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Abstract We study pairs of interacting measure-valued branching processes (su-
perprocesses) with α–stable migration and (1 + β)–branching mechanism. The
interaction is realized via some killing procedure. The collision local time for such
processes is constructed as a limit of approximating collision local times. For certain
dimensions this convergence holds uniformly over all pairs of such interacting su-
perprocesses. We use this uniformity to prove existence of a solution to a competing
species martingale problem under a natural dimension restriction. The competing
species model describes the evolution of two populations where individuals of differ-
ent types may kill each other if they collide. In the case of Brownian migration and
finite variance branching, the model was introduced by Evans and Perkins (1994).
The fact that now the branching mechanism does not have finite variance requires
the development of new methods for handling the collision local time which we
believe are of some independent interest.
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1. Introduction

1.1. Background, motivation, and purpose. Measure-valued Markov branch-
ing processes (superprocesses) arise as limits of branching particle systems under-
going random migration and critical (or nearly critical) branching. In the last
decade, there has been interest in the study of such processes with interactions.
Superprocesses with finite variance branching have received much attention in the
study of models with interactions (see, e.g., [EP94, Per95, DP98, Myt98b, MP00,
FX01, DEF+02a, DEF+02b, DFM+03]). In the present paper, we would like to
pay attention to interactive superprocesses with infinite variance branching where
a killing mechanism is at play (including a point type interaction).

In the case of superprocesses with finite branching mechanism, Evans and Perkins
[EP94] initiated the study of a pair of non-supercritical continuous super-Brownian
motions in Rd with an additional point interaction (the preparation for that model
was done by Barlow et al. [BEP91]). This model is introduced to describe two pop-
ulations of competing species where inter-species “collisions” result in causalities
on either side. To be more precise, when different species come within an infinites-
imal distance of each other, then either of the colliding (infinitesimal) individuals
is killed with an infinitesimal probability. By this interaction, the basic indepen-
dence assumption in branching theory is violated, and hence the usual tools (such
as log-Laplace transforms and equations) of handling superprocesses break down.
On the other hand, a very handy feature of the model is that it is bounded from
above by two independent critical continuous super-Brownian motions (opposed to
the case of the more complicated mutually catalytic branching model of Dawson
and Perkins [DP98] and Mytnik [Myt98b]; see [DF02] for a recent survey).

Among the others, the following basic tools were used in [EP94] to construct
such a competing species model in dimensions d < 4 :
(i) a Girsanov type theorem of Dawson [Daw78], and
(ii) a Tanaka type formula for collision local times of some interacting continuous
super-Brownian motions in Rd, d < 6, from Barlow et al. [BEP91, Theorem 5.9].

Our main purpose is to construct a competing species model of this type (The-
orem 9), while dropping the finite variance branching mechanism assumption. The
basic idea is the same as in [EP94]: Prove a continuity result for the collision lo-
cal times for a large class of processes (this is Theorem 7 below) and then take
limits in a mollified equation. The technical ingredients needed to implement this
program are necessarily quite different due to the lack of higher moments, the Gir-
sanov formula (i) and the Tanaka formula (ii). In fact, Girsanov’s theorem requires
continuity in time of the martingale component, and hence finite variance of the
branching mechanism, which we want to give up. Moreover, Barlow et al.’s proof of
already mentioned Tanaka formula relies on some uniform in time and space bound
of continuous super-Brownian motion’s mass in small balls (see [BEP91, Theorem
4.7 and Corollary 4.8]). This bound is not anymore true under our assumptions,
and validity of the Tanaka formula in the more general setup remains open. So, we
had to find a different approach to construct the desired competing species model.

To prove convergence of approximating collision local times, we heavily apply a
log-Laplace technique, originally used for collision local times in [Myt98a]. In our
interacting model, an application of log-Laplace tools is possible since we can repre-
sent the collision local time for the pair of interacting superprocesses with killing as
a linear combination, see (228) below, of collision local times for independent and
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conditionally independent measure-valued processes. This representation, which
also holds for approximating collision local times, is crucial for our proofs and is
based on the domination of interacting pairs by a pair of independent critical super-
processes. The domination property is an extension of an analogous result proved
by [BEP91] for finite variance super-Brownian motions.

In this paper, we also allow the two species to have their own branching and mo-
tion indices and parameters. But to simplify the exposition, we keep the assumption
that in the branching mechanisms no supercritical components are involved.

Here we would like to mention that the questions of non-existence of the model in
higher dimensions and uniqueness for the corresponding martingale problem were
studied in [EP94], [EP98], and [Myt99] for continuous competing super-Brownian
motions. Indeed, it was proved in [EP94] that the model does not exist in dimen-
sions d ≥ 4, and that there is a unique solution to the corresponding martingale
problem in d = 1. The uniqueness for the particular symmetric case was proved in
[Myt99] for all d ≤ 3. The historical uniqueness for d ≤ 3 was proved in [EP98]. In
the general model which we consider in this paper, the questions of non-existence
in higher dimensions and uniqueness remain as interesting open problems.

1.2. Sketch of main results. Let us start with a brief modelling. For i = 1, 2,
fix constants

0 < αi ≤ 2, 0 < βi ≤ 1, and ϑi > 0 (1)

(please, do not misunderstand frequently appearing right upper indices as pow-
ers, which also occur), and introduce the (weighted) fractional Laplacian ∆αi :=

−ϑi(−∆)α
i/2 in Rd. Moreover, let

(

ξi, Πir,x , r ≥ 0, x ∈ Rd
)

denote symmetric αi–

stable processes with generator ∆αi , semigroup Si = {Sit : t ≥ 0}, and continuous
transition kernel pi = {pit(y) : t > 0, y ∈ Rd}, where, for convenience, we use
a time-inhomogeneous writing of the laws Πir,x , even though the processes are

time-homogeneous. The αi–stable process ξi will serve as the motion process of
individuals of type i.

Let Mf = Mf(R
d) denote the set of finite (non-negative) measures equipped

with the weak topology. Write 〈µ, f〉 for the integral
∫

µ(dx) f(x) and ‖µ‖ for the
total mass 〈µ, 1〉 . If we have pairs µ = (µ1, µ2) and f = (f1, f2) instead, by the
abuse of notation we write

〈µ, f 〉 :=
〈

µ1, f1
〉

+
〈

µ2, f2
〉

. (2)

Such pair µ will describe a state of the system.

Here is the rough description of a martingale problem (MP)
α,β
µ for a pair X =

(

X1, X2
)

of interacting superprocesses in Rd starting from X0 = µ, where Xi

has the underlying αi–stable symmetric motion and the branching index 1+βi. We
impose a killing described by a pair A = (A1, A2) of (random, possibly dependent)
measures on R+ × Rd, where by the abuse of notation Ait := Ai

(

[0, t]× ·
)

< ∞,
t ≥ 0, are also considered as non-decreasing Mf–valued processes. (For more
precise formulations, see Definition 5 below.) In fact, the pairs X = (X1, X2)
and A = (A1, A2) are assumed to be F·–adapted M

2
f –valued processes on some

stochastic basis (Ω,F ,F· ,P) starting from A0 = 0, and such that t 7→ At is non-
decreasing and continuous, and, for each pair ϕ = (ϕ1, ϕ2) of suitable non-negative
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test functions on Rd,

t 7→ e−〈Xt,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈Xs,ϕ〉
〈

Xs , ∆αϕ−ϕ
1+β

〉

(3)

−

∫ t

0

〈Ads ,ϕ〉 e
−〈Xs,ϕ〉, t ≥ 0,

is an F·–martingale starting from 0 at time t = 0. Here, in the spirit of our
convention (2),

〈

Xs , ∆αϕ−ϕ
1+β

〉

:=
∑

i=1,2

〈

Xi
s , ∆αiϕ

i − (ϕi)1+β
i
〉

(4)

and, if I ⊆ R+ is an interval,

〈A,ψ〉I :=

∫

I

〈Ads ,ψs〉 :=
∑

i=1,2

∫

I×Rd
Ai
(

d(s, x)
)

ψis(x), (5)

for suitable pairs of time-space functions ψ = (ψ1, ψ2) ≥ 0. We call X an (α, d,β)–
pair of interacting superprocesses in Rd starting from X0 = µ, and with killing
mechanism A. Note that, in general, due to the interaction via A, neither X
nor the Xi are superprocesses in the original meaning (as, for instance, in Dynkin

[Dyn94]). Note also that (MP)
α,β
µ implies that

t 7→
〈

Xi
t , ϕ

i
〉

−
〈

µi, ϕi
〉

−

∫ t

0

ds
〈

Xi
s ,∆αiϕ

i
〉

+
〈

Ait , ϕ
i
〉

, i = 1, 2, (6)

are F·–martingales starting from 0 at time t = 0, for each choice of the test func-
tions ϕ used in (3) (see Corollary 20.) From (6), the presence of the additional
killing described by A is clear. Actually, we will show that X is almost surely dom-
inated by a pair X̄ = (X̄1, X̄2) of independent critical (αi, d, βi)–superprocesses

X̄i, i = 1, 2, which uniquely solves the martingale problem (MP)
α,β
µ if the Ai–

terms are set to be zero [see Proposition 21(b)].
Next we recall the notion of collision local time LY of a pair Y = (Y 1, Y 2) of

Mf–valued processes. Loosely speaking, it is the measure

LY
(

d(s, x)
)

= ds Y 1
s (dx)

∫

Rd
Y 2
s (dy) δ0(x− y) (7)

on R+ × Rd. A bit more carefully, it is the limit in probability

〈

LY(t), f
〉

:= lim
ε↓0

∫ t

0

ds

∫

Rd
Y 1
s (dx)

∫

Rd
Y 2
s (dy) Jε(x− y) f

(

x+y
2

)

, (8)

if it exists for all t > 0 and all bounded continuous functions f on Rd, where Jε
is a regularization of the δ–function δ0 (for more details, see Definition 1). Note
again that most of the time we will consider LY as a non-decreasing measure-
valued process {LY(t) : t ≥ 0} where, with an abuse of notation, LY(t) (B) :=
LY
(

[0, t]×B
)

.

In the case of the mentioned pair X̄ of independent critical (αi, d, βi)–superpro-
cesses X̄i, i = 1, 2, the collision local time LX̄ exists non-trivially, provided that

1 ≤ d <
α1

β1
+
α2

β2
+ (α1 ∨ α2), (9)
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see Mytnik [Myt98a, Theorem 1(ii)]. Now, at least intuitively, the domination
X ≤ X̄ suggests that also the collision local time LX may exist non-trivially for
the (α, d,β)–pair X of interacting superprocesses in these dimensions. But this
does not necessarily imply that in these dimensions the desired competing species
model exists. Actually, for this model to make sense one expects that a single
“intrinsic particle” collides with the other population with positive probability.
This, in turn, will require a stronger dimension restriction.

Our main result will state, roughly speaking, that in dimensions d satisfying

1 ≤ d <
(α1

β1
+ α2

)

∧
(α2

β2
+ α1

)

, (10)

for all solutions (X,A) of the martingale problem (MP)
α,β
µ the convergence LεX →

LX as ε ↓ 0 holds uniformly in (X,A), provided that the pair X0 of initial
measures satisfies an energy condition (see Theorem 7).

Note that with αi ≡ 2 and βi ≡ 1 we recover results of [BEP91, Theorems 5.9
and 5.10], where (9) and (10) are read as

1 ≤ d < 6 and 1 ≤ d < 4, (11)

respectively.
As an application we construct the desired more general competing species model

(see Theorem 9). Roughly speaking, for this we will replace both A1 and A2 in

the martingale problem (MP)
α,β
µ by a multiple of the continuous collision local

time LX . Here the dimension restriction (10) is intuitively clear. In fact, recall
that αi ∧ d is the dimension of the range of an αi–stable process, and (αi/βi) ∧ d
is the carrying dimension of the non-empty support of an (αi, d, βi)–superprocess
at fixed times. Hence, for example, in dimensions d satisfying

α1

β1
+ α2 ≤ d <

α2

β2
+ α1, (12)

an “intrinsic type 2 particle” is not expected to collide with the type 1 population,
whereas an “intrinsic type 1 particle” may collide with the type 2 population. In
other words, then in (3) we should effectively have A2 = 0 in the martingale prob-

lem (MP)
α,β
µ (this means, degeneration to a “one-sided interaction”). Note that

with αi ≡ 2 and βi ≡ 1 we recover the model introduced in [EP94, Theorem 3.6].

2. Statement of results

In this section we will state our main results, Theorems 7 and 9.

2.1. Preliminaries: Notation, collision local time and measure. With c
we always denote a positive constant which might change from place to place. The
symbol c# however refers to a specific constant which occurred first around formula
line (#).

If (Ω,F) is a measurable space, write bF for the set of all bounded measurable
functions f : Ω→ R. In particular, bB = bB(Rd) denotes the space of all bounded

measurable functions f : Rd → R, and bC = bC(Rd) the subspace of bounded

continuous functions. Write f ∈ C̄ = C̄(Rd) if f ∈ bC can be continued to a

continuous function on the one-point compactification Ṙd of Rd. Equipped with
the supremum norm ‖ · ‖∞ , the Banach space C̄ is separable. Denote by Φ the
subset C̄(2) = C̄(2)(Rd) of all functions f ∈ C̄ which have the first two derivatives in
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C̄. Working again with supremum norms, Φ is a separable Banach space, too. We
will take Φ2

+ (the non-negative cone of Φ2) as the set of test functions ϕ = (ϕ1, ϕ2)

in our martingale problems. Note that Φ coincides with the domain D(∆α) of
the fractional Laplacian −(−∆)α/2, for each 0 < α ≤ 2 (see, for instance, [Yos74,
Section 9.11 and Example 9.5.2]). We also need the set Ψ2

+ , where Ψ = C̄(1,2) =

C̄(1,2)(R+ × Rd) is the set of all functions on R+ × Rd, which derivatives up to the

order (1, 2) can be extended to continuous functions on R+ × Ṙd.
For constants % ≥ 1 and T > 0, introduce the Lebesgue spaces

L% := L%(Rd,dx) and L%,T := L%
(

(0, T )× Rd, dsdx
)

. (13)

Let DMf
= D

(

R+ ,Mf(R
d)
)

denote the space of all càdlàg paths ν : R+ →Mf

equipped with the Skorohod topology. If it is not stated otherwise, under a random
process we will understand a random element in DMf

or D2
Mf

over some stochastic
basis (Ω,F ,F· ,P) (which we might need to enlarge from time to time). In this case,
by a slight abuse of notation, we simply write Y ∈ DMf

or Y ∈ D2
Mf

, respectively.

