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Abstract

Central limit theorems for functionals of general state space Markov chains are of crucial
importance in sensible implementation of Markov chain Monte Carlo algorithms as well as of
vital theoretical interest. Different approaches to proving this type of results under diverse
assumptions led to a large variety of CTL versions. However due to the recent development
of the regeneration theory of Markov chains, many classical CLTs can be reproved using this
intuitive probabilistic approach, avoiding technicalities of original proofs. In this paper we
provide a characterization of CLTs for ergodic Markov chains via regeneration and then use
the result to solve the open problem posed in [17]. We then discuss the difference between
one-step and multiple-step small set condition.

1 Introduction

Let (Xn)n>0 be a time homogeneous, ergodic Markov chain on a measurable space (X ,B(X )),
with transition kernel P and a unique stationary measure π on X . We remark that the ergod-
icity means that

lim
n→∞

‖Pn(x, ·) − π‖tv = 0, for all x ∈ X , (1)

where ‖ · ‖tv denotes the total variation distance. The process (Xn)n>0 may start from any
initial distribution π0. Let g be a real valued Borel function on X , square integrable against
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the stationary measure π. We denote by ḡ its centered version, namely ḡ = g −
∫

gdπ and for

simplicity Sn :=
∑n−1

i=0 ḡ(Xi). We say that a
√

n−CLT holds for (Xn)n>0 and g if

Sn/
√

n
d−→ N(0, σ2

g), as n → ∞, (2)

where σ2
g < ∞. First we aim to provide a general result, namely Theorem 4.1, that gives a

necessary and sufficient condition for
√

n-CLTs for ergodic chains (which is a generalization
of the well known Theorem 17.3.6 [11]). Assume for a moment that there exists a true atom
α ∈ B(X ), i.e. such a set α that π(α) > 0 and there exists a probability measure ν on B(X ),
such that P (x,A) = ν(A) for all x ∈ α. Let τα be the first hitting time for α. In this simplistic
case we can rephrase our Theorem 4.1 as follows:

Theorem 1.1. Suppose that (Xn)n>0 is ergodic and possess a true atom α, then the
√

n−CLT
holds if and only if

Eα

[( τα
∑

k=1

ḡ(Xk)

)2]

< ∞. (3)

Furthermore we have the following formula for the variance σ2
g = π(α)Eα

[(

∑τα

k=1 ḡ(Xk)

)2]

.

Central limit theorems of this type are crucial for assessing the quality of Markov chain Monte
Carlo estimation (see [10] and [5]) and are also of independent theoretical interest. Thus a large
body of work on CLTs for functionals of Markov chains exists and a variety of results have been
established under different assumptions and with different approaches (see [9] for a review). We
discuss briefly the relation between two classical CLT formulations for geometrically ergodic
and uniformly ergodic Markov chains. We say that a Markov chain (Xn)n>0 with transition
kernel P and stationary distribution π is

• geometrically ergodic, if ‖Pn(x, ·)−π(·)‖tv 6 M(x)ρn, for some ρ < 1 and M(x) < ∞ π-a.e.,

• uniformly ergodic, if ‖Pn(x, ·) − π(·)‖tv 6 Mρn, for some ρ < 1 and M < ∞.

Recently the following CLT provided by [8] has been reproved in [17] using the intuitive
regeneration approach and avoiding technicalities of the original proof (however see Section 6
for a commentary).

Theorem 1.2. If a Markov chain (Xn)n>0 with stationary distribution π is geometrically
ergodic, then a

√
n−CLT holds for (Xn)n>0 and g whenever π(|g|2+δ) < ∞ for some δ > 0.

Moreover σ2
g :=

∫

X
ḡ2dπ + 2

∫

X

∑∞
n=1 ḡ(X0)ḡ(Xn)dπ.

Remark 1.3. Note that for reversible chains the condition π(|g|2+δ) < ∞ for some δ > 0 in
Theorem 1.2 can be weakened to π(g2) < ∞ as proved in [16], however this is not possible for
the general case, see [2] or [6] for counterexamples.

Roberts and Rosenthal posed an open problem, whether the following CLT version for uni-
formly ergodic Markov chains due to [4] can also be reproved using direct regeneration argu-
ments.

Theorem 1.4. If a Markov chain (Xn)n>0 with stationary distribution π is uniformly ergodic,
then a

√
n−CLT holds for (Xn)n>0 and g whenever π(g2) < ∞. Moreover σ2

g :=
∫

X
ḡ2dπ +

2
∫

X

∑∞
n=1 ḡ(X0)ḡ(Xn)dπ.
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The aim of this paper is to prove Theorem 4.1 and show how to derive from this general
framework the regeneration proof of Theorem 1.4. The outline of the paper is as follows.
In Section 2 we describe the regeneration construction, then in Section 3 we provide some
preliminary results which may also be of independent interest. In Section 4 we detail the proof
of Theorem 4.1, and derive Theorem 1.4 as a corollary in Section 5. Section 6 comprises a
discussion of some difficulties of the regeneration approach.

