (i))

< ∞.

By Theorem 3.1,

lim
|n|→∞

∑

i≺n
Yi

|n(α)|
= 0 a.s. (3.4)

On the other hand
∑

n∈Z
d
+

P{Xn 6= Yn} =
∑

n∈Z
d
+

P{|Xn| > |n(α)|}

6
∑

n∈Z
d
+

P{ϕ(|Xn|) > ϕ(|n(α)|)}

(by the second condition of (i))

6
∑

n∈Z
d
+

E(ϕ(|Xn|))

ϕ(|n(α)|)

< ∞ (by (3.3)).

By the Borel-Cantelli lemma,

lim
|n|→∞

∑

i≺n
(Xi − Yi)

|n(α)|
= 0 a.s. (3.5)

The conclusion (3.2) follows immediately from (3.4) and (3.5).
Now, consider the case (ii). It follows from (3.3) that

∑

n∈Z
d
+

E(Yn − EYn)2

|n(α)|2
6

∑

n∈Z
d
+

EY 2
n

|n(α)|2

6
∑

n∈Z
d
+

E(ϕ(|Yn|))

ϕ(|n(α)|)
(by the last condition of (ii))

< ∞ (3.6)

and

∑

n∈Z
d
+

E|Zn − EZn|

|n(α)|
6 2

∑

n∈Z
d
+

E|Zn|

|n(α)|

6 2
∑

n∈Z
d
+

E(ϕ(|Zn|))

ϕ(|n(α)|)
(by the second condition of (ii))

< ∞. (3.7)
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By Theorem 3.1, the conclusion (3.6) implies

lim
|n|→∞

∑

i≺n
(Yi − EYi)

|n(α)|
= 0 a.s. (3.8)

and the conclusion (3.7) implies

lim
|n|→∞

∑

i≺n
(Zi − EZi)

|n(α)|
= 0 a.s. (3.9)

The conclusion (3.2) follows immediately from (3.8) and (3.9).

REMARK 3.1. (i) According to the discussion in Smythe [10], the proof of part (ii) of The-
orem 3.2 was based on the “Khintchin-Kolmogorov convergence theorem, Kronecker lemma
approach”. But it seems that the Kronecker lemma for d-dimensional arrays when d > 2 is not
such a good tool as in the study of the SLLN for the case d = 1 (see Mikosch and Norvaisa
[6]). Moreover, in the blockwise independence case, according to an example of Móricz [9], the
conclusion of Theorem 3.1 (or part (ii) of Theorem 3.2) cannot in general be reached through
the well-know Kronecker lemma approach for proving SLLNs even when d = 1.
(ii) Chung [3] proved part (i) of Theorem (3.2) (for the case d = 1 only) by the Kolmogorov
three series theorem and the Kronecker lemma. So in his proof, the independence assumption
must be required.
We now establish the Marcinkiewicz-Zygmund SLLN for d-dimensional arrays of blockwise
independent identically distributed random variables. The following theorem reduces to a
result of Gut [5] when the {Xn,n ∈ Z

d
+} are independent.

THEOREM 3.3. Let {X,Xn,n ∈ Z
d
+} be a d-dimensional array of blockwise independent

identically distributed random variables with EX = 0, E(|X|r(log+ |X|)d−1) < ∞ for some
1 6 r < 2. Then SLLN

lim
|n|→∞

Sn

|n|1/r
= 0 a.s. (3.10)

obtains.

Proof. According to the proof of Lemma 2.2 of Gut [5],

∑

n∈Z
d
+

E(Yn − EYn)2

|n|2/r
< ∞ (3.11)

where Yn = Xn(|Xn| 6 |n|1/r), n ∈ Z
d
+. And similarly, we also have

∑

n∈Z
d
+

E|Zn − EZn|

|n|1/r
< ∞ (3.12)

where Zn = Xn(|Xn| > |n|1/r), n ∈ Z
d
+. By Theorem 3.1 (with αi = 1/r, 1 6 i 6 d), the

conclusion (3.10) follows immediately from (3.11) and (3.12).

Finally, we establish the SLLN for d-dimensional arrays of blockwise orthogonal random vari-
ables. The following theorem is a blockwise orthogonality version of Theorem 1 of Móricz [8]
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and its proof is based on the d-dimensional version of the Rademacher-Mensov inequality (see
Móricz [7]) and the method used in the proof of Theorem 3.1.
THEOREM 3.4. Let {Xn,n ∈ Z

d
+} be a d-dimensional array of blockwise orthogonal random

variables and let {αi, 1 6 i 6 d} be positive constants. If

∑

n∈Z
d
+

E|Xn|
2

|n(α)|2
Πd

i=1[log(ni + 1)]2 < ∞,

then SLLN (3.2) obtains.
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