Sometimes we consider also continuous processes: Y ∈ CMf
:= C

(

R+ ,Mf(R
d)
)

equipped with the topology of uniform convergence on compact subsets of R+ .
For Y ∈ DMf

, let FYt denote the completion of the σ–field
⋂

ε>0 σ{Ys : s ≤
t+ ε}, t ≥ 0.

Recall next the notion of collision local time [compare with (7) and (8)]:

Definition 1 (Collision local time LY). Let Y = (Y 1, Y 2) be a pair of random
processes (in DMf

). A non-decreasing random process t 7→ LY(t) = LY(t, · ) (in
DMf

) is called the collision local time of the pair Y, if we have the convergence
in probability

〈

LεY(t), f
〉 P
−→
ε↓0

〈

LY(t), f
〉

, t ≥ 0, f ∈ bC. (14)

Here the approximating collision local times LεY = Lε,JY are defined by

〈

LεY(t), f
〉

:=

∫ t

0

ds

∫

Rd
Y 1
s (dx)

∫

Rd
Y 2
s (dy) Jε(x− y) f

(

x+y
2

)

, (15)

where

Jε(x) := ε−dJ(x/ε), x ∈ Rd, (16)

and J is a mollifier, that is, a non-negative, continuous, radially symmetric func-
tion on Rd with support in the unit ball in Rd and total mass

∫

Rd
dx J(x) = 1.

(Sometimes we write Lε,JY instead of LεY to stress the dependence on J within
the definition of approximating collision local times.) Moreover, the limit LY is
required to be independent of the choice of the mollifier J . 3

It is also convenient to give up the symmetry in the definition of the collision
local time:

Lemma 2 (Equivalent definition of collision local time). In Definition 1 of
the collision local time one can replace the approximating collision local times LεY =

Lε,JY by L1,ε
Y = L1,ε,J

Y or L2,ε
Y = L2,ε,J

Y defined by

〈

L1,ε
Y (t), f

〉

:=

∫ t

0

ds

∫

Rd
Y 1
s (dy)Y

2
s ∗Jε (y) f(y), t ≥ 0, f ∈ bC, (17)
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and

L2,ε
Y := L1,ε

(Y 2,Y 1) . (18)

Proof. Follows easily by the uniform continuity of f on compacts; see, for instance,
the proof of Lemma 3.4 in [EP94].

We will also need the notation of collision measure for a pair of random processes
in DMf

:

Definition 3 (Collision measure KY). Let Y = (Y 1, Y 2) be a pair of random
processes (in DMf

). A progressively measurable Mf–valued process t 7→ KY(t) =
KY(t, · ) is called the collision measure of the pair Y, if we have the convergence
in probability

〈

Kε
Y(t), f

〉 P
−→
ε↓0

〈

KY(t), f
〉

, t > 0, f ∈ bC. (19)

Here the approximating collision measures Kε
Y = Kε,J

Y are defined by

〈

Kε
Y(t), f

〉

:=

∫

Rd
Y 1
t (dx)

∫

Rd
Y 2
t (dy) Jε(x− y) f

(

x+y
2

)

, (20)

with Jε as in (16). Again, the limit KY is required to be independent of the
choice of the mollifier J . 3

Remark 4 (Open problem). It seems to be an open problem whether the pro-
cess t 7→ KY(t) can be realized in DMf

. 3

2.2. (α, d,β)–pair of interacting superprocesses with killing. First we will

make precise the martingale problem (MP)
α,β
µ mentioned around (3).

Definition 5 (Martingale problem (MP)
α,β
µ ). For pairs α,β, and ϑ as in (1),

and µ = (µ1, µ2) ∈ M2
f , let X = (X1, X2) and A = (A1, A2) be F·–adapted

processes (in D2
Mf

) such that t 7→ At is non-decreasing, continuous, starting from

A0 = 0, and, for each ϕ = (ϕ1, ϕ2) ∈ Φ2
+ ,

t 7→ e−〈Xt,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈Xs,ϕ〉
〈

Xs , ∆αϕ−ϕ
1+β

〉

(21)

−

∫ t

0

〈Ads ,ϕ〉 e
−〈Xs,ϕ〉, t ≥ 0,

is an F·–martingale starting from 0 at time t = 0 [where we used obvious con-
ventions as in the formula lines (4) and (5)]. Then we say that (X,A) solves the

martingale problem (MP)
α,β
µ . 3

A solution (X,A) of this martingale problem is called an (α, d,β)–pair X =
(X1, X2) of interacting superprocesses in Rd starting from X0 = µ and with killing
mechanism A. (For existence of a solution, think of the case A = 0 of independent
critical superprocesses; see, for instance, Lemma 14(a) below with κ = 0 =◦A.)

We will use the following terminology.

Definition 6 (Measures of finite energy). The pair µ = (µ1, µ2) ∈ M2
f of

measures is said to have finite energy if
∫ 1

0

ds

∫

Rd
dx µ1∗ p1s (x)µ

2∗ p2s (x) < ∞. (22)
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In this case we write µ ∈Mf,e . 3

Note that µ ∈M2
f has certainly finite energy if one of the measures µi is absolutely

continuous with a bounded density function. On the other hand, the finite energy
condition is violated if d > 1 and there is a z ∈ Rd such that µ1

(

{z}
)

µ2
(

{z}
)

> 0.
Here is our main result:

Theorem 7 (Uniform convergence in approximating LXn). Fix α,β satis-
fying the dimension restriction (10), and µ ∈Mf,e . Consider any family

{

(Xn,An):

n ≥ 1
}

of solutions to the martingale problem (MP)
α,β
µ on (Ω,F ,F· ,P). Then,

for n fixed, Xn has a continuous collision local time LXn . Moreover, for each
T > 0, f ∈ bC, and δ ∈ (0, 1),

lim
ε↓0

sup
n≥1

P

(

sup
0≤t≤T

∣

∣

∣

〈

LεXn(t), f
〉

−
〈

LXn(t), f
〉

∣

∣

∣
> δ

)

= 0. (23)

Loosely speaking, for this family {Xn : n ≥ 1}, continuous collision local times
LXn could be defined as a uniform in n limit of approximating collision local times.

2.3. Existence of an (α, d,β)–pair of competing superprocesses. Next we

specify the former martingale problem (MP)
α,β
µ by requiring Ai = λiLX , i = 1, 2.

Definition 8 (Martingale problem (MP)
α,β,λ
µ ). For pairs α,β,ϑ as in (1), µ

in M2
f , and any pair λ = (λ1, λ2) ∈ R2

+ , let X = (X1, X2) be an F·–adapted
process (in D2

Mf
) such that, for each pair ϕ = (ϕ1, ϕ2) ∈ Φ2

+ ,

t 7→ e−〈Xt,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈Xs,ϕ〉
〈

Xs , ∆αϕ−ϕ
1+β

〉

(24)

−

∫ t

0

〈Λds ,ϕ〉 e
−〈Xs,ϕ〉, t ≥ 0,

is an F·–martingale starting from 0 at time t = 0, where

Λ = (Λ1,Λ2) : = (λ1LX , λ
2LX). (25)

Then we say that X solves the martingale problem (MP)
α,β,λ
µ . 3

Note that the requirement on the existence of the collision local time LX is an
integral part of the martingale problem for X. As an application of Theorem 7 we
will derive the following existence statement:

Theorem 9 (Existence of the competing species model). Fix α,β satisfy-
ing the dimension restriction (10) and µ ∈ Mf,e . Then, for each λ ∈ R2

+ , there

is a solution X to the martingale problem (MP)
α,β,λ
µ .

Such solution X we call an (α, d,β)–pair of competing superprocesses in Rd

starting from X0 = µ, and having competition rates λ = (λ1, λ2).
To verify Theorem 9, our strategy will be to show that to each ε > 0, there

is a solution (Xε,Λε) to the martingale problem (MP)
α,β
µ where Λi,ε := λiLi,εX ,

i = 1, 2, with (asymmetric) approximating collision local times Li,εX from Lemma 2.
The construction of (Xε,Λε) is done via a Trotter type scheme: On small time
intervals only one population is affected by the killing provided by the other pop-
ulation. The roles of populations are alternated on subsequent intervals. Then the
interval length is shrinked to zero. Based on Theorem 7 we then pass to a limit
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along a suitable subsequence εn ↓ 0 to construct the desired competing species
model.

Remark 10 (Some open problems). Uniqueness for the martingale problem

(MP)
α,β,λ
µ remains an open problem. We see two different possible ways to attack

this. One could try to reformulate the competing species model in the historical
setting and to use Evans and Perkins [EP98] to get historical uniqueness of the
model. The other approach may be to use a duality technique (see [Myt99] for

the finite variance case) to prove the ordinary uniqueness for (MP)
α,β,λ
µ , but this

approach probably works only in the symmetric case α1 = α2, β1 = β2, ϑ1 = ϑ2,
and λ1 = λ2.

Another open problem which seems to be interesting is to prove non-existence

of solutions to (MP)
α,β,λ
µ in dimensions

d ≥
(α1

β1
+ α2

)

∧
(α2

β2
+ α1

)

(26)

for λ1λ2 > 0. In the continuous super-Brownian motion case, this was solved in
[EP94, Theorem 5.3]. 3

2.4. Outline. The remainder of the paper is organized as follows. In the next sec-
tion we will show that, on some probability space, interacting superprocesses with

killing satisfying the martingale problem (MP)
α,β
µ can simultaneously be domi-

nated by a pair of independent critical superprocesses. In Section 4 we carry out a
delicate analysis of solutions to log-Laplace equations with generalized input data.
Properties of solutions to these equations will be crucial for the proof of Theorem 7
which will be provided in the subsequent section. The proof of Theorem 9 is given
in Section 6. It is based on Theorem 7 and an analysis of the limiting behavior of
approximating competing species models. Some auxiliary results are collected in
an appendix.

3. Domination by independent critical superprocesses

In this section we will show that interacting superprocesses with killing can be
simultaneously dominated by independent critical superprocesses. These results
are generalizations of the case of continuous super-Brownian motions dealt with
in [BEP91]. In Subsections 3.1-3.6 we provide auxiliary results mainly related to
the martingale properties of the processes. They will be used for the proof of the
domination property (see Proposition 21 and Corollary 23 in Subsections 3.7 and 3.8
below). For basic facts on superprocesses, we refer to [Daw93, Dyn94, LG99, Eth00],
or [Per02].

3.1. Extension of the martingale problem (MP)
α,β
µ . By standard techniques,

we get the following extension of the martingale problem (MP)
α,β
µ (we skip the

details, cf., for instance, Lemma 6.1.2 in [Daw93]). Recall our conventions as in (4)
and (5), and the set Ψ2

+ of time-space test functions introduced in the beginning
of Subsection 2.1.



INFINITE VARIANCE COMPETING PROCESSES 11

Lemma 11 (Extension of (MP)
α,β
µ ). If (X,A) is a solution to the martingale

problem (MP)
α,β
µ , then for all ψ ∈ Ψ2

+ ,

t 7→ e−〈Xt,ψt〉 − e−〈µ,ψ0〉 +

∫ t

0

ds e−〈Xs,ψs〉
〈

Xs , ∆αψs +
∂

∂s
ψs −ψ

1+β
s

〉

−

∫ t

0

〈Ads ,ψs〉 e
−〈Xs,ψs〉, t ≥ 0, (27)

is an F·–martingale starting from 0 at time t = 0.

3.2. (α, d,β)–pair of independent superprocesses. We start by recalling the
notion of an (α, d,β)–pair of independent superprocesses X with killing rate κ
and immigration processes ◦A (no dimension restriction is needed here).

Definition 12 (Martingale problem (MP)
α,β
µ,κ,◦A ). For pairs α,β,ϑ as in (1),

µ = (µ1, µ2) ∈ M2
f , continuous κ = (κ1, κ2) : R+ × Rd → R+ × R+ , and (deter-

ministic) non-decreasing ◦A = (◦A1, ◦A2) ∈ D2
Mf

with ◦A0 = 0, let X = (X1, X2)

be an F·–adapted process (in D2
Mf

) such that for each pair ϕ = (ϕ1, ϕ2) ∈ Φ2
+ ,

t 7→ e−〈Xt,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈Xs,ϕ〉
〈

Xs , ∆αϕ− κϕ−ϕ
1+β

〉

(28)

+

∫

(0,t]

〈◦Ads ,ϕ〉 e
−〈Xs,ϕ〉, t ≥ 0,

is an F·–martingale starting from 0 at time t = 0. Then we say that X =
◦AX

solves the martingale problem (MP)
α,β
µ,κ,◦A . 3

Note the differences with Definition 5. First of all, there we did not allow an
immigration by some ◦A. On the other hand, here the killing A is of the particular
form Ai

(

d(s, x)
)

= κis(x)X
i
s(dx) ds where κ is deterministic, leading to the fact

that the pair X has independent marginals X1, X2.

Definition 13 (Pair of log-Laplace functions). Consider pairs ϕ = (ϕ1, ϕ2) in
bB2+(R

d), ψ = (ψ1, ψ2) ∈ bB2+(R+×Rd), and continuous κ = (κ1, κ2) : R+×Rd →

R+×R+ . For fixed i ∈ {1, 2} and t ≥ 0, let ui,t = ui,t(ϕi, ψi) denote the unique
non-negative solution to the so-called log-Laplace equation

ui,tr (x) = Πir,x

(

ϕi(ξit) +

∫ t

r

ds
[

ψis(ξ
i
s)− κ

i
s(ξ

i
s)u

i,t
s (ξis)−

(

ui,ts (ξis)
)1+βi

]

)

= Sit−rϕ
i (x) +

∫ t

r

ds Sis−r

[

ψis − κ
i
s u

i,t
s − (ui,ts )1+β

i
]

(x), (29)

(r, x) ∈ [0, t]×Rd. We call ut = ut(ϕ,ψ) :=
(

u1,t(ϕ1, ψ1), u2,t(ϕ2, ψ2)
)

the pair of
log-Laplace functions (on [0, t] with killing rate κ and with input data ϕ,ψ ). 3

For the unique existence of solutions, see, for instance, [Dyn02, Theorem 4.1.1].
Note that the ui,t are continuous functions on [0, t) × Rd. Moreover, for ϕ ∈
Φ2
+ , ψ ∈ Ψ2

+ , and i, t, κi fixed, ui,t = ui,t(ϕi, ψi) ≥ 0 from the log-Laplace
equation (29) is the unique solution to the Φ–valued ordinary differential equation

−
∂

∂r
ui,tr = ∆αi u

i,t
r + ψi − κir u

i,t
r − (ui,tr )1+β

i

on (0, t)× Rd

with terminal condition ui,tt− = ϕi.