2 Small Sets and the Split Chain

We remark that ergodicity as defined by (1) is equivalent to Harris recurrence and aperiodicity
(see Proposition 6.3 in [13]). One of the main feature of Harris recurrent chains is that they
are ψ−irreducible and admit the regeneration construction, discovered independently in [12]
and [1], and which is now a well established technique. In particular such chains satisfy

Definition 2.1 (Minorization Condition). For some ε > 0, some C ∈ B+(X ) := {A ∈ B(X ) :
ψ(A) > 0} and some probability measure νm with νm(C) = 1 we have for all x ∈ C,

Pm(x, ·) > ενm(·). (4)

The minorization condition (4) enables constructing the split chain for (Xn)n>0 which is the
central object of the approach (see Section 17.3 of [11] for a detailed description). The mi-
norization condition allows to write Pm as a mixture of two distributions:

Pm(x, ·) = εIC(x)νm(·) + [1 − εIC(x)]R(x, ·), (5)

where R(x, ·) = [1− εIC(x)]−1[P(x, ·)− εIC(x)νm(·)]. Now let (Xnm, Yn)n>0 be the split chain
of the m−skeleton i.e. let the random variable Yn ∈ {0, 1} be the level of the split m−skeleton
at time nm. The split chain (Xnm, Yn)n>0 is a Markov chain that obeys the following transition
rule P̌.

P̌(Yn = 1,X(n+1)m ∈ dy|Yn−1,Xnm = x) = εIC(x)νm(dy) (6)

P̌(Yn = 0,X(n+1)m ∈ dy|Yn−1,Xnm = x) = (1 − εIC(x))R(x, dy), (7)

and Yn can be interpreted as a coin toss indicating whether X(n+1)m given Xnm = x should
be drawn from νm(·) - with probability εIC(x) - or from R(x, ·) - with probability 1− εIC(x).

One obtains the split chain (Xk, Yn)k>0,n>0 of the initial Markov chain (Xn)n>0 by defining
appropriate conditional probabilities. To this end let Xnm

0 = {X0, . . . ,Xnm−1} and Y n
0 =

{Y0, . . . , Yn−1}.

P̌(Yn = 1,Xnm+1 ∈ dx1, . . . ,X(n+1)m−1 ∈ dxm−1,X(n+1)m ∈ dy|Y n
0 ,Xnm

0 ;Xnm = x) =

=
εIC(x)νm(dy)

Pm(x, dy)
P(x, dx1) · · ·P(xm−1, dy), (8)

P̌(Yn = 0,Xnm+1 ∈ dx1, . . . ,X(n+1)m−1 ∈ dxm−1,X(n+1)m ∈ dy|Y n
0 ,Xnm

0 ;Xnm = x) =

=
(1 − εIC(x))R(x, dy)

Pm(x, dy)
P(x, dx1) · · ·P(xm−1, dy). (9)

Note that the marginal distribution of (Xk)k>0 in the split chain is that of the underlying
Markov chain with transition kernel P.
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For a measure λ on (X ,B(X )) let λ∗ denote the measure on X×{0, 1} (with product σ−algebra)
defined by λ∗(B × {1}) = ελ(B ∩ C) and λ∗(B × {0}) = (1 − ε)λ(B ∩ C) + λ(B ∩ Cc). In the
sequel we shall use ν∗

m for which ν∗
m(B×{1}) = ενm(B) and ν∗

m(B×{0}) = (1− ε)νm(B) due
to the fact that νm(C) = 1.

Now integrate (8) over x1, . . . , xm−1 and then over y. This yields

P̌(Yn = 1,X(n+1)m ∈ dy|Y n
0 ,Xnm

0 ;Xnm = x) = εIC(x)νm(dy), (10)

and

P̌(Yn = 1|Y n
0 ,Xnm

0 ;Xnm = x) = εIC(x). (11)

From the Bayes rule we obtain

P̌(X(n+1)m ∈ dy|Y n
0 ,Xnm

0 ;Yn = 1,Xnm = x) = νm(dy), (12)

and the crucial observation due to Meyn and Tweedie, emphasized here as Lemma 2.2 follows.

Lemma 2.2. Conditional on {Yn = 1}, the pre−nm process {Xk, Yi : k 6 nm, i 6 n} and
the post−(n + 1)m process {Xk, Yi : k > (n + 1)m, i > n + 1} are independent. Moreover, the
post−(n + 1)m process has the same distribution as {Xk, Yi : k > 0, i > 0} with ν∗

m for the
initial distribution of (X0, Y0).

Next, let σα̌(n) denote entrance times of the split chain to the set α̌ = C × {1}, i.e.

σα̌(0) = min{k > 0 : Yk = 1}, σα̌(n) = min{k > σ(n − 1) : Yk = 1}, n > 1,

whereas hitting times τα̌(n) are defined as follows:

τα̌(1) = min{k > 1 : Yk = 1}, τα̌(n) = min{k > τα̌(n − 1) : Yk = 1}, n > 2.

We define also

si = si(ḡ) =

m(σα̌(i+1)+1)−1
∑

j=m(σα̌(i)+1)

ḡ(Xj) =

σα̌(i+1)
∑

j=σα̌(i)+1

Zj(ḡ), where Zj(ḡ) =

m−1
∑

k=0

ḡ(Xjm+k).

3 Tools and Preliminary Results

In this section we analyze the sequence si(ḡ), i > 0. The basic result we often refer to is
Theorem 17.3.1 in [11], which states that (si)i>0 is a sequence of 1-dependent, identically
distributed r.v.’s with Ěsi = 0. In our approach we use the following decomposition: si =
si + si, where

si :=

σα̌(i+1)−1
∑

j=σα̌(i)+1

Zj(ḡ) − Ěπ∗

0

[ σα̌(i+1)−1
∑

j=σα̌(i)+1

Zj(ḡ)

]

, si := Zσα̌(i+1)(ḡ) − Ěπ∗

0

[

Zσα̌(i+1)(ḡ)

]

.

A look into the proof of Lemma 3.3 later in this section clarifies that si and si are well defined.

Lemma 3.1. The sequence (si)i>0 consists of i.i.d. random variables.
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Proof. First note that si is a function of {X(σα̌(i)+1)m,X(σα̌(i)+1)m+1, . . . } and that Yσα̌(i) =
1, hence by Lemma 2.2 s0, s1, s2, . . . are identically distributed. Now focus on si, si+k and
Yσα̌(i+k) for some k > 1. Obviously Yσα̌(i+k) = 1. Moreover si is a function of the pre−σα̌(i +
k)m process and si+k is a function of the post−(σα̌(i + k) + 1)m process. Thus si and si+k

are independent again by Lemma 2.2 and for Ai, Ai+k, Borel subsets of R, we have

P̌π∗

0
({si ∈ Ai} ∩ {si+k ∈ Ai+k}) = P̌π∗

0
({si ∈ Ai})P̌({si+k ∈ Ai+k}).

Let 0 6 i1 < i2 < · · · < il. By the same pre- and post- process reasoning we obtain for
Ai1 , . . . , Ail

Borel subsets of R that

P̌π∗

0
({si1 ∈ Ai1}∩· · ·∩{sil

∈ Ail
}) = P̌π∗

0
({si1 ∈ Ai1}∩· · ·∩{sil−1

∈ Ail−1
})·P̌π∗

0
({sil

∈ Ail
}),

and the proof is complete by induction.

Now we turn to prove the following lemma, which generalizes the conclusions drawn in [7] for
uniformly ergodic Markov chains.

Lemma 3.2. Let the Markov chain (Xn)n>0 be recurrent (and (Xnm)n>0 be recurrent) and
let the minorization condition (4) hold with π(C) > 0. Then

L(Xτα̌(1)|{X0, Y0} ∈ α̌) = L(Xσα̌(0)|{X0, Y0} ∼ ν∗
m) = πC(·), (13)

where πC(·) is a probability measure proportional to π truncated to C, that is πC(B) =
π(C)−1π(B ∩ C).

Proof. The first equation in (13) is a straightforward consequence of the split chain construc-
tion. To prove the second one we use Theorem 10.0.1 of [11] for the split m−skeleton with
A = α̌. Thus τA = τα̌(1) and π̌ := π∗ is the invariant measure for the split m−skeleton. Let
C ⊇ B ∈ B(X ), and compute

επ(B) = π̌(B × {1}) =

∫

α̌

Ěx,y





τα̌(1)
∑

n=1

IB×{1}(Xnm, Yn)



 π̌(dx, dy)

= π̌(α̌)Ěν∗

m





σα̌(0)
∑

n=0

IB×{1}(Xnm, Yn)



 = π̌(α̌)Ěν∗

m
IB(Xσα̌(0)).

This implies proportionality and the proof is complete.

Lemma 3.3. Ěπ∗

0
s2

i ≤ m2πḡ2

επ(c) < ∞ and (si)i>0 are 1-dependent identically distributed r.v.’s.

Proof. Recall that si =
∑m−1

k=0 ḡ(Xσα̌(i+1)m+k) − Ěπ∗

0

(

∑m−1
k=0 ḡ(Xσα̌(i+1)m+k)

)

and is a func-

tion of the random variable

{Xσα̌(i+1)m, . . . ,Xσα̌(i+1)m+m−1}. (14)

By µi(·) denote the distribution of (14) on Xm. We will show that µi does not depend on i.
From (8), (11) and the Bayes rule, for x ∈ C, we obtain

P̌(Xnm+1 ∈ dx1, . . . ,X(n+1)m−1 ∈ dxm−1,X(n+1)m ∈ dy|Y n
0 ,Xnm

0 ;Yn = 1,Xnm = x) =

=
νm(dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy). (15)
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Lemma 3.2 together with (15) yields

P̌(Xnm ∈ dx,Xnm+1 ∈ dx1, . . . ,X(n+1)m−1 ∈ dxm−1,X(n+1)m ∈ dy| (16)

|Y n
0 ,Xnm

0 ;Yn = 1;σα̌(0) < n) = πC(dx)
νm(dy)

Pm(x, dy)
P (x, dx1) · · ·P (xm−1, dy).

Note that νm(dy)
P m(x,dy) is just a Radon-Nykodym derivative and thus (16) is a well defined measure

on Xm+1, say µ(·). It remains to notice, that µi(A) = µ(A×X ) for any Borel A ⊂ Xm. Thus
µi, i > 0 are identical and hence si, i > 0 have the same distribution. Due to Lemma 2.2 we

obtain that si, i > 0 are 1-dependent. To prove Ěπ∗

0
s2

i < ∞, we first note that νm(dy)
P m(x,dy) 6 1/ε

and also πC(·) 6
1

π(C)π(·). Hence

µi(A) = µ(A ×X ) 6
1

επ(C)
µchain(A),

where µchain is defined by π(dx)P (x, dx1) . . . P (xm−2, dxm−1). Thus

∣

∣

∣

∣

∣

Ěπ∗

0

(

m−1
∑

k=0

ḡ(Xσα̌(i+1)m+k)

)∣

∣

∣

∣

∣

≤ mπ|ḡ|
επ(C)

< ∞.