(30)
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In the following lemma we collect some standard facts on superprocesses, see, for
instance, Roelly-Coppoletta [RC86], Iscoe [Isc86, Theorems 3.1 and 3.2], Dawson
[Daw93, Chapter 6], and Dynkin [Dyn93, Theorems 2.1, 3.1, and 4.1].

Lemma 14 (Independent superprocesses with immigration). Consider
α,β,ϑ,µ, ◦A as in Definition 12. Then the following statements hold.

(a) (Uniqueness): There is a unique (in law) solution X to the martingale

problem (MP)
α,β
µ,κ,◦A of Definition 12.

(b) (Strong Markov): This X is a time-inhomogeneous strong Markov pro-
cess starting from X0 = µ, having independent marginal processes.

(c) (Log-Laplace representation): X has the following log-Laplace transi-
tion functionals: For 0 ≤ r ≤ t, non-negative ϕ = (ϕ1, ϕ2) ∈ bB2(Rd), and
non-negative ψ = (ψ1, ψ2) ∈ bB2(R+ × Rd),

P

{

exp
[

− 〈Xt ,ϕ〉 −

∫ t

r

ds 〈Xs ,ψs〉
]

∣

∣

∣

∣

Fr

}

= exp
[

−
〈

Xr ,u
t
r

〉

−
〈

◦A,ut
〉

(r,t]

]

, (31)

where, for t fixed, ut = ut(ϕ,ψ) is the pair of log-Laplace functions accord-
ing to Definition 13.

(d) (Expectations): For r, t,ϕ as in (c),

P
{

〈Xt ,ϕ〉
∣

∣ Fr
}

=
∑

i=1,2

〈

Xi
r ,S

i
t−rϕ

i
〉

(32)

+
∑

i=1,2

∫

(r,t]×Rd

◦Ai
(

d(s, x)
)

Sit−rϕ
i (x).

(e) (Exponential martingale): For fixed T ≥ 0 and in the case ϕ ∈ Φ2
+ ,

t 7→ exp
[

−
〈

Xt ,u
T
t (ϕ,0)

〉

+
〈

◦A,uT (ϕ,0)
〉

(0,t]

]

, 0 ≤ t ≤ T,

is an F·–martingale.

We call this process X the (α, d,β)–pair of independent superprocesses with
killing rate κ and immigration ◦A, starting from X0 = µ. It is said to be critical
if κ = 0. Of course, the X i are ordinary independent (αi, d, βi)–superprocesses
with killing rate κi and with immigration processes ◦Ai, i = 1, 2. We write

(

◦Ω, ◦F, ◦F· ,
◦Pµ,κ,◦A

)

(33)

for the canonical basis of this process.

3.3. Properties of log-Laplace functions. We add here a couple of properties
of these log-Laplace functions, the proofs are postponed to Subsection A.4 in the
appendix.

Lemma 15 (First order considerations of log-Laplace functions).Consider
t, ε > 0, (ϕ,ψ) ∈ Φ2

+×Ψ2
+ and the pairs u

t = ut(ϕ,ψ) and ut+ε = ut+ε(ϕ,ψ) of
log-Laplace functions according to Definition 13 with κ = 0. Fix i ∈ {1, 2}. Then
the following statements hold.
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(a) (Bounded pointwise convergence): For ϕ ∈ Φ+ ,

1

ε

(

ui,t+εt (ϕ, 0)− ϕ
)

−→
ε↓0

∆αiϕ− ϕ
1+βi boundedly pointwise on Rd.

(b) (Uniform boundedness): For ϕ ∈ Φ+ ,

sup
t≤s≤t+ε

1

ε

∥

∥ui,t+εs (ϕ, 0)− ϕ
∥

∥

∞
≤ ‖∆αiϕ‖∞ + ‖ϕ‖1+β

i

∞ . (34)

(c) (Uniform convergence in time-space): For (ϕ,ψ) ∈ Φ+ ×Ψ+ ,

sup
0≤r≤t

∥

∥

∥

1

ε
ui,tr (εϕ, εψ)− Sit−rϕ−

∫ t

r

ds Sis−rψs

∥

∥

∥

∞
−→
ε↓0

0. (35)

Occasionally we will also need to handle the case of terminal conditions in L1.

Lemma 16 (L1 terminal condition). Fix i ∈ {1, 2} and t > 0.

(a) (Unique existence): Let ϕ ∈ L1
+ . Then there is a unique non-negative

solution ui,t = ui,t(ϕ, 0) to equation (29), and ui,tr is continuous (on Rd),
for all r ∈ [0, t).

(b) (Convergence): Let ϕε ∈ L
1
+ , ε ∈ [0, 1], and assume that ϕε → ϕ0 in

L1 as ε ↓ 0 and

sup
0<ε≤1

ess sup
x∈Rd

∣

∣ϕε(x)
∣

∣ < ∞. (36)

Then, for each r ∈ [0, t),

ui,tr (ϕε , 0) −→
ε↓0

ui,tr (ϕ0 , 0) uniformly on compacts of Rd. (37)

3.4. An exponential martingale for solutions to (MP)
α,β
µ . ¿From the ex-

tended martingale problem in Lemma 11 we will construct another exponential
martingale:

Proposition 17 (Exponential martingale related to (MP)
α,β
µ ). Fix α,β,ϑ

as in (1) and µ ∈ M2
f . Consider a solution (X,A) to the martingale problem

(MP)
α,β
µ of Definition 5. Then, for each T ≥ 0 and ϕ in Φ2

+ ,

t 7→ exp
[

−
〈

Xt ,u
T
t (ϕ,0)

〉

−

∫ t

0

〈

Ads ,u
T
s (ϕ,0)

〉

]

, 0 ≤ t ≤ T, (38)

is an F·–martingale. Conversely, let X and A be F·–adapted processes (in D2
Mf

)
such that t 7→ At is non-decreasing and continuous. If for each T ≥ 0 and
ϕ in Φ2

+ the process in (38) is an F·–martingale, then (X,A) is a solution to the

martingale problem (MP)
α,β
µ .

To prepare for the proof of this proposition, we deal with the following lemma.

Lemma 18 (Expectation). Let (X,A) be an F·–adapted process in D
4
Mf

with
deterministic initial state X0 and such that A is non-decreasing, continuous,
starting from A0 = 0, and, for each T > 0, ϕ ∈ Φ2

+ , the process in (38) is
an F·–martingale. Then

P
(

〈Xt ,1〉+ 〈At ,1〉
)

= 〈X0 ,1〉, t ≥ 0. (39)
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Proof. By Lemma 15(c), we have

1

ε
ui,Ts (ε1, 0) (x) −→

ε↓0
1, uniformly in (s, x) ∈ [0, T ]× Rd. (40)

Hence,

1

ε

(

1− exp
[

−
〈

XT , ε1)
〉

−

∫ T

0

〈

Ads ,u
T
s (ε1,0)

〉

]

)

(41)

−→
ε↓0

〈XT ,1〉+ 〈AT ,1〉 , P–a.s.

On the other hand, by (38) and again by Lemma 15(c),

1

ε
P

(

1− exp
[

−
〈

XT , ε1)
〉

−

∫ T

0

〈

Ads ,u
T
s (ε1,0)

〉

]

)

(42)

=
1

ε

(

1− exp
[

−
〈

X0 ,u
T
0 (ε1,0)

〉

]

)

−→
ε↓0

〈X0 ,1〉.

By Fatou’s lemma, we get

P
(

〈Xt ,1〉+ 〈At ,1〉
)

≤ 〈X0 ,1〉 < ∞. (43)

Now use the above procedure again, domination 1
ε u

T
s (ε1,0) ≤ 1, and apply dom-

inated convergence to get the desired result.

3.5. Proof of Proposition 17. 1◦ (First claim). Let (X,A) be a solution to

(MP)
α,β
µ , and fix T,ϕ as in the proposition. Consider additionally ψ ∈ Ψ2

+ . Re-

call our convention (5). From the integration by parts formula for semimartingales
(see, for instance, Protter [Pro90, Corollary II.22.2]),

e−〈Xt,ψt〉 e−〈A,ψ〉[0,t] − e−〈X0 ,ψ0〉 (44)

= −

∫ t

0

〈Ads ,ψs〉 exp
[

−
〈

Xs ,ψs
〉

− 〈A,ψ〉[0,s]

]

+

∫

(0,t]

de−〈Xs,ψs〉e−〈A,ψ〉[0,s] .

In fact,

t 7→ e−〈A,ψ〉[0,t] , 0 ≤ t ≤ T, (45)

is a continuous function of bounded variation, hence its quadratic variation process
is constantly 0. But then the bracket process of the two semimartingales

t 7→ e−〈Xt,ψt〉 and t 7→ e−〈A,ψ〉[0,t] (46)

vanishes (use, e.g., the Kunita-Watanabe inequality, [Pro90, Theorem II.25]). Note
also that by the continuity of A no left limits appear in (44). Next use the extended

martingale problem from Lemma 11 to substitute for de−〈Xs,ψs〉 into (44). This
implies that

t 7→ exp
[

− 〈Xt , ψt〉− 〈A,ψ〉[0,t]

]

− e−〈X0 ,ψ0〉 (47)

+

∫ t

0

ds exp
[

−
〈

Xs ,ψs
〉

− 〈A,ψ〉[0,s]

]〈

Xs , ∆αψs +
∂

∂s
ψs −ψ

1+β
s

〉

,

0 ≤ t ≤ T, is an F·–martingale. Specializing to ψ = uT (ϕ,0), the first claim in
the lemma follows since this ψ solves the differential equation (30).
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2◦ (Second claim). Now let (X,A) and ϕ be such that the process in (38) is a
martingale. Assume for the moment that

t 7→ Zt +

∫ t

0

ds Zs

〈

Xs , ∆αϕ−ϕ
1+β

〉

is a martingale, (48)

where

Zt := exp
[

− 〈Xt , ϕ〉 − 〈A,ϕ〉[0,t]

]

, t ≥ 0. (49)

By the integration by parts formula (see, for instance, [Pro90, Corollary II.22.2]),
applied to the semimartingales

t 7→ Zt and t 7→ e〈A,ϕ〉[0,t] , (50)

we get

e−〈Xt,ϕ〉 = Zt e
〈A,ϕ〉[0,t] = Z0 +

∫ t

0

d
(

e〈A,ϕ〉[0,s]
)

Zs +

∫

(0,t]

d(Zs) e
〈A,ϕ〉[0,s] (51)

= Z0 +

∫ t

0

〈Ads ,ϕ〉 e
〈A,ϕ〉[0,s]Zs

−

∫ t

0

ds Zs

〈

Xs , ∆αϕ−ϕ
1+β

〉

e〈A,ϕ〉[0,s]

+

∫

(0,t]

d(local martingale)s e
〈A,ϕ〉[0,s] ,

where in the last step we used the martingale (48). Hence, by definition (49) of Z,

e−〈Xt,ϕ〉 = e−〈X0,ϕ〉 (52)

+

∫ t

0

(

〈Ads ,ϕ〉+ ds
〈

Xs , −∆αϕ+ϕ1+β
〉)

e−〈Xs,ϕ〉 + Mϕ
t ,

where Mϕ is a local martingale. To get the martingale statement (21), we need to
show that Mϕ is indeed a martingale. But for any T > 0,

sup
t≤T

|Mϕ
t | ≤ sup

t≤T

∣

∣e−〈Xt,ϕ〉 − e−〈X0,ϕ〉
∣

∣ (53)

+ sup
t≤T

∫ t

0

∣

∣

∣

∣

〈Ads ,ϕ〉+ ds
〈

Xs , −∆αϕ+ϕ1+β
〉

∣

∣

∣

∣

e−〈Xs,ϕ〉

≤ 1 + ‖ϕ‖∞ 〈AT ,1〉+
(

‖∆αϕ‖∞ + ‖ϕ‖1+β∞

)

∫ T

0

ds 〈Xs ,1〉 ,

where, by a slight abuse, we use notation as ‖ϕ‖∞ := ‖ϕ1‖∞ + ‖ϕ2‖∞ . By
Lemma 18, the latter expression has finite expectation, hence P supt≤T |M

ϕ
t | <∞.

Now the martingale claim on Mϕ follows, for instance, from [Pro90, Theorem 1.47].
It remains to verify the martingale statement (48).

3◦ (Sufficient condition for (48)). Note first that

t 7→
1

ε
P
{

∫ ε

0

ds Zt+s

∣

∣

∣
Ft

}

−
1

ε

∫ t

0

ds P {Zs+ε−Zs | Fs} (54)

is a martingale, for each ε > 0 (see, for instance, [EK86, Proposition 2.7.5]). The
first term goes to Zt in L1 = L1(P) as ε ↓ 0, for each t > 0, by dominated
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convergence. Now, in order to get (48), it is enough to check that in L1,

1

ε

∫ t

0

ds P {Zs+ε−Zs | Fs} −→
ε↓0

−

∫ t

0

ds Zs

〈

Xs , ∆αϕ−ϕ
1+β

〉

, (55)

for each t > 0. Note that

ε−1P {Zt+ε−Zt | Ft}

= e−〈A,ϕ〉[0,t] ε−1P

{

exp
[

−
〈

Xt+ε , u
t+ε
t+ε(ϕ,0)

〉

−〈A,ϕ〉[t,t+ε]

]

− e−〈Xt,ϕ〉

∣

∣

∣

∣

Ft

}

.