Now let s̃i =
∑m−1

k=0 ḡ(Xσα̌(i+1)m+k) and proceed

Ěπ∗

0
s2

i 6 Ěπ∗

0
s̃2

i 6
1

επ(c)
µchains̃2

i =
1

επ(c)
Eπ

(

m−1
∑

k=0

ḡ(Xk)

)2

6
m

επ(c)
Eπ

[

m−1
∑

k=0

ḡ2(Xk)

]

6
m2πḡ2

επ(c)
.

We need a result which gives the connection between stochastic boundedness and the existence
of the second moment of si. We state it in a general form.

Theorem 3.4. Let (Xn)n>0 be a sequence of independent identically distributed random vari-

ables and Sn =
∑n−1

k=0 Xk. Suppose that (τn) is a sequence of positive, integer valued r.v.’s
such that τn/n → a ∈ (0,∞) in probability when n → ∞ and the sequence (n−1/2Sτn

) is
stochastically bounded. Then EX2

0 < ∞ and EX0 = 0.

The proof of Theorem 3.4 is based on the following lemmas.

Lemma 3.5. Let δ ∈ (0, 1) and t0 := sup{t > 0: sup06k6n P(|Sk| > t) > δ}. Then
P(|S10n| > 4t0) > (1 − δ)(δ/4)20 and P(supk6n |Sk| 6 3t0) > 1 − 3δ.

Proof. By the definition of t0 there exists 0 6 n0 6 n such that P(|Sn0
| > t0) > δ. Then

either P(|Sn| > t0/2) > δ/2 or P(|Sn| > t0/2) < δ/2 and consequently

P(|Sn−n0
| > t0/2) = P(|Sn − Sn0

| > t0/2) > P(|Sn0
| > t0) − P(|Sn| > t0/2) > δ/2.
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Thus there exists n/2 6 n1 6 n such that P(|Sn1
| > t0/2) > δ/2. Let 10n = an1 + b with

0 6 b < n1, then 10 6 a 6 20,

P(|San1
| > 5t0) > P(San1

> at0/2) + P(San1
6 −at0/2)

> (P(Sn1
> t0/2))a + (P(Sn1

6 −t0/2))a
> (δ/4)a,

hence

P
(

|S10n| > 4t0
)

> P
(

|San1
| > 5t0

)

P
(

|S10n − San1
| 6 t0

)

> (δ/4)a(1 − δ) > (1 − δ)(δ/4)20.

Finally by the Levy-Octaviani inequality we obtain

P
(

sup
k6n

|Sk| > 3t0

)

6 3 sup
k6n

P
(

|Sk| > t0
)

6 3δ.

Lemma 3.6. Let c2 < Var(X1), then for sufficiently large n, P(|Sn| > c
√

n/4) > 1/16.

Proof. Let (X ′
i) be an independent copy of (Xi) and S′

k =
∑n

i=1 X ′
i. Moreover let (εi) be a

sequence of independent symmetric ±1 r.v.’s, independent of (Xi) and (X ′
i). For any reals (ai)

we get by the Paley-Zygmund inequality,

P

(

∣

∣

n
∑

i=1

aiεi

∣

∣ >
1

2

(

∑

i

a2
i

)1/2
)

= P

(

∣

∣

∣

n
∑

i=1

aiεi

∣

∣

∣

2

>
1

4
E

∣

∣

∣

n
∑

i=1

aiεi

∣

∣

∣

2
)

>

(

1 − 1

4

)2
(

E|∑n
i=1 aiεi|2

)2

E|∑n
i=1 aiεi|4

>
3

16
.

Hence

P
(

|Sn − S′
n| >

c

2

√
n
)

= P
(

|
n

∑

i=1

εi(Xi − X ′
i)| >

c

2

√
n
)

>
3

16
P

(

n
∑

i=1

(Xi − X ′
i)

2
> c2n

)

>
1

8

for sufficiently large n by the Weak LLN. Thus

1

8
6 P

(

|Sn − S′
n| >

c

2

√
n
)

6 P
(

|Sn| >
c

4

√
n
)

+ P
(

|S′
n| >

c

4

√
n
)

6 2P
(

|Sn| >
c

4

√
n
)

.

Corollary 3.7. Let c2 < Var(X1), then for sufficiently large n, P(inf10n6k611n |Sk| >
1
4c
√

n) >

2−121.

Proof. Let t0 be as in Lemma 3.5 for δ = 1/16, then

P
(

inf
10n6k611n

|Sk| > t0

)

> P
(

|S10n| > 4t0, sup
10n6k611n

|Sk − S10n| 6 3t0

)

= P
(

|S10n| > 4t0
)

P
(

sup
k6n

|Sk| 6 3t0

)

> 2−121.

Hence by Lemma 3.5 we obtain t0 > c
√

n/4 for large n.
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Proof of Theorem 3.4. By Corollary 3.7 for any c2 < Var(X) we have,

P
(

|Sτn
| >

c

20

√
an

)

> P

(

∣

∣

τn

n
− a

∣

∣ 6
a

21
, inf

20
21 an6k6 22

21 an
|Sk| >

c

20

√
an

)

>

> P

(

inf
20
21 an6k6 22

21 an
|Sk| >

c

4

√

2an

21

)

− P
(

∣

∣

τn

n
− a

∣

∣ >
a

21

)

> 2−121 − P
(

∣

∣

τn

n
− a

∣

∣ >
a

21

)

> 2−122

for sufficiently large n. Since (n−1/2Sτn
) is stochastically bounded, we immediately obtain

Var(X1) < ∞. If EX1 6= 0 then

∣

∣

1√
n

Sτn

∣

∣ =
∣

∣

Sτn

τn

∣

∣

∣

∣

τn

n

∣

∣

√
n → ∞ in probability when n → ∞.