We split this into the two terms

Iε,t := e−〈A,ϕ〉[0,t] ε−1P

{

exp
[

−
〈

Xt+ε , u
t+ε
t+ε(ϕ,0)

〉

−〈A,ϕ〉[t,t+ε]

]

(56)

− exp
[

− 〈Xt+ε ,ϕ〉 −

∫ t+ε

t

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

∣

∣

∣

∣

Ft

}

and

IIε,t := e−〈A,ϕ〉[0,t] ε−1P

{

exp
[

− 〈Xt+ε ,ϕ〉 −

∫ t+ε

t

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

− e−〈Xt,ϕ〉

∣

∣

∣

∣

Ft

}

. (57)

4◦ (Error term Iε,t). For the “error term” Iε,t we use the estimate

|Iε,t| ≤ ε−1P

{

∣

∣

∣

∣

e−〈A,ϕ〉[t,t+ε]− exp
[

−

∫ t+ε

t

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ft

}

≤ ε−1P
{

∫ t+ε

t

〈

Ads ,
∣

∣ϕ−ut+εs (ϕ,0)
∣

∣

〉
∣

∣

∣
Ft

}

. (58)

By Lemma 15(b), we have

ε−1
∥

∥ϕi − ui,t+εs (ϕi, 0)
∥

∥

∞
≤
∥

∥∆αiϕ
i
∥

∥

∞
+ ‖ϕi‖1+β

i

∞ =: c59 = c59(ϕ
i), (59)

t ≤ s ≤ t+ ε. Therefore, with 0 < ε ≤ T ∧ 1,

P

∫ T

0

dt |Iε,t| ≤ c59

∫ T

0

dt P〈A,1〉[t,t+ε] (60)

= c59 P
(

∫ T+ε

ε

dt 〈At ,1〉−

∫ T

0

dt 〈At ,1〉
)

≤ c59 P

∫ T+ε

T

dt 〈At ,1〉 ≤ ε c59 P〈AT+1 ,1〉

≤ ε c59 〈µ,1〉 −→
ε↓0

0,

where the last inequality follows from Lemma 18. Hence, we get that
∫ T

0

dt |Iε,t| −→
ε↓0

0 in L1, for any T > 0. (61)
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5◦ (Main term IIε,t). We start with the identity

P

{

exp
[

− 〈Xt+ε ,ϕ〉 −

∫ t+ε

t

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

∣

∣

∣

∣

Ft

}

(62)

= exp
[

∫ t

0

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

P

{

exp
[

−〈Xt+ε ,ϕ〉 −

∫ t+ε

0

〈

Ads ,u
t+ε
s (ϕ,0)

〉

]

∣

∣

∣

∣

Ft

}

= e−〈Xt,u
t+ε
t (ϕ,0)〉,

where in the last step we used the martingale assumption concerning the process
in (38). Thus,

IIε,t = e−〈A,ϕ〉[0,t] ε−1
(

e−〈Xt,u
t+ε
t (ϕ,0)〉 − e−〈Xt,ϕ〉

)

. (63)

But

lim
ε↓0

ε−1
(

e−〈Xt,u
t+ε
t (ϕ,0)〉 − e−〈Xt,ϕ〉

)

(64)

= − e−〈Xt,ϕ〉 lim
ε↓0

ε−1
〈

Xt ,u
t+ε
t (ϕ,0)−ϕ

〉

= − e−〈Xt,ϕ〉
〈

Xt , ∆αϕ−ϕ
1+β

〉

, t > 0, P–a.s.,

where the last limit follows by Lemma 15(a). Combined with (63), this gives

lim
ε↓0

IIε,t = −Zt

〈

Xt , ∆αϕ−ϕ
1+β

〉

, t > 0, P–a.s. (65)

Now note that

|IIε,t| ≤
1

ε

∣

∣

∣
e−〈Xt,u

t+ε
t (ϕ,0)〉 − e−〈Xt,ϕ〉

∣

∣

∣
≤

1

ε

〈

Xt ,
∣

∣ut+εt (ϕ,0)−ϕ
∣

∣

〉

(66)

≤ c59 〈Xt ,1〉 , ε, t > 0, P–a.s.,

where the last inequality follows from (59). Hence, since
∫ T

0
ds 〈Xt ,1〉 <∞, by the

dominated convergence theorem, we obtain
∫ T

0

dt IIε,t −→
ε↓0

−

∫ T

0

dt Zt

〈

Xt , ∆αϕ−ϕ
1+β

〉

, P–a.s., T > 0. (67)

Apply again (66), Lemma 18, and dominated convergence to conclude that conver-
gence in (67) is also in L1–space. This gives (55), and hence finishes the proof of
Proposition 17.

3.6. Another martingale. Proposition 17 and Lemma 18 immediately have the
following implication:

Corollary 19 (Expectation). Let (X,A) be any solution to the martingale prob-

lem (MP)
α,β
µ . Then,

P
(

〈Xt ,1〉+ 〈At ,1〉
)

= 〈µ ,1〉, t ≥ 0. (68)

Another consequence is the following result.

Corollary 20 (Another martingale). Let (X,A) be any solution to the mar-

tingale problem (MP)
α,β
µ . Then, for i ∈ {1, 2} and ϕi ∈ Φ+ ,

t 7→ M i
t (ϕ

i) :=
〈

Xi
t , ϕ

i
〉

−
〈

µi, ϕi
〉

−

∫ t

0

ds
〈

Xi
s ,∆αiϕ

i
〉

+
〈

Ait , ϕ
i
〉

(69)
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are F·–martingales starting from 0 at time t = 0.

Proof. Without loss of generality, take i = 1 and ϕ = (ϕ1, 0). Then

t 7→ M1,ε
t (ϕ1) :=

1

ε

(

1− e−〈X
1
t ,εϕ

1〉
)

−
1

ε

(

1− e−〈µ
1,εϕ1〉

)

(70)

−
1

ε

∫ t

0

ds e−〈X
1
s ,εϕ

1〉 〈X1
s , ε∆α1ϕ1

〉

+

∫ t

0

〈A1
ds , ϕ

1〉 e−〈X
1
s ,εϕ

1〉

+
1

ε

∫ t

0

ds e−〈X
1
s ,εϕ

1〉
〈

X1
s , ε

1+β1

(ϕ1)1+β
1
〉

is a martingale. Now let us check that all the terms converge in L1. Clearly,

1

ε

(

1− e−〈µ
1,εϕ1〉

)

−→
ε↓0

〈

µ1, ϕ1
〉

. (71)

Also,

1

ε

(

1− e−〈X
1
t ,εϕ

1〉
)

−→
ε↓0

〈

X1
t , ϕ

1
〉

in L1, t > 0, (72)

by Corollary 19 and dominated convergence. The third and fourth terms in (70)
are dominated by

∫ t

0

ds
〈

X1
s , |∆α1ϕ1|

〉

and
〈

A1
t , ϕ

1
〉

, (73)

and hence converge in L1 to
∫ t

0

ds
〈

X1
s ,∆α1ϕ1

〉

and
〈

A1
t , ϕ

1
〉

, (74)

respectively, again by Corollary 19 and dominated convergence. Similarly, the
last term converges to 0 in L1. Since all these terms converge in L1, we get the
convergence statement

M1,ε
t (ϕ1) −→

ε↓0
M1
t (ϕ

1) in L1. (75)

Hence M1(ϕ1) is a martingale, and we are done.

3.7. Domination by independent critical superprocesses. Here we want to
make precise the mentioned domination property. For this purpose, let (X,A) be

any solution to the martingale problem (MP)
α,β
µ . Conditioned on (X,A), we will

consider the (α, d,β)–pair AX of independent critical superprocesses with immi-
gration A and starting from the pair AX0 = 0 of zero measures. Our purpose
is (by using this random family AX) to construct an (α, d,β)–pair X̄ of inde-
pendent critical superprocesses dominating X, by, loosely speaking, adding up
X + AX =: X̄. In other words, we reintroduce the population masses AX which
had been killed by A within the process X. Note the different roles of A : within
X it describes the killing, whereas within AX the immigration.

The following formalism is essentially recalled from [BEP91, Theorem 5.1]. Write
now (Ω′,F ′,F ′· ,P

′) for our original stochastic basis entering into the martin-

gale problem (MP)
α,β
µ of Definition 5. Recall (X,A) =

(

X(ω′),A(ω′)
)

is a

solution to this martingale problem. Recall also from (33) the canonical basis
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(

◦Ω, ◦F, ◦F· ,
◦Pµ,κ,◦A

)

corresponding to the (α, d,β)–pair of independent critical
superprocesses with immigration ◦A of Lemma 14. Redefine

Ω := Ω′ × ◦Ω, F := F ′ × ◦F , F· := F ′· ×
◦F· , (76)

and set

X̂(ω) := ◦ω, ω = (ω′, ◦ω) ∈ Ω. (77)

Then we reintroduce a probability measure P on (Ω,F) by

P(dω) := P ′(dω′) ◦P0,◦A(d
◦ω), ω = (ω′, ◦ω) ∈ Ω, (78)

where, according to Lemma 14, ◦P0,◦A is the canonical law of the (α, d,β)–pair
A(ω′)X of independent critical superprocesses with immigration A(ω′) and starting

from A(ω′)X0 = 0. We will show below that this implies that conditioned on (X,A)

the process X̂ coincides in law with the (α, d,β)–pair AX of independent critical

superprocesses with immigration A and starting from X̂0 = 0, just as desired.
Finally, write π : Ω→ Ω′ for the projection map ω = (ω′, ◦ω) 7→ ω′, and set

X̄ := X ◦ π + X̂. (79)

Proposition 21 (Domination). Fix α,β,ϑ,µ as in Definition 5. With notation
as in (76) – (79), the following two statements hold.

(a) (Interchange): For any F ∈ bF ′ and t ≥ 0,

P
(

F ◦ π
∣

∣ Ft
)

= P ′
(

F
∣

∣ F ′t
)

◦ π, P–a.s. (80)

(b) (Pair of independent critical superprocesses): X̄ = X◦π + X̂ is the
(α, d,β)–pair of independent critical superprocesses without immigration (that
is, κ = 0 = ◦A in Lemma 14) starting from X̄0 = µ.

Roughly speaking, by enlarging our stochastic basis we got the almost sure
domination X ≤ X̄ of the (α, d,β)–pair X of interacting superprocesses by the
(α, d,β)–pair X̄ of independent critical superprocesses, where X0 = X̄0 .

Proof. Part (a) follows as in the proof of the corresponding statement in [BEP91,
Theorem 5.1], but for (b) we need some modifications of their proof as the lack of
continuity of the processes induces us to use exponential martingales.

Clearly, X̄ has the required pair µ of starting measures. Fix ϕ ∈ Φ2
+ . Set

F̂t := F ′ × ◦Ft , t ≥ 0. (81)

First we will show that for 0 ≤ r ≤ t,

P
{

e−〈X̂t,ϕ〉
∣

∣ F̂r
}

= exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

−
〈

A,ut(ϕ,0)
〉

[r,t]

]

, P–a.s., (82)
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with ut(ϕ,0) from our Definition 13. In fact, for B′ ∈ F ′ and ◦B ∈ ◦Fr , by
definition (78) of P,

P 1B′×◦B

(

e−〈X̂t,ϕ〉− exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

−
〈

A,ut(ϕ,0)
〉

[r,t]

]

)

(83)

=

∫

B′

P ′(dω′) ◦P0,◦A 1◦B

(

exp
[

−
〈

A(ω′),ut(ϕ,0)
〉

[0,t]

]

◦P0,◦A

{

exp
[

−
〈

X̂t ,ϕ
〉

+
〈

A(ω′),ut(ϕ,0)
〉

[0,t]

]

∣

∣

∣

∣

◦Fr

}

− exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

−
〈

A(ω′),ut(ϕ,0)
〉

[r,t]

]

)

.

But by Lemma 14(e), for each fixed t and ω′,

r 7→ exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

+
〈

A(ω′),ut(ϕ,0)
〉

[0,r]

]

, 0 ≤ r ≤ t, (84)

is an F̂·–martingale. Hence, since utt(ϕ,0) =ϕ, the middle, conditional expectation
expression at the right hand side of identity (83) equals

exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

+
〈

A(ω′),ut(ϕ,0)
〉

[0,r]

]

. (85)

Thus, altogether the right hand side of (83) vanishes, and the claim (82) follows.
Next, from Proposition 17 and the part (a), we get that for fixed t ≥ 0,

r 7→ exp
[

−
〈

Xr ◦ π ,u
t
r(ϕ,0)

〉

−
〈

A ◦ π,ut(ϕ,0)
〉

[0,r]

]

, 0 ≤ r ≤ t, (86)

is an F·–martingale. We will use this to show that for 0 ≤ r ≤ t,

P

{

exp
[

−〈Xt ◦ π , ϕ〉 −
〈

A ◦ π,ut(ϕ,0)
〉

[r,t]

]

∣

∣

∣

∣

Fr

}

(87)

= exp
〈

Xr ◦ π ,−u
t
r(ϕ,0)

〉

.

Indeed, the left hand side can be written as

exp
[

〈

A ◦ π,ut(ϕ,0)
〉

[0,r]

]

P

{

exp
[

− 〈Xt ◦ π,ϕ〉 −
〈

A ◦ π,ut(ϕ,0)
〉

[0,t]

]

∣

∣

∣

∣

Fr

}

.

¿From (86) we may reformulate it as

exp
[

〈

A ◦ π,ut(ϕ,0)
〉

[0,r]

]

exp
[

−
〈

Xr ◦ π ,u
t
r(ϕ,0)

〉

−
〈

A ◦ π,ut(ϕ,0)
〉

[0,r]

]

,

and (87) follows.
Finally, we will show that for 0 ≤ r ≤ t,

P
{

exp
〈

Xt ◦ π + X̂t , −ϕ
〉

∣

∣

∣
Fr

}

= exp
〈

Xr ◦ π + X̂r , −u
t
r(ϕ,0)

〉

, (88)

which by the log-Laplace representation in Lemma 14(c) says that X̄ = X ◦ π+ X̂
is the desired (α, d,β)–pair of independent critical superprocesses without immi-
gration. We start from

P
{

exp
〈

Xt ◦ π + X̂t , −ϕ
〉

∣

∣

∣
Fr

}

= P

{

e−〈Xt◦π ,ϕ〉 P
{

e−〈X̂t,ϕ〉
∣

∣

∣
F̂r

}

∣

∣

∣

∣

Fr

}

.
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By (82) we may continue with

= P

{

e−〈Xt◦π ,ϕ〉 exp
[

−
〈

X̂r ,u
t
r(ϕ,0)

〉

−
〈

A ◦ π,ut(ϕ,0)
〉

[r,t]

]

∣

∣

∣

∣

Fr

}

= exp
〈

X̂r ,−u
t
r(ϕ,0)

〉

P

{

exp
[

− 〈Xt ◦ π , ϕ〉 −
〈

A ◦ π,ut(ϕ,0)
〉

[r,t]

]

∣

∣

∣

∣

Fr

}

.

By (87) we get

= exp
〈

X̂r ,−u
t
r(ϕ,0)

〉

exp
〈

Xr ◦ π , −u
t
r(ϕ,0)

〉

= exp
〈

X̄r ,−u
t
r(ϕ,0)

〉

, (89)

finishing the proof.

3.8. Simultaneous domination by independent critical superprocesses.
In the previous subsection, for each solution (X,A) to the martingale problem

(MP)
α,β
µ we found a stochastic basis such that, on this basis, X is a.s. dominated

by the (α, d,β)–pair of independent critical superprocesses X̄ without immigration.

This construction can actually be done simultaneously to all solutions to (MP)
α,β
µ ,

that is, on a common stochastic basis, with the same X̄. This follows from the
following lemma.

Lemma 22 (Simultaneous domination). Let
{

Yυ ∈ D2
Mf

: υ ∈ Υ
}

be a col-
lection of pairs of random processes. Suppose that for each υ ∈ Υ there exists
Ȳυ ∈ D2

Mf
such that

Yυ ≤ Ȳ
υ
a.s., (90)

where all the Ȳυ are identically distributed. Then there exists a common probability
space

(

Ω̄, F̄ , P̄
)

on which some
{

Zυ ∈ D2
Mf

: υ ∈ Υ
}

and Z̄ ∈ D2
Mf

are defined

such that
(

Yυ, Ȳυ
)

coincides in law with
(

Zυ, Z̄
)

, for each υ ∈ Υ.

In words, there is a Z̄ which equals in law to any of Ȳυ and dominates a.s. all
the Zυ simultaneously.

Proof. Denote by Q̄ the law on D2
Mf

of Ȳυ (recall that Q̄ is the same for any

υ ∈ Υ). Let Z̄ ∈D2
Mf

be defined over a probability space (Ω2,F2,P2) with law Q̄.

Fix an arbitrary υ ∈ Υ. Denote by Qυ the joint law on D2
Mf
×D2

Mf
of (Yυ, Ȳ

υ
).

Also, let Qυy denote the regular conditional distribution on D2
Mf

of Yυ given

Ȳυ = y. Hence,

Qυ
(

d(y1, y2)
)

= Qυy2(dy1) Q̄(dy2), ( y1, y2) ∈ D
2
Mf

. (91)

Let (Ω1,F1,P1) be another sufficiently rich probability space. Now for P2–almost
all ω2 we may construct Zυ(ω1, ω2) on

(Ω̄, F̄ , P̄) := (Ω1 × Ω2, F1 ⊗F2, P1 × P2) (92)

with conditional law Qυ
Z̄(ω2)

. Piecing everything together we get that the pair
(

Zυ, Z̄
)

is defined on
(

Ω̄, F̄ , P̄
)

, and its joint distribution is given by (91), which

coincides with the law of
(

Yυ, Ȳ
)

. By repeating this construction on (Ω̄, F̄ , P̄)
for all υ ∈ Υ with the same Z, we get the desired result.

Combining Lemma 22 with Proposition 21 we obtain the following result:
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Corollary 23 (Simultaneous domination). Fix α,β,ϑ,µ as in Definition 5.

Let
{

(Xυ,Aυ) : υ ∈ Υ
}

be a family of solutions to the martingale problem (MP)
α,β
µ .

Then there exists a probability space (Ω̄, F̄ , P̄) on which a family
{

(′Xυ, ′Aυ, X̄) : υ ∈ Υ
}

(93)

is defined and posses the following properties:

(a) (Same laws): (′Xυ, ′Aυ) coincides in law with (Xυ,Aυ), for each υ in Υ.

(b) (Independent superprocesses): X̄ is the (α, d,β)–pair of independent
critical superprocesses without immigration, starting from X̄0 = µ.

(c) (Domination): For any υ ∈ Υ, given (′Xυ, ′Aυ),

′X̂υ := X̄− ′Xυ (94)

is the (α, d,β)–pair of independent critical superprocesses starting from ′X̂υ
0 =

0, and with immigration ′Aυ.

For convenience, we introduce the following convention.

Convention 24 (Simultaneous domination). Without loss of generality, from

now on we will assume that any family
{

(Xυ,Aυ) : υ ∈ Υ
}

of solutions to (MP)
α,β
µ

is defined on a common probability space where they enjoy simultaneous domination
by X̄ as described in Corollary 23. 3

4. Log-Laplace equation involving generalized input data

In this section we establish some properties of solutions to log-Laplace equations
involving generalized input data (see, e.g., Proposition 34). The developed frame-
work is used in Subsection 4.4 to show the existence of collision local times and
collision measures for pairs of independent critical superprocesses for a more gen-
eral class of initial measures than was known before. We also give their log-Laplace
representations (Proposition 35). The log-Laplace technique will be also crucial in
Section 5 for the proof of Theorem 7.

4.1. Energy conditions. We define the suitable sets of measures and measure-
valued paths used as input data for log-Laplace equations.

First we need some more notation. Besides the space DMf
, for each T > 0, we

introduce the space DTMf
of all càdlàg paths ν : [0, T ] →Mf(R

d), equipped with

the Skorohod topology. We need also the space PT of all (equivalence classes of)
measurable paths ν : [0, T ] → Mf(R

d). Note that to each ν ∈ DTMf
there is a

unique element in PT . For this reason, we do not distinguish in notation within
this correspondence.

Besides the spaces bC and C̄, we need to introduce the spaces bCco which refer
to bC but equipped with the topology of uniform convergence on compacta (the
index “co” stands for “compact open”).

For T > 0 and measurable g : [0, T ]→ R, put

‖g‖T := ess sup
0≤s≤T

|gs|, (95)

whereas for measurable ψ : [0, T ]× Rd → R and B ⊆ Rd set

‖ψ‖T,B := sup
x∈B

ess sup
0≤r≤T

∣

∣ψr(x)
∣

∣ (96)
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and write

‖ · ‖T,∞ := ‖ · ‖T,Rd . (97)

Write S and p for the semigroup respectively for the continuous transition kernel
of the symmetric α–stable process with generator ∆α := −ϑ(−∆)α/2∆α , ϑ > 0,
0 < α ≤ 2. For η ∈ [0, d) (with d the dimension of Rd), set

hx,η(y) := |x− y|−η, x, y ∈ Rd. (98)

Definition 25 (Energy conditions). Fix η ∈ [0, d).

(a) (Measures): We say the measure µ ∈Mf has weakly finite η–energy and
write µ ∈Mη,◦

f , if

〈µ, hx,η〉 < ∞ forµ–almost all x ∈ Rd. (99)

(b) (Paths): Fix T > 0. We say, the deterministic (measurable) path ν in
PT has finite η–energy and write ν ∈ PT,η, if

‖ν‖−η,T := sup
x∈Rd

∥

∥〈ν · , hx,η〉
∥

∥

T
< ∞. (100)

It is said to have weakly finite η–energy and we write ν ∈ PT,η,◦, if

〈νs , hx,η〉 <∞ for ds νs(dx)–almost all (s, x) ∈ [0, T ]× Rd (101)

holds. 3

Example 26 ((α, d, β)–superprocess). Fix any η ∈
(

0,min(α/β, d)
)

. Let X
denote the critical (α, d, β)–superprocess (without immigration) starting from µ in
Mf . Then

Xt ∈M
η,◦
f , P–a.s., t > 0,

{Xt : t ≤ T} ∈ PT,η,◦, P–a.s., T > 0,
(102)

(see [Myt98a, Lemma 22 and Corollary 4]). 3

In PT,η we introduce a topology by saying that νn → ν0 in PT,η if

sup
n≥0

ess sup
0≤s≤T

‖νns ‖ < ∞, (103)

sup
n≥0

‖νn‖−η,T < ∞, (104)

ds νns (dx) −→
n↑∞

ds ν0s (dx) in MT
f :=Mf

(

[0, T ]× Rd
)

(105)

(equipped with the weak topology). Roughly speaking, the νn converge, if the
measures νns (dx) are uniformly bounded, the paths νn have uniformly finite η–
energy, and they converge weakly as time-space measures.

Lemma 27 (Some compact sets). Fix T > 0. Suppose C̃ is a compact subset
of DTMf

. Let

C :=
{

ν ∈ PT,η : ∃ ν̃ ∈ C̃ with ν ≤ ν̃ in PT
}

. (106)

For m > 0 fixed, set

Cm :=
{

ν ∈ C : ‖ν‖−η,T ≤ m
}

. (107)

Then Cm is a compact subset of PT,η.
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Proof. Fix m,T > 0. Let {νn : n ≥ 1} be any sequence in Cm. We have to find
a subsequence {νnk : k ≥ 1} converging in PT,η as k ↑ ∞ to some ν ∈ Cm.

First of all, to each n there is a ν̃n ∈ C̃ such that

νn ≤ ν̃n. (108)

Since C̃ is compact, there is a subsequence {ν̃nk : k ≥ 1} converging in C̃ ⊂ DTMf

as k ↑ ∞. From the domination (108), we get (103) with supn≥0 replaced by
supn≥1 . Moreover, (104) follows from (107), again excluding n = 0. Introduce the
measures

µk
(

d(s, x)
)

:= ds νnks (dx) ≤ ds ν̃nks (dx) =: µ̃k
(

d(s, x)
)

(109)

on [0, T ]×Rd. Since the ν̃nk converge in DTMf
, the measures µ̃k converge in MT

f .

Then the domination (109) gives the relative compactness of
{

µk : k ≥ 1
}

⊂MT
f .

We may assume that this sequence converges as k ↑ ∞ (by taking a subsequence
if needed) to some µ0 ∈MT

f . It remains to show that µ0 has the form

µ0
(

d(s, x)
)

= ds ν0s (dx) with ν0s ∈Mf for almost all s, (110)

and that ν0 satisfies

ess sup
0≤s≤T

‖ν0s‖ < ∞ and ‖ν0‖−η,T < ∞. (111)

¿From the weak convergence µk → µ0 in MT
f we get

∫ T

0

ds fs 〈ν
nk
s , g〉 −→

k↑∞

∫

[0,T ]×Rd
µ0
(

d(s, x)
)

fs g(x), (112)

f ∈ C([0, T ]) , g ∈ C̄. However, by (103),

sup
k≥1

∥

∥〈νnk· , 1〉
∥

∥

T
< ∞, (113)

hence, from (112), for any fixed g ∈ bB, the (finite) signed measure

Θg(ds) :=

∫

Rd
µ0
(

d(s, x)
)

g(x) (114)

has a total variation bound
∣

∣Θg(ds)
∣

∣ ≤ ‖g‖∞ sup
k≥1

∥

∥〈νnk· , 1〉
∥

∥

T
ds. (115)

Thus, for any g ∈ bB, the signed measure Θg(ds) is absolutely continuous, that
is, by Radon-Nikodym it can be represented as

Θg(ds) = Θgs ds (116)

(see, for instance, [Doo94, Theorem 10.7]). But as a functional of g ∈ bB, the
signed density functions s 7→ Θg

s are almost everywhere non-negative, provided
that g ≥ 0, they are almost linear, that is,

Θaf+bgs = aΘfs + bΘgs , for a.a. s, where a, b ∈ R, f, g ∈ bB, (117)

and they satisfy

Θgms ↗
m↑∞

Θgs for a.a. s, if 0 ≤ gm ↑ g for a.a. s. (118)
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Then by [Get74, Proposition 4.1], there is a bounded kernel from [0, T ] to Mf ,
denoted by ν0, such that

Θgs = 〈ν0s , g〉, for almost all s. (119)

Consequently, (110) is true. It remains to show that (111) holds.
Clearly, the first part of (111) follows from the dominations (108) and (115). On

the other hand, the η–energy of ν0 is bounded by m. In fact, define

h`x,η := hx,η ∧ `, ` ≥ 1, x ∈ Rd. (120)

Since νnk ∈ Cm for all k, we have

Θ
h`x,η
s ds ≤ sup

k≥1

∥

∥〈νnk· , h`x,η〉
∥

∥

T
ds ≤ m ds, ` ≥ 1, x ∈ Rd. (121)

Hence, by (119) and (121),

Θ
h`x,η
s =

〈

ν0s , h
`
x,η

〉

≤ m, a.a. s, ` ≥ 1, x ∈ Rd. (122)

By monotone convergence,
〈

ν0s , hx,η
〉

= lim
`↑∞

〈

ν0s , h
`
x,η

〉

≤ m, a.a. s, x ∈ Rd. (123)

Thus, ‖ν0‖−η,T ≤ m, that is, ν0 ∈ Cm, and the proof is finished.

4.2. Log-Laplace equation involving generalized input data. To describe
the log-Laplace functionals of some collision local times and collision measures, we
need to allow that generalized input data enter into the log-Laplace equation.

In this subsection, we fix constants

α ∈ (0, 2], β ∈ (0, 1], ϑ > 0, and 0 ≤ η < d. (124)

Combining the proofs of the Theorems 2 and 3 in [Myt98a], we get the following
result.

Proposition 28 (Log-Laplace equation involving generalized inputdata).

Suppose d < α
β + η. Fix T > 0, µ ∈ Mη,◦

f , and ν ∈ PT,η,◦ (recall Definition

25).

(a) (Existence): There exists an element wT = wT (µ, ν) ∈ L1,T
+ ∩ L1+β,T+

satisfying

wTr (x) = µ∗ pT−r (x) +

∫ T

r

ds νs∗ ps−r (x)−

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

(x), (125)

for almost all (r, x) ∈ [0, T )× Rd.