4 A Characterization of
√

n-CLTs

In this section we provide a generalization of Theorem 17.3.6 of [11]. We obtain an if and
only if condition for the

√
n-CLT in terms of finiteness of the second moment of a centered

excursion from α̌.

Theorem 4.1. Suppose that (Xn)n>0 is ergodic and π(g2) < ∞. Let νm be the measure
satisfying (4), then the

√
n−CLT holds if and only if

Ěν∗

m

[( σα̌(0)
∑

n=0

Zn(ḡ)

)2]

< ∞. (17)

Furthermore we have the following formula for variance

σ2
g =

επ(C)

m

{

Ěν∗

m

[( σα̌(0)
∑

n=0

Zn(ḡ)

)2]

+ 2Ěν∗

m

[( σα̌(0)
∑

n=0

Zn(ḡ)

)( σα̌(1)
∑

n=σα̌(0)+1

Zn(ḡ)

)]

}

.

Proof. For n > 0 define

ln := max{k > 1 : m(σα̌(k) + 1) 6 n}

and for completeness ln := 0 if m(σα̌(0) + 1) > n. First we are going to show that

∣

∣

∣

∣

1√
n

n−1
∑

j=0

ḡ(Xj) −
1√
n

ln−1
∑

j=0

sj

∣

∣

∣

∣

→ 0 in probability. (18)

Thus we have to verify that the initial and final terms of the sum do not matter. First
observe that by the Harris recurrence property of the chain σα̌(0) < ∞, P̌π∗

0
-a.s. and hence

limn→∞ P̌π∗

0
(mσα̌(0) > n) = 0 and P̌π∗

0
(σα̌(0) < ∞) = 1. This yields

∣

∣

∣

∣

1√
n

n−1
∑

j=0

ḡ(Xj) −
1√
n

n−1
∑

j=m(σα̌(0)+1)

ḡ(Xj)

∣

∣

∣

∣

→ 0, P̌ − a.s. (19)
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The second point is to provide a similar argument for the tail terms and to show that

∣

∣

∣

∣

1√
n

n−1
∑

j=m(σα̌(0)+1)

ḡ(Xj) −
1√
n

mσα̌(ln)+m−1
∑

j=m(σα̌(0)+1)

ḡ(Xj)

∣

∣

∣

∣

→ 0, in probability. (20)

For ε > 0 we have

P̌π∗

0

(

∣

∣

∣

1√
n

n−1
∑

j=m(σα̌(ln)+1)

ḡ(Xj)
∣

∣

∣
> ε

)

6 P̌π∗

0

(

1√
n

σα̌(ln+1)
∑

j=σα̌(ln)+1

Zj(|ḡ|) > ε

)

6

∞
∑

k=0

P̌α̌

(

1√
n

τα̌(1)
∑

j=1

Zj(|ḡ|) > ε, τα̌(1) > k

)

.

Now since
∑∞

k=0 P̌α̌(τα̌(1) > k) 6 Ěα̌τα̌(1) < ∞, where we use that α̌ is an atom for the
split chain, we deduce form the Lebesgue majorized convergence theorem that (20) holds.
Obviously (19) and (20) yield (18).

We turn to prove that the condition (17) is sufficient for the CLT to hold. We will show that
random numbers ln can be replaced by their non-random equivalents. Namely we apply the
LLN (Theorem 17.3.2 in [11])) to ensure that

lim
n→∞

ln
n

= lim
n→∞

1

n

[n/m]−1
∑

k=1

I{(Xmk,Yk)∈α̌} =
π̌(α̌)

m
, P̌π∗

0
− a.s. (21)

Let

n∗ := ⌊π̌(α̌)nm−1⌋, n := ⌈(1 − ε)π̌(α̌)nm−1⌉, n := ⌊(1 + ε)π̌(α̌)nm−1⌋.

Due to the LLN we know that for any ε > 0, there exists n0 such that for all n > n0 we have
P̌π∗

0
(n 6 ln 6 n) > 1 − ε. Consequently

P̌π∗

0

(

∣

∣

∣

ln−1
∑

j=0

sj −
n∗

∑

j=0

sj

∣

∣

∣
>

√
nβ

)

6 ε + P̌π∗

0

(

max
n6l6n∗

∣

∣

∣

n∗

∑

j=l

sj

∣

∣

∣
> β

√
n

)

+ (22)

+P̌π∗

0

(

max
n∗+16l6n

∣

∣

∣

l
∑

j=n∗+1

sj

∣

∣

∣
> β

√
n

)

.