(b) (Uniqueness): For each solution wT ∈ L1,T+ ∩ L1+β,T+ to (125),

µ∗ pT−r ( · ) +

∫ T

r

ds νs∗ ps−r ( · )−

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

( · ) (126)

=: w̄Tr = w̄Tr (µ, ν) ∈ L1
+ ∩ L

1+β
+

is well-defined for all r ∈ [0, T ). Moreover, if 1wT , 2wT ∈ L1,T+ ∩L1+β,T+ are

solutions to (125) and 1w̄T , 2w̄T are defined as in (126), then
1w̄Tr = 2w̄Tr in L1+ , for all r ∈ [0, T ). (127)

In particular, 1wT = 2wT in L1,T+ ∩ L1+β,T+ .
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Note that heuristically integral equation (125) can be written as

−
∂

∂r
wTr = ∆αw

T
r − (wTr )

1+β +
νr(dx)

dx
on (0, T )× Rd

with terminal condition wTT− =
µ(dx)

dx















(128)

where µ(dx)
dx denotes the generalized derivative of the measure µ(dx).

Remark 29 (Extending the dimension range). If in the previous proposition,
µ is absolutely continuous (with respect to Lebesgue measure), then the assumption
on the dimension can be weakened to d < α+ α

β + η, again by Theorems 2 and 3

(and their proofs) in [Myt98a]. 3

Further on we will need to define particular everywhere non-negative representa-
tives of L+–solutions introduced in Proposition 28. The next two technical lemmas
are a necessary preparation for this.

Lemma 30 (Continuous representative under truncation). Fix T > 0 and
ν ∈ PT,η,◦. Let µ ∈Mη,◦

f and d < η+ α
β , or µ as in Remark 29 and d < α+ α

β+η.

For fixed t ∈ (0, T ), define

νts(dx) := 1[t,T ](s) νs(dx), 0 ≤ s ≤ T, (129)

and consider the solution wT = wT (µ, νt) according to Proposition 28. Then,

w̄Tr (x) := µ∗ pT−r (x) +

∫ T

r

ds νts∗ ps−r (x)−

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

(x) (130)

r ∈ [0, T ), x ∈ Rd, defines a representative w̄T = w̄T (µ, νt) of wT (µ, νt) which,
for each r ∈ [0, t), is non-negative and continuous on Rd.

Roughly speaking, if on [0, t] the forcing term ν is set to 0, then on [0, t] the
corresponding L+–solution wT has a non-negative continuous representative w̄T .

Proof. By Proposition 28,

wTt (µ, ν
t) ∈ L1+ . (131)

Moreover, by definition (129), and the semigroup property of solutions, it is easy
to see that

w̄Tr (µ, ν
t) = utr

(

wTt (µ, ν
t), 0

)

, 0 ≤ r < t. (132)

Hence, by (131) and Lemma 16(a), we are done.

We will use this lemma to proof the following result.

Lemma 31 (Non-negative representative). Impose the assumptions from the
previous lemma. If wT = wT (µ, ν) solves (125), then the following inequality holds

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

(x) ≤ µ∗ pT−r (x) +

∫ T

r

ds νs∗ ps−r (x) (133)

for all (r, x) ∈ [0, T )× Rd, for which the integral at the right hand side is finite.
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Proof. Fix r ∈ [0, T ) and let n0 so large that r+ 1/n0 < T. Then with w̄T from
Proposition 28, define, for 0 ≤ s ≤ T and n ≥ n0 ,

wT,n := wT (µ, νr+1/n), (134a)

w̄T,n := w̄T (µ, νr+1/n), (134b)

where

νr+1/n
s := 1[r+1/n,T ](s) νs(dx), 0 ≤ s ≤ T. (135)

By Lemma 30, w̄T,nr is non-negative and continuous on Rd for all n ≥ n0 . By
monotonicity properties (see Corollary 3 of [Myt98a]), for all n ≥ m ≥ n0 ,

wT,nr (x) ≥ wT,mr (x) for almost all x ∈ Rd, (136)

hence, by the continuity of w̄T,nr ,

w̄T,nr (x) ≥ w̄T,mr (x) for all x ∈ Rd. (137)

On the other hand, for all x ∈ Rd,

0 ≤ w̄T,nr (x) = µ∗ pT−r (x) +

∫ T

r+1/n

ds νs∗ ps−r (x) (138)

−

∫ T

r

ds Ss−r
(

(wT,ns )1+β
)

(x).

As n ↑ ∞, by Theorem 3(i) in [Myt98a],

wT,n ↑ some wT,∞ in L1,T+ ∩ L1+β,T+ . (139)

Note that wT,∞s = wTs for s ∈ [r, T ). By monotone convergence theorem, from
inequality (138) we get

0 ≤ µ∗ pT−r (x) +

∫ T

r

ds νs∗ ps−r (x)−

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

(x), (140)

for all those x ∈ Rd for which the first integral term at the right hand side stays
finite. This finishes the proof.

Definition 32 (Non-negative representative). Under the assumption in Lem-
ma 30 we now define the following representative uT = uT (µ, ν) of wT = wT (µ, ν)
from Proposition 28:

uTr (x) :=































µ∗ pT−r (x) +

∫ T

r

ds νs∗ ps−r (x)−

∫ T

r

ds Ss−r
(

(wTs )
1+β
)

(x)

for all (r, x) ∈ [0, T )× Rd, for which the first
integral term is finite,

+∞, otherwise.

Note that by Lemma 31, uT is non-negative everywhere on [0, T ) × Rd and we
have the domination

0 ≤ uTr (x) ≤ µ∗ pT−r (x) +

∫ T

r

ds νs∗ ps−r (x), (r, x) ∈ [0, T )× Rd. (141)

For the further procedure, we adopt the convention to set F (+∞) := 0 in case uT

enters as an argument into a function F on R+ . 3
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Lemma 33 (Subadditivity). Let µ, ν and µ′, ν′ satisfy the assumptions in Lem-
ma 30 (or Lemma 31). Then for the representatives from Definition 32 we have

uT (µ+ µ′, ν + ν′) ≤ uT (µ, ν) + uT (µ′, ν′) everywhere on [0, T )× Rd. (142)

Proof. This follows easily from Lemmas 10 and 11, and Corollaries 2 and 3 in
[Myt98a] together with the monotone limit construction of w̄T in the proof of
Lemma 31.

4.3. Continuous convergence of log-Laplace functions. As a preparation for
Section 5, we will establish some uniform convergence properties of log-Laplace
functions with respect to input data. We need to impose the following parameter
restrictions:

α ∈ (0, 2], β ∈ (0, 1], ϑ > 0, and η ∈
(

(d− α)+ , d
)

. (143)

Recall notation Jε from (16) and PT,η from Definition 25(b).

Proposition 34 (Continuous convergence). Fix T > 0 and a constant η sat-
isfying (143). In PT,η, consider a converging sequence νn → ν0 as n ↑ ∞. Let
J1 and J2 be any mollifiers. For n ≥ 0, T > 0, and 0 < ε1, ε2 ≤ 1 fixed, let

un,T,ε
1,ε2 := uT

(

0, νn∗[J1ε1 + J2ε2 ]
)

≥ 0 (144)

be the unique solution to the equation

un,T,ε
1,ε2

r (x) =

∫ T

r

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−r (x) (145)

−

∫ T

r

ds Ss−r
(

(un,T,ε
1,ε2

s )1+β
)

(x)

(r, x) ∈ [0, T ]× Rd (recall Definition 13). Then, if (rk , xk)→ (r, x) in [0, T ]× Rd

as k ↑ ∞, the limit

lim
n,k↑∞, ε1,ε2↓0

un,T,ε
1,ε2

rk
(xk) =: uTr (x) (146)

exists, and uT =
{

uTr (x) : (r, x) ∈ [0, T ]× Rd
}

is the time-space continuous rep-

resentative uT (0, 2ν0) of wT = wT (0, 2ν0) ∈ L1,T+ ∩ L1+β,T+ (according to Defini-
tion 32), the unique solution from Proposition 28 [with (µ, ν) replaced by (0, 2ν0) ].

Compared with Proposition 28, the novelty of this proposition is that it states
the unique existence of a continuous solution uT = uT (0, 2ν0).

Proof of Proposition 34. 1◦ (Uniform domination). Fix all the quantities as in
the proposition. First of all, note that, for fixed n, ε1, ε2, the functions

(s, y) 7→ νns ∗[J
1
ε1 + J2ε2 ] (y), 0 ≤ s ≤ T, y ∈ Rd, (147)

satisfy
∥

∥νn· ∗[J
1
ε1 + J2ε2 ]

∥

∥

T,∞
< ∞ (148)

[recall notation (97)]. Therefore un,T,ε
1,ε2 in (144) is well-defined (see Definition

13 and references afterwards). Next, there is a constant c149 = c149(J, α, d) such
that for i = 1, 2,

J i ≤ c149 p1 , hence 0 ≤ J iε ≤ c149 pεα , ε > 0. (149)
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Thus, for (r, x) ∈ [0, T ]× Rd,

0 ≤

∫ T

r

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−r (x) (150)

≤ c149

∫ T

r

ds νns ∗
[

p(ε1)α+s−r + p(ε2)α+s−r
]

(x).

But there is a constant c151 = c151(d, α, η) such that

ps(x) ≤ c151 s
−(d−η)/α |x|−η, s > 0, x ∈ Rd, (151)

see [Myt98a, Lemma 4]. Note that (d−η)/α < 1, by assumption (143). Therefore,
there is a constant c152 = c152(J, α, d, η) such that

∫ T

r

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−r (x) (152)

≤ c152 sup
n≥0

‖νn‖−η,T

∫ ε+T−r

0

ds s−(d−η)/α < ∞

with ε := (ε1)α + (ε2)α. In particular,

0 ≤ un,T,ε
1,ε2

r (x) ≤ c152 sup
n≥0

‖νn‖−η,T

∫ 2+T

0

ds s−(d−η)/α < ∞. (153)

2◦ (Decomposition). Assume additionally that r < T, and take δ > 0 such that
r + 2δ ≤ T. We may also assume in addition that rk ≤ r + δ, for all k. Choose a
compact C ⊂ Rd such that xk ∈ C for all k. Then we decompose

I = In,T,ε
1,ε2

rk
(xk) :=

∫ T

rk

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−rk (xk) = I1 + I2 (154)

where

I1 :=

∫ rk+δ

rk

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−rk (xk), (155a)

I2 :=

∫ T

rk+δ

ds
(

νns ∗[J
1
ε1 + J2ε2 ]

)

∗ ps−rk (xk). (155b)

3◦ (Error term I1). By (152), I1 is bounded from above uniformly in k and n
by

c sup
n≥0

‖νn‖−η,T

∫ ε+δ

0

ds s−(d−η)/α −−−→
ε1,ε2↓0

c sup
n≥0

‖νn‖−η,T

∫ δ

0

ds s−(d−η)/α,

which goes to 0 as δ ↓ 0.

4◦ (Convergence of I2). First of all, with GT−δ from (A1) in the appendix,

I2 =

∫ T−δ

rk

ds ψn,ε
1,ε2

s ∗ ps−rk (xk) = (GT−δψn,ε
1,ε2)rk(xk), (156)

where, for the fixed δ,

ψn,ε
1,ε2

s :=
(

νnδ+s∗[J
1
ε1 + J2ε2 ]

)

∗ pδ , 0 ≤ s ≤ T − δ. (157)
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Using notation (97), it is easy to see that by (103),

sup
n≥1, 0<ε1,ε2≤1

‖ψn,ε
1,ε2‖T−δ,∞ ≤ pδ(0) sup

n≥1
ess sup
0≤s≤T

‖νns ‖ < ∞, (158a)

‖ψ‖T−δ,∞ ≤ pδ(0) ess sup
0≤s≤T

‖ν0s‖ < ∞, (158b)

where

ψs := (2ν0δ+s)∗ pδ , 0 ≤ s ≤ T − δ. (159)

Moreover,

lim
n↑∞, ε1,ε2↓0

ψn,ε
1,ε2

s (x) dsdx = ψs(x) dsdx in MT−δ
f . (160)

Then, by Lemma A3 in the appendix, GT−δψ ∈ bC+co
(

[0, T − δ]× Rd
)

, and

lim
k,n ↑∞, ε1,ε2↓0

(GT−δψn,ε
1,ε2)rk(xk) = (GT−δψ)r(x), (161)

that is,

lim
k,n ↑∞, ε1,ε2↓0

I2 =

∫ T

r+δ

ds (2ν0s )∗ ps−r (x). (162)

5◦ (Convergence of I). Combining steps 3◦ and 4◦ we get

lim
k,n ↑∞, ε1,ε2↓0

In,T,ε
1,ε2

rk
(xk) =

∫ T

r

ds (2ν0s )∗ ps−r (x), (163)

that is,

lim
k,n ↑∞, ε1,ε2↓0

GT
(

νn∗[J1ε1 + J2ε2 ]
)

= GT (2ν0) in bC+co
(

[0, T ]× Rd
)

. (164)

6◦ (Non-linear term). By (153), the set
{

(un,T,ε
1,ε2)1+β : n ≥ 1, 0 < ε1, ε2 ≤ 1

}

(165)

of functions on [0, T ]× Rd is uniformly bounded. Then Lemma A1 implies that
{

GT (un,T,ε
1,ε2)1+β : n ≥ 1, 0 < ε1, ε2 ≤ 1

}

(166)

is relatively compact in bC+co
(

[0, T ]× Rd
)

. Thus, for each subsequence of n ↑ ∞,

ε1, ε2 ↓ 0, there is a further subsequence such that along this subsequence, in
bC+co

(

[0, T ]× Rd
)

we have the convergence

GT (un,T,ε
1,ε2)1+β → some F T . (167)

Combining with step 5◦, we obtain that along this subsequence,

un,T,ε
1,ε2 → some uT (168)

in bC+co
(

[0, T ]× Rd
)

. Then use again (167) and Corollary A2 to see that

GT (un,T,ε
1,ε2)1+β → GT (uT )1+β in bC+co

(

[0, T ]× Rd
)

(169)

along this subsequence. Putting all together, we obtain that

uT = GT (2ν0)−GT (uT )1+β in bCco
(

[0, T ]× Rd
)

, (170)
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or equivalently,

uTr (x) =

∫ T

r

ds (2ν0s )∗ ps−r (x)−

∫ T

r

ds Ss−r
(

(uTs )
1+β
)

(x), (171)

(r, x) ∈ [0, T ] × Rd. By Proposition 28 and Definition 32, the function uT is the
non-negative (and actually continuous) representative uT (0, 2ν0) of the unique

solution wT (0, 2ν0) ∈ L1,T+ ∩ L1+β,T+ of (125) [in the case (µ, ν) = (0, 2ν0) ]. By

this uniqueness, uT ∈ bC+co
(

[0, T ]× Rd
)

does not depend on the choice of all the
subsequences, and the proof is complete.