Since (sj)j>0 are 1-dependent, Mk :=
∑k

j=0 sj is not necessarily a martingale. Thus to apply

the classical Kolmogorov inequality we define M0
k =

∑∞
j=0 s2jI{2j≤k} and M1

k =
∑∞

j=0 s1+2jI{1+2j≤k},
which are clearly square-integrable martingales (due to (17)). Hence

P̌π∗

0

(

max
n6l6n∗

|Mn∗ − Ml| > β
√

n
)

6 P̌π∗

0

(

max
n6l6n∗

|M0
n∗ − M0

l | >
β
√

n

2

)

+

+P̌π∗

0

(

max
n6l6n∗

|M1
n∗ − M1

l | >
β
√

n

2

)

6
4

nβ2

1
∑

k=0

(

Ěπ∗

0
|Mk

n∗ − Mk
n |2

)

6 Cεβ−2Ěν∗

m
(s2

0), (23)
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where C is a universal constant. In the same way we show that P̌(maxn∗+16l6n |Ml−Mn∗+1| >
β
√

n) 6 Cεβ−2Ěν∗

m
(s2

0), consequently, since ε is arbitrary, we obtain

∣

∣

∣

1√
n

ln−1
∑

j=0

sj −
1√
n

n∗

∑

j=0

sj

∣

∣

∣
→ 0, in probability. (24)

The last step is to provide an argument for the CLT for 1-dependent, identically distributed
random variables. Namely, we have to prove that

1√
n

n
∑

j=0

sj
d→ N (0, σ̄2), as n → ∞, where σ̄2 := Ěν∗

m
(s0(ḡ))2 + 2Ěν∗

m
(s0(ḡ)s1(ḡ)). (25)

Observe that (19), (20), (24) and (25) imply Theorem 4.1. We fix k > 2 and define ξj :=
skj+1(ḡ) + ... + skj+k−1(ḡ), consequently ξj are i.i.d. random variables and

1√
n

n
∑

j=0

sj =
1√
n

⌊n/k⌋−1
∑

j=0

ξj +
1√
n

⌊n/k⌋
∑

j=0

skj(ḡ) +
1√
n

n
∑

j=k[n/k]+1

sj . (26)

Obviously the last term converges to 0 in probability. Denoting

σ2
k := Ěπ∗

0
(ξj)

2 = (k − 1)Ěν∗

m
(s0(ḡ))2 + 2(k − 2)Ěν∗

m
(s0(ḡ)s1(ḡ)), and σ2

s := Ěν∗

m
(s0(ḡ))2.

we use the classical CLT for i.i.d. random variables to see that

1√
n

⌊n/k⌋−1
∑

j=0

ξj
d→ N (0, k−1σ2

k), and
1√
n

⌊n/k⌋
∑

j=0

skj(ḡ)
d→ N (0, k−1σ2

s). (27)

Moreover

lim
n→∞

[ 1√
n

⌊n/k⌋−1
∑

j=0

ξj +
1√
n

⌊n/k⌋
∑

j=0

skj(ḡ)
]

(28)

converges to N (0, σ2
g), with k → ∞. Since the weak convergence is metrizable we deduce from

(26), (27) and (28) that (25) holds.

The remaining part is to prove that (17) is also necessary for the CLT to hold. Note that if
∑n

k=0 ḡ(Xk)/
√

n verifies the CLT then
∑ln−1

j=0 sj is stochastically bounded by (18). We use
the decomposition si = si + si, i > 0 introduced in Section 3. By Lemma 3.3 we know that
sj is a sequence of 1-dependent random variables with the same distribution and finite second

moment. Thus from the first part of the proof we deduce that
∑ln−1

j=0 sj/
√

n verifies a CLT

and thus is stochastically bounded. Consequently the remaining sequence
∑ln−1

j=0 sj/
√

n also
must be stochastically bounded. Lemma 3.1 states that (sj)j>0 is a sequence of i.i.d. r.v.’s,

hence Ě[s2
j ] < ∞ by Theorem 3.4. Also ln/n → π̌(α̌)m−1 by (21). Applying the inequality

(a + b)2 6 2(a2 + b2) we obtain

Ěπ∗

0
[sj ]

2
6 2(Ěπ∗

0
[s2

j ] + Ěπ∗

0
[s2

j ]) < ∞
which completes the proof.

Remark 4.2. Note that in the case of m = 1 we have s̄i ≡ 0 and for Theorem 4.1 to hold, it is
enough to assume π|g| < ∞ instead of π(g2) < ∞. In the case of m > 1, assuming only π|g| <
∞ and (17) implies the

√
n-CLT, but the proof of the converse statement fails, and in fact the

converse statement does not hold (one can easily provide an appropriate counterexample).
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5 Uniform Ergodicity

In view of Theorem 4.1 providing a regeneration proof of Theorem 1.4 amounts to establishing
conditions (17) and checking the formula for the asymptotic variance. To this end we need
some additional facts about small sets for uniformly ergodic Markov chains.

Theorem 5.1. If (Xn)n>0, a Markov chain on (X ,B(X )) with stationary distribution π is
uniformly ergodic, then X is νm−small for some νm.

Hence for uniformly ergodic chains (4) holds for all x ∈ X . Theorem 5.1 is well known in
literature, in particular it results from Theorems 5.2.1 and 5.2.4 in [11] with their ψ = π.

Theorem 5.1 implies that for uniformly ergodic Markov chains (5) can be rewritten as

Pm(x, ·) = ενm(·) + (1 − ε)R(x, ·). (29)

The following mixture representation of π will turn out very useful.

Lemma 5.2. If (Xn)n>0 is an ergodic Markov chain with transition kernel P and (29) holds,
then

π = εµ := ε

∞
∑

n=0

νm(1 − ε)nRn. (30)

Remark 5.3. This can be easily extended to the more general setting than this of uniformly
ergodic chains, namely let Pm(x, ·) = s(x)νm(·) + (1 − s(x))R(x, ·), s : X → [0, 1], πs > 0.
In this case π = πs

∑∞
n=0 νmRn

#, where R#(x, ·) = (1 − s(x))R(x, ·). Related decompositions
under various assumptions can be found e.g. in [14], [7] and [3] and are closely related to
perfect sampling algorithms, such as coupling form the past (CFTP) introduced in [15].

Proof. First check that the measure in question is a probability measure.

(

ε
∞
∑

n=0

νm(1 − ε)nRn

)

(X ) = ε
∞
∑

n=0

(1 − ε)n
(

νmRn
)

(X ) = 1.

It is also invariant for Pm.
( ∞

∑

n=0

νm(1 − ε)nRn

)

Pm =

( ∞
∑

n=0

νm(1 − ε)nRn

)

(ενm + (1 − ε)R)

= εµνm +
∞
∑

n=1

νm(1 − ε)nRn =
∞
∑

n=0

νm(1 − ε)nRn.

Hence by ergodicity εµ = εµPnm → π, as n → ∞. This completes the proof.

Corollary 5.4. The decomposition in Lemma 5.2 implies that

(i) Ěν∗

m

(

σ(0)
∑

n=0

I{Xnm∈A}

)

= Ěν∗

m

(

∞
∑

n=0

I{Xnm∈A}I{Y0=0,...,Yn−1=0}

)

= ε−1π(A),

(ii) Ěν∗

m

(

∞
∑

n=0

f(Xnm,Xnm+1, . . . ;Yn, Yn+1, . . . )I{Y0=0,...,Yn−1=0}

)

=

= ε−1Ěπ∗f(X0,X1, . . . ;Y0, Y1, . . . ).
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Proof. (i) is a direct consequence of (30). To see (ii) note that Yn is a coin toss independent
of {Y0, . . . , Yn−1} and Xnm, this allows for π∗ instead of π on the RHS of (ii). Moreover the
evolution of {Xnm+1,Xnm+2, . . . ;Yn+1, Yn+2, . . . } depends only (and explicitly by (8) and (9))
on Xnm and Yn. Now use (i).

Our object of interest is

I = Ěν∗

m

[( σ(0)
∑

n=0

Zn(ḡ)

)2]

= Ěν∗

m

[( ∞
∑

n=0

Zn(ḡ)I{σα̌(0)>n}

)2]

= Ěν∗

m

[ ∞
∑

n=0

Zn(ḡ)2I{Y0=0,...,Yn−1=0}

]

+ 2Ěν∗

m

[ ∞
∑

n=0

∞
∑

k=n+1

Zn(ḡ)I{σ(0)>n}Zk(ḡ)I{σα̌(0)>k}

]

= A + B (31)

Next we use Corollary 5.4 and then the inequality 2ab 6 a2 + b2 to bound the term A in (31).

A = ε−1Ěπ∗Z0(ḡ)2 = ε−1Eπ

(

m−1
∑

k=0

ḡ(Xk)
)2

6 ε−1mEπ

[

m−1
∑

k=0

ḡ2(Xk)
]

6 ε−1m2πḡ2 < ∞.

We proceed similarly with the term B

|B| 6 2Ěν∗

m

[ ∞
∑

n=0

|Zn(ḡ)|I{σα̌(0)>n}

∞
∑

k=1

|Zn+k(ḡ)|I{σα̌(0)>n+k}

]

= 2ε−1Ěπ∗

[

|Z0(ḡ)|
∞
∑

k=1

|Zk(ḡ)|I{σα̌(0)>k}

]

.

By Cauchy-Schwarz,

Ěπ∗

[

I{σα̌(0)>k}|Z0(ḡ)||Zk(ḡ)|
]

6

√

Ěπ∗

[

I{σα̌(0)>k}Z0(ḡ)2
]

√

Ěπ∗Zk(ḡ)2

=
√

Ěπ∗

[

I{Y0=0}I{Y1=0,...,Yk−1=0}Z0(ḡ)2
]

√

Ěπ∗Z0(ḡ)2.

Observe that {Y1, . . . , Yk−1} and {X0, . . . ,Xm−1} are independent. We drop I{Y0=0} to obtain

Ěπ∗

[

I{σα̌(0)>k}|Z0(ḡ)||Zk(ḡ)|
]

6 (1 − ε)
k−1
2 Ěπ∗Z0(ḡ)2 6 (1 − ε)

k−1
2 m2πg2.

Hence |B| < ∞, and the proof of (17) is complete. To get the variance formula note that the
convergence we have established implies

I = ε−1Ěπ∗

[

Z0(ḡ)

]2

+ 2ε−1Ěπ∗

[

Z0(ḡ)

∞
∑

k=1

Zk(ḡ)I{σα̌(0)>k}

]

.

Similarly we obtain

J := 2Ěν∗

m

[

(

σα̌(0)
∑

n=0

Zn(ḡ)
)(

σα̌(1)
∑

n=σα̌(0)+1

Zn(ḡ)
)

]

= 2ε−1Ěπ∗

[

Z0(ḡ)
∞
∑

k=σα̌(0)+1

Zk(ḡ)I{σα̌(1)>k}

]

.
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Since π(C) = 1, we have σ2
g = εm−1(I + J). Next we use Lemma 2.2 and Ěπ∗Z0(ḡ) = 0 to

drop indicators and since for f : X → R, also Ěπ∗f = Eπf, we have

ε(I + J) = Ěπ∗

[

Z0(ḡ)

(

Z0(ḡ) + 2

∞
∑

k=1

Zk(ḡ)

)]

= Eπ

[

Z0(ḡ)

(

Z0(ḡ) + 2

∞
∑

k=1

Zk(ḡ)

)]

.