4.4. On collision local times and measures of independent superprocesses.
The main result of this subsection, Proposition 35, extends Theorem 1 of [Myt98a]
for a more general class of initial measures.

Let X̄ be the (α, d,β)–pair of independent critical superprocesses without im-
migration with parameters α, d,β satisfying condition (10). If µ is a measure
on Rd and f ≥ 0 a measurable function on Rd, we write µ ·f for the measure
µ(dx) f(x).

Proposition 35 (Log-Laplace functionals of collision processes).

(a) (Collision measure): If

d <
α1

β1
+
α2

β2
, (172)

then for each pair µ ∈ M2
f of initial measures, the collision measure KX̄

(recall Definition 3) exists, and we have the following log-Laplace representa-
tion

P e−〈KX̄(t),f〉 = P e−〈µ
1,u1,t

0 (X̄2
t ·f,0)〉, t > 0, f ∈ C̄+ , (173)

with u1,t(X̄2
t · f, 0) from Definition 32.

(b) (Collision local time): If

d <
α1

β1
+
α2

β2
+ (α1 ∨ α2), (174)

then for each µ ∈Mf,e the collision local time LX̄ exists, and

P e−〈LX̄(t),f〉 = P e−〈µ
1,u1,t

0 (0,X̄2·f)〉, t > 0, f ∈ C̄+ , (175)

with u1,t(0, X̄2 · f) from Definition 32, provided that α1 ≥ α2.

Clearly, the role of the indices 1 and 2 can be interchanged in the previous propo-
sition.

Proof of Proposition 35. Fix t > 0 and f ∈ C̄+ .

1◦ (a) Let 0 < ε ≤ 1. Define

ψε(x) :=

∫

Rd
X̄2
t (dy) Jε(x− y) f

(

x+y
2

)

, x ∈ Rd. (176)

While checking the proof of Theorem 1(i) in [Myt98a] (see p.762 there), we realize
that it is enough to show that P–almost surely,

u1,t0 (ψε + ψε
′

, 0) −−−→
ε,ε′↓0

u1,t0 (2X̄2
t · f, 0) uniformly on compacts of Rd. (177)
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Note that by our assumption (172) we can choose η satisfying

(

d−
α1

β1

)

+
< η <

α2

β2
∧ d, (178)

and, by Example 26, we have X̄2
t ∈ M

η,◦
f , P–a.s. Hence u1,t0 (2X̄2

t · f, 0) makes
sense. Recall the semigroup property

u1,t0 (ψε + ψε
′

, 0) = u1,t−δ0

(

u1,δ0 (ψε + ψε
′

, 0), 0
)

(179)

for δ ∈ (0, t), domination and boundedness

sup
0<ε,ε′ ≤1

∥

∥u1,δ0 (ψε + ψε
′

, 0)
∥

∥

∞
≤ sup

0<ε,ε′ ≤1

∥

∥S1δ(ψ
ε + ψε

′

)
∥

∥

∞
< ∞, (180)

P–a.s., and the convergence

u1,δ0 (ψε + ψε
′

, 0) −−−→
ε,ε′↓0

u1,δ0 (2X̄2
t · f, 0) in L1(Rd) (181)

(see [Myt98a, 1st display after 3.5]). Therefore, by Lemma 16(b) we get that

u1,t−δ0

(

u1,δ0 (ψε + ψε
′

, 0), 0
)

−−−→
ε,ε′↓0

u1,t−δ0

(

u1,δ0 (2X̄2
t · f, 0), 0

)

, (182)

uniformly on compacts of Rd, P–a.s. Again by the semigroup property,

u1,t−δ0

(

u1,δ0 (2X̄2
t · f, 0), 0

)

= u1,t0 (2X̄2
t · f, 0), (183)

and the proof of (a) is finished.

2◦ (b) Suppose α1 ≥ α2. By Lemma 2, we may switch to the non-symmetric
definition of approximating collision local time. Hence, it is enough to check that
〈

L1,ε

X̄
(T ), f

〉

converges in probability as ε ↓ 0, and that

lim
ε↓0

P e−〈L
1,ε

X̄
(t),f〉 = P e−〈µ

1,u1,t
0 (0,X̄2·f)〉, t > 0, f ∈ C̄+ , (184)

(in order to identify the limit). Note that by our assumption (174) we can choose
η satisfying

(

d− α1 −
α1

β1

)

+
< η <

α2

β2
∧ d, (185)

and, by Example 26, we have

{X̄2
s : 0 ≤ s ≤ t} ∈ Pt,η,◦, P-a.s., (186)

hence the solution u1,t0 (0, X̄2 ·f) makes sense. Let us check (184). Choose n0 such
that 1/n0 < t. For n ≥ n0 , define

L1,ε

X̄
( 1n , t) := L1,ε

X̄
(t)− L1,ε

X̄
( 1n ), (187a)

X̄2,n
s := 1[1/n,T ](s)X̄

2
s , 0 ≤ s ≤ t (187b)

ψε,ns (y) := X̄2,n
s ∗Jε(y) f(y), 0 ≤ s ≤ t, y ∈ Rd. (187c)
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Then
∣

∣

∣
P e−〈L

1,ε

X̄
(t),f〉 − P e−〈µ

1,u1,t
0 (0,X̄2·f)〉

∣

∣

∣
(188)

≤
∣

∣

∣
P e−〈L

1,ε

X̄
(t),f〉 − P e−

〈

L1,ε

X̄
(1/n,t),f

〉

∣

∣

∣

+
∣

∣

∣
P e−

〈

L1,ε

X̄
(1/n,t),f

〉

− P e−〈µ
1,u1,t

0 (0,X̄2,n·f)〉
∣

∣

∣

+
∣

∣

∣
P e−〈µ

1,u1,t
0 (0,X̄2,n·f)〉 − P e−〈µ

1,u1,t
0 (0,X̄2·f)〉

∣

∣

∣

=: Iε,n + IIε,n + IIIn

with the obvious correspondence.

3◦ (b.I) It is easy to see that

Iε,n ≤ P
〈

L1,ε

X̄
( 1n ), f

〉

=

∫ 1/n

0

ds

∫

Rd
dy µ1∗ p1s (y)µ

2∗ p2s(y)∗Jε (y) f(y). (189)

Now there is a constant c190 = c190(J, α
1, α2) such that

J ≤ c190 p
1
1∗ p

2
εα1−α2 , 0 < ε ≤ 1, (190)

implying

Jε(x) = ε−dJ(x/ε) ≤ c190 ε
−d

∫

Rd
dy p11(y − x/ε) p

2
εα1−α2 (y) (191)

= c190 ε
−2d

∫

Rd
dy p11

(

(y − x)/ε
)

p2
εα1−α2 (y/ε)

= c190

∫

Rd
dy p1

εα1 (y − x) p2εα1 (y) = c190 p
1
εα1 ∗ p2εα1 (x).

Inserting into (189) gives

Iε,n ≤ c ‖f‖∞

∫ 1/n

0

ds

∫

Rd
dy µ1∗ p1

s+εα1 (y)µ2∗ p2s+εα1 (y)

= c ‖f‖∞

∫ εα
1
+1/n

εα1
ds

∫

Rd
dy µ1∗ p1s (y)µ

2∗ p2s(y). (192)

Since µ belongs to Mf,e , for δ > 0 we find N = N(δ) such that

Iε,n ≤ δ for all ε ∈ (0, 1] and n ≥ N. (193)

The latter argument also immediately shows that for any t > 0,

lim sup
ε↓0

P
〈

L1,ε

X̄
(t), 1

〉

(194)

≤ c lim sup
ε↓0

∫ εα
1
+t

εα1
ds

∫

Rd
dy µ1∗ p1s (y)µ

2∗ p2s(y) < ∞.

4◦ (b.II) Let us turn to IIε,n. By the definition of log-Laplace transform, it is
easy to see that

P e−
〈

L1,ε

X̄
(1/n,t),f

〉

= P e−〈µ
1,u1,t

0 (0,ψε,n)〉. (195)

By the semigroup property and the definition (187c) of ψε,n we get

u1,t0 (0, ψε,n) = u1,sn0

(

u1,tsn (0, ψ
ε,n), 0

)

, (196)
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where we set sn := 1/2n. By adopting the argument used in the proof of Theo-
rem 1(ii) of [Myt98a], it is easy to get that [recall notation (187b)]

u1,tsn (0, ψ
ε,n) −→

ε↓0
u1,tsn (0, X̄

2,n · f) in L1, P–a.s. (197)

Moreover, since X̄2,n, hence ψε,n is truncated until time 2sn , we obtain

sup
0<ε≤1

∥

∥u1,tsn (0, ψ
ε,n)
∥

∥

∞
≤ sup

0<ε≤1

∥

∥S1sn
(

u1,t2sn
(0, ψε,n)

)∥

∥

∞
< ∞, (198)

and hence by Lemma 16(b),

u1,sn0

(

u1,tsn (0, ψ
ε,n), 0

)

−→
ε↓0

u1,sn0

(

u1,tsn (0, X̄
2,n · f), 0

)

= u1,t0 (0, X̄2,n · f)

uniformly on compacts of Rd, P–a.s. Therefore,

IIε,n → 0 as ε ↓ 0, for all n ≥ 1. (199)

5◦ (b.III) Finally, we deal with IIIn. By Lemma 33 and domination (141),

u1,t0 (0, X̄2 · f) (x)− u1,t0 (0, X̄2,n · f) (x) ≤ u1,t0

(

0, (X̄2 − X̄2,n) · f
)

(x)

≤

∫ 1/n

0

ds (X̄2
s · f)∗ p

1
s (x), x ∈ Rd. (200)

Hence,

P

∣

∣

∣

∣

∫

Rd
µ1(dx)

(

u1,t0 (0, X̄2 · f) (x)− u1,t0 (0, X̄2,n · f) (x)
)

∣

∣

∣

∣

(201)

≤ ‖f‖∞

∫ 1/n

0

ds

∫

Rd
dy (µ2∗ p2s)(y) (µ

1∗ p1s) (y) ≤ δ, n ≥ N,

where the last inequality follows from the estimate (193). Combining the statements
(193), (199), and (201), we obtain

lim sup
ε↓0

(Iε,N + IIε,N + IIIN ) ≤ 2δ, (202)

and therefore

lim sup
ε↓0

∣

∣

∣
P e−〈L

1,ε

X̄
(t),f〉 − P e−〈µ

1,u1,t
0 (0,X̄2·f)〉

∣

∣

∣
≤ 2δ. (203)

Since δ was arbitrary, claim (184) is verified.

6◦ (Conclusion) By adopting the proof of (184) (see also the proof of Theorem 1(ii)
in [Myt98a]), we can easily derive that

P
(

e−〈L
1,ε

X̄
(t),f〉 − e

−
〈

L1,ε′

X̄
(t),f

〉

)2

−−−→
ε,ε′↓0

0. (204)

Now claim (b) follows from (204), (194), and (184).

Proposition 35 implies the following first moment formulas for LX̄ and KX̄ .

Lemma 36 (Expectations in the superprocess case). For t > 0 and f ∈ C̄,
the following identities hold.

(a) (Collision measure): Under dimension restriction (172), if µ ∈M2
f ,

P
〈

KX̄(t), f
〉

=

∫

Rd
dx µ1∗ p1t (x)µ

2∗ p2t (x) f(x). (205)



INFINITE VARIANCE COMPETING PROCESSES 35

(b) (Collision local time): Under (174), if µ ∈Mf,e ,

P
〈

LX̄(t), f
〉

=

∫ t

0

ds

∫

Rd
dx µ1∗ p1s (x)µ

2∗ p2s (x) f(x). (206)

Proof. We will start with (b) and give afterwards some hints concerning the simpler
case (a).

1◦ (b) Without loss of generality, we may assume that α1 ≥ α2. Clearly, for
0 < r < t and f ∈ C̄+ ,

P
〈

LX̄(t)− LX̄(r), f
〉

= lim
ε↓0

P
1

ε

(

1− e−〈LX̄(t)−LX̄(r),εf〉
)

. (207)

Note that we introduced an r > 0 to have later available an additional smoothing
which simplifies the proof. By the Markov property and Proposition 35(b),

P e−〈LX̄(t)−LX̄(r),εf〉 = P e−〈X̄
1
r ,u

1,t
r (0,X̄2·εf)〉. (208)

In order to interchange limit with expectation, we use the following domination

1

ε

(

1− e−〈X̄
1
r ,u

1,t
r (0,X̄2·εf)〉

)

≤
1

ε

〈

X̄1
r , u

1,t
r (0, X̄2 · εf)

〉

(209)

≤ ‖f‖∞

∫ t

r

ds

∫

Rd
X̄1
r (dx) X̄

2
s ∗ p

1
s−r (x).