Now, since all the integrals are taken with respect to the stationary measure, we can for a
moment assume that the chain runs in stationarity from −∞ rather than starts at time 0 with
X0 ∼ π. Thus

σ2
g = m−1Eπ

[

Z0(ḡ)

( ∞
∑

k=−∞

Zk(ḡ)

)]

= m−1Eπ

[ m−1
∑

l=0

ḡ(Xl)

( ∞
∑

k=−∞

ḡ(Xk)

)]

= Eπ

[

ḡ(X0)
∞
∑

k=−∞

ḡ(Xk)
]

=

∫

X

ḡ2dπ + 2

∫

X

∞
∑

n=1

ḡ(X0)ḡ(Xn)dπ.

6 The difference between m = 1 and m 6= 1

Assume the small set condition (4) holds and consider the split chain defined by (8) and (9).
The following tours

{

{X(σ(n)+1)m,X(σ(n)+1)m+1, . . . ,X(σ(n+1)+1)m−1}, n = 0, 1, . . .
}

that start whenever Xk ∼ νm are of crucial importance to the regeneration theory and are
eagerly analyzed by researchers. In virtually every paper on the subject there is a claim
these objects are independent identically distributed random variables. This claim is usually
considered obvious and no proof is provided. However this is not true if m > 1.

In fact formulas (8) and (9) should be convincing enough, as Xmn+1, . . . ,X(n+1)m given Yn = 1
and Xnm = x are linked in a way described by P(x, dx1) · · ·P(xm−1, dy). In particular consider
a Markov chain on X = {a, b, c, d, e} with transition probabilities

P(a, b) = P(a, c) = P(b, b) = P(b, d) = P(c, c) = P(c, e) = 1/2, P(d, a) = P(e, a) = 1.

Let ν4(d) = ν4(e) = 1/2 and ε = 1/8. Clearly P4(x, ·) > εν4(·) for every x ∈ X , hence we
established (4) with C = X . Note that for this simplistic example each tour can start with d or
e. However if it starts with d or e the previous tour must have ended with b or c respectively.
This makes them dependent. Similar examples with general state space X and C 6= X can be
easily provided. Hence Theorem 4.1 is critical to providing regeneration proofs of CLTs and
standard arguments that involve i.i.d. random variables are not valid.
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[6] Häggström, O. (2005). On the Central Limit Theorem for Geometrically Ergodic Markov
Chains. Probability Theory and Related Fields 132 74–82. MR2136867

[7] Hobert J. P. and Robert C. P. (2004). A mixture representation of π with applications
in Markov chain Monte Carlo and perfect smpling. Ann. Appl. Probab. 14 1295–1305.
MR2071424

[8] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of
Random Variables. Wolters-Noordhof, Groningen. MR0322926

[9] Jones, G. L. (2005). On the Markov chain central limit theorem. Probability Surveys 1

299–320. MR2068475

[10] Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006). Fixed-Width Output Analysis
for Markov Chain Monte Carlo. Journal of the American Statatistical Association. 101

1537–1547. MR2279478

[11] Meyn S. P. and Tweedie R. L. (1993). Markov Chains and Stochastic Stability. Springer-
Verlag. MR1287609

[12] Nummelin E. (1978). A splitting technique for Harris recurrent chains. Z. Wahrschein-
lichkeitstheorie und Verw. Geb. 43 309–318. MR0501353

[13] Nummelin E. (1984). General Irreducible Markov Chains and Nonnegative Operators.
Cambridge University Press, Cambridge. MR0776608

[14] Nummelin E. (2002). MC’s for MCMC’ists. International Statistical Review. 70 215–240.

[15] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algorithms. 9 223–252.
MR1611693

[16] Roberts G. O. and Rosenthal J. S. (1997). Geometric Ergodicity and Hybrid Markov
Chains. Elec. Comm. Prob. 2 13–25 MR1448322

[17] Roberts G. O. and Rosenthal J. S. (2005). General state space Markov chains and MCMC
algorithms. Probability Surveys 1 20–71. MR2095565

http://www.ams.org/mathscinet-getitem?mr=1868568
http://www.ams.org/mathscinet-getitem?mr=2136867
http://www.ams.org/mathscinet-getitem?mr=2071424
http://www.ams.org/mathscinet-getitem?mr=0322926
http://www.ams.org/mathscinet-getitem?mr=2068475
http://www.ams.org/mathscinet-getitem?mr=2279478
http://www.ams.org/mathscinet-getitem?mr=1287609
http://www.ams.org/mathscinet-getitem?mr=0501353
http://www.ams.org/mathscinet-getitem?mr=0776608
http://www.ams.org/mathscinet-getitem?mr=1611693
http://www.ams.org/mathscinet-getitem?mr=1448322
http://www.ams.org/mathscinet-getitem?mr=2095565

	Introduction
	Small Sets and the Split Chain
	Tools and Preliminary Results
	A Characterization of n-CLTs
	Uniform Ergodicity
	The difference between m=1 and m =1
	References