But by the expectation formula for X̄ and by independence,

P

∫ t

r

ds

∫

Rd
X̄1
r (dx) X̄

2
s ∗ p

1
s−r (x) =

∫ t

r

ds

∫

Rd
dx µ1∗ p1r (x) µ

2∗ p2s∗ p
1
s−r (x)

=

∫ t

r

ds

∫

Rd
dx µ1∗ p1s (x) µ

2∗ p2s (x) < ∞, (210)

since µ is assumed to have finite energy. Thus, by dominated convergence,

lim
ε↓0

P
1

ε

(

1− e−〈X̄
1
r ,u

1,t
r (0,X̄2·εf)〉

)

= P lim
ε↓0

1

ε

(

1− e−〈X̄
1
r ,u

1,t
r (0,X̄2·εf)〉

)

. (211)

Again by dominated convergence,
〈

X̄1
r , u

1,t
r (0, X̄2 · εf)

〉

→ 0 as ε ↓ 0, hence, the
latter expectation expression equals

P lim
ε↓0

1

ε

〈

X̄1
r , u

1,t
r (0, X̄2 · εf)

〉

= lim
ε↓0

P
1

ε

〈

X̄1
r , u

1,t
r (0, X̄2 · εf)

〉

= lim
ε↓0

P
1

ε

〈

µ1,S1ru
1,t
r (0, X̄2 · εf)

〉

= P lim
ε↓0

〈

µ1,
1

ε
S1ru

1,t
r (0, X̄2 · εf)

〉

, (212)

where in the first and last equality we used dominated convergence once again.
Recall that the non-negative function u1,t = u1,t(0, X̄2 · εf) solves

u1,tr (x) =

∫ t

r

ds (X̄2
s · εf)∗ p

1
s−r (x)−

∫ t

r

ds S1s−r
(

(u1,ts )1+β
)

(x). (213)

Inserting into (212), ε drops out in the linear term. For the other term we use the
domination:

u1,ts (x) ≤ ε ‖f‖∞

∫ t

s

ds′ X̄2
s′ ∗ p

1
s′−s (x), (214)
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where by Lemma 24 and Corollary 4 in [Myt98a] the latter integral expression
belongs to L1+β,t, P–a.s. Therefore,

1

ε

〈

µ1,

∫ t

r

ds S1s
(

(u1,ts )1+β
)

〉

(215)

≤ εβ ‖f‖∞

〈

µ1,

∫ t

r

ds S1s

(

(

∫ t

s

ds′ X̄2
s′ ∗ p

1
s′−s

)1+β
)

〉

≤ εβ ‖f‖∞ ‖µ
1‖ sup

r≤r′≤t
‖p1r′‖∞

∫ t

r

ds

∫

Rd
dx
(

∫ t

s

ds′ X̄2
s′ ∗ p

1
s′−s (x)

)1+β

,

which P–a.s. converges to 0 as ε ↓ 0. Hence, the non-linear term is negligible, and
we get

P lim
ε↓0

〈

µ1,
1

ε
S1ru

1,t
r (0, X̄2 · εf)

〉

= P
〈

µ1,

∫ t

r

ds (X̄2
s · f)∗ p

1
s

〉

=

∫ t

r

ds

∫

Rd
dy (µ1∗ p1s)(y) (µ

2∗ p2s) (y) f(y). (216)

But as r ↓ 0, the latter double integral converges to the expression claimed in (b).
Now it suffices to note that LX̄(r) ↓ 0 as r ↓ 0, P–almost surely, to finish the
proof of part (b) by monotone convergence.

2◦ (a) In a similar way,

P
〈

KX̄(t), f
〉

= lim
ε↓0

P
1

ε

(

1− e−〈KX̄(t),εf〉
)

(217)

= lim
ε↓0

P
1

ε

(

1− e−〈µ
1,u1,t

0 (X̄2
t ·εf,0)〉

)

,

and proceed along the same lines as in the previous step to finish the proof.

Lemma 36 will be applied to get the following regularity property of collision
local times:

Corollary 37 (Absolute continuity of collision local time). Let µ ∈ Mf,e

and assume (172).

(a) (Representation): We have

LX̄(t) =

∫ t

0

ds KX̄(s), t > 0, P–a.s. (218)

(b) (Continuity): TheMf-valued process t 7→ LX̄(t) is continuous.

Proof. (a) By Proposition 35, a diagonalization argument and the definitions of
collision measures and collision locale times, we can easily get that for all t ∈ Q+

(the set of all non-negative rational numbers), f ∈ bC, and some sequence εn ↓ 0
as n ↑ ∞,

〈

LX̄(t), f
〉

= lim
n↑∞

〈

Lεn
X̄
(t), f

〉

= lim
n↑∞

∫ t

0

ds
〈

Kεn
X̄
(s), f

〉

≥

∫ t

0

ds lim inf
n↑∞

〈

Kεn
X̄
(s), f

〉

=

∫ t

0

ds
〈

KX̄(s), f
〉

, P–a.s. (219)



INFINITE VARIANCE COMPETING PROCESSES 37

On the other hand, from Lemma 36 we get

P
〈

LX̄(t), f
〉

= P

∫ t

0

ds
〈

KX̄(s), f
〉

. (220)

Therefore the inequality in (219) is in fact an equality.
¿From monotonicity in t, we can remove the restriction to t ∈ Q+ . Finally,

since f ∈ bC and t ∈ R+ were arbitrary, claim (a) follows.

(b) is an immediate consequence of (a), finishing the proof.

5. Uniform convergence of collision local times

The purpose of this section is to prove the uniform convergence Theorem 7.
The key argument is the Cauchy property of approximating collision local times in
Lemma 39 below. Its proof starts with a crucial decomposition of collision local
time into ones of conditionally independent processes, for which log-Laplace tools
prepared in the previous section can be used.

5.1. Tightness of An. As usual, we say that a family of random objects is tight
in law, if their laws form a tight family. In the later procedure we will need the
following property:

Lemma 38 (Tightness of An). Let
{

(Xn,An) : n ≥ 1
}

be a family of solutions

to the martingale problem (MP)
α,β
µ as in Theorem 7. Fix arbitrary T > 0. Then

the sequence
{

An
(

d(t, x)
)

: n ≥ 1
}

of pairs of random measures in MT
f is tight in

law.

Proof. Let {ϕk : k ≥ 1} be the sequence of run away functions on Rd defined in
Lemma A5. It suffices to show that for i = 1, 2,

sup
n≥1

P
〈

An,iT , ϕk
〉

−→
k↑∞

0 (221)

[where, of course, An = (An,1, An,2) ]. By Corollary 20,

〈

An,iT , ϕk
〉

=
〈

µi, ϕk
〉

−
〈

Xn,i
T , ϕk

〉

+

∫ T

0

ds
〈

Xn,i
s , ∆αiϕk

〉

+ (martingale)T .

Hence,

P
〈

An,iT , ϕk
〉

≤
〈

µi, ϕk
〉

+

∫ T

0

ds P
〈

Xn,i
s , |∆αiϕk|

〉

. (222)

But from Corollary 23, Xn,i ≤ X̄i with X̄i the critical (αi, d, βi)–superprocess
without immigration and starting from µi. Moreover, from the expectation formula
in Lemma 14(d),

P
〈

X̄i
s , ϕ

〉

=
〈

µi,Sisϕ
〉

, ϕ ∈ bB. (223)

Inserting both into (222) gives

P
〈

An,iT , ϕk
〉

≤
〈

µi, ϕk
〉

+

∫ T

0

ds
〈

µi,Sis|∆αiϕk|
〉

. (224)

Clearly, the first term at the right hand side tends to 0 as k ↑ ∞ since µi is
a finite measure. But also the second term vanishes by Corollary A6. This gives
statement (221), and we are done.
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5.2. Cauchy property of approximating collision local times. The purpose
of this subsection is to prove the following statement.

Lemma 39 (Cauchy property of approximating collision local times).
Let

{

(Xn,An) :n ≥ 1
}

denote any family of solutions to the martingale problem

(MP)
α,β
µ with pairs α,β satisfying (10) and with µ ∈ Mf,e . Fix T > 0, and a

function f ∈ bC
(

[0, T ]× Rd
)

. Then, for any mollifiers J1 and J2,

sup
n≥1

P

(

∣

∣

∣

〈

Lε
1,J1

Xn (T ), f
〉

−
〈

Lε
2,J2

Xn (T ), f
〉

∣

∣

∣
≥ δ

)

−−−→
ε1,ε2↓0

0, (225)

for all δ > 0.

Here, by an abuse of notation, an expression as
〈

LY(t), f
〉

in case of a time-space
function f means

〈

LY(t), f
〉

:=

∫

[0,t]×Rd
LY
(

d(s, x)
)

fs(x). (226)

Proof of Lemma 39. 1◦ (Decomposition of collision local time). Recall from Corol-
lary 23 that the Xn are a.s. dominated by the (α, d,β)–pair of independent crit-
ical superprocesses X̄ without immigration and with X̄0 = µ, and that, given
(Xn,An),

X̄−Xn =: X̂n (227)

is the (α, d,β)–pair of independent critical superprocesses with immigration An

starting from X̂n
0 = 0. Then decomposition (227) yields the following key identity:

Lε
i,Ji

Xn = Lε
i,Ji

X̄
− Lε

i,Ji

(X̂n,1, Xn,2)
− Lε

i,Ji

(X̄1, X̂n,2)
, n ≥ 1, 0 < εi ≤ 1, i = 1, 2. (228)

We want to show that all the terms at the right hand side of (228) satisfy statements
as in (225), then yielding (225).

2◦ (First term). Fix T > 0. First of all, by Lemma 2 and Proposition 35 and its
proof, we have

Lε
i,Ji

X̄

P
−→
εi↓0

LX̄ in MT
f , i = 1, 2, (229)

and hence, the claimed Cauchy property is certainly true for Lε
i,Ji

X̄
. Next we want

to deal with the second term at the right hand side of (228). The third term will
be treated in step 10◦.

3◦ (Second term: Outline of proof ). Conditioned on Xn, the approximating colli-

sion local times Lε
i,Ji

(X̂n,1, Xn,2)
can be expressed in terms of the weighted occupation

time process of X̂n,1 (cf. (247) below). Hence, its log-Laplace transform is given by
Lemma 14(c). Letting εi ↓ 0, formally we come to a log-Laplace equation involving
Xn,2 as a generalized forcing term as in Proposition 28. But to justify this limit
εi ↓ 0, we cannot directly apply Proposition 34 since Xn,2 belongs to Pt,η,◦ only,
and not to Pt,η. To overcome this technical difficulty, we will exploit some cutting
methods. The details will be given in the steps 4◦–9◦.

4◦ (Second term: Preparation). In the following procedure, by Lemma 2 we will

often replace approximating collision local times Lε
i

by their asymmetric versions
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L2,εi introduced in (18). So we would like to show at this stage that for fixed
f ∈ bC

(

[0, T ]× Rd
)

,

sup
n≥1

P

(

∣

∣

∣

〈

L2,ε1,J1

(X̂n,1, Xn,2)
(T ), f

〉

−
〈

L2,ε2,J2

(X̂n,1, Xn,2)
(T ), f

〉

∣

∣

∣
> δ

)

−−−→
ε1,ε2↓0

0, (230)

for all δ > 0.
Recall the fact that (X̂n,1, Xn,2) ≤ X̄, the (α, d,β)–pair of independent critical

superprocesses without immigration. This implies that

L2,εi,Ji

(X̂n,1, Xn,2)
(T ) ≤ L2,εi,Ji

X̄
(T ), i = 1, 2. (231)

Combined with (229) we see that the family of random measures
{

L2,εi,Ji

(X̂n,1, Xn,2)

(

d(t, x)
)

1[0,T ](t) : n ≥ 1, 0 < εi ≤ 1, i = 1, 2
}

∈MT
f (232)

is tight in law.
Take

η ∈
(

(d− α1)+ , min(α2/β2 , d)
)

, (233)

which is possible by assumption (10). Then we may recall again Example 26 to
conclude that

{X̄2
s : 0 ≤ s ≤ t} ∈ Pt,η,◦, P-a.s., (234)

For m ≥ 1, set

Bm :=
{

(s, x) ∈ [0, T ]× Rd :
〈

X̄2
s , hx,η

〉

≤ m
}

, (235)

with hx,η defined in (98). Put

X̄2,m
s (dx) := X̄2

s (dx) 1Bm
(s, x), (s, x) ∈ [0, T ]× Rd, (236)

and

X̄2,m,c := X̄2 − X̄2,m. (237)

Note that by (234) and Lemma 3(ii) of [Myt98a], X̄2,m belongs to PT,η, P–a.s.
Since

Bm ↑ B∞ :=
{

(s, x) ∈ [0, T ]× Rd :
〈

X̄2
s , hx,η

〉

<∞
}

as m ↑ ∞, (238)

and
∫

Bc
∞

X̄2
s (dx) ds = 0 (239)

(where Bc denotes the complement of the set B), we obtain that

X̄2,m
s (dx) ds ↑ X̄2

s (dx) ds as m ↑ ∞. (240)

Similarly, for m,n ≥ 1, set

Xn,2,m
s (dx) := Xn,2

s (dx) 1Bm
(s, x), (s, x) ∈ [0, T ]× Rd, (241)

and Xn,2,m,c := Xn,2 −Xn,2,m. Note that Xn,2,m ≤ X̄2,m ∈ PT,η, and that

Xn,2,m,c = Xn,2 −Xn,2,m ≤ X̄2,m,c. (242)
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5◦ (Further decomposition). For fixed f in bC
(

[0, T ]× Rd
)

, let us bound
∣

∣

∣

∣

〈

L2,ε1,J1

(X̂n,1, Xn,2)
(T ), f

〉

−
〈

L2,ε2,J2

(X̂n,1, Xn,2)
(T ), f

〉

∣

∣

∣

∣

≤ Iε
1,1
n,m + IIε

1,ε2

n,m + Iε
2,2
n,m , (243)

where

Iε
i,i
n,m :=

∣

∣

∣

∣

〈

L2,εi,Ji

(X̂n,1, Xn,2)
(T ), f

〉

−
〈

L2,εi,Ji

(X̂n,1, Xn,2,m)
(T ), f

〉

∣

∣

∣

∣

, i = 1, 2, (244a)

IIε
1,ε2

n,m :=

∣

∣

∣

∣

〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ), f

〉

−
〈

L2,ε2,J2

(X̂n,1, Xn,2,m)
(T ), f

〉

∣

∣

∣

∣

. (244b)

6◦ (Middle term IIε
1,ε2

n,m : Preparation). Let us start with IIε
1,ε2

n,m . We want to show
that for fixed m,

IIε
1,ε2

n,m

P
−−−→
ε1,ε2↓0

0, uniformly in n. (245)

By dominations as in (231) and tightness as for (232), it suffices to prove

sup
n≥1

P

∣

∣

∣

∣

exp
〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ),−f

〉

− exp
〈

L2,ε2,J2

(X̂n,1, Xn,2,m)
(T ),−f

〉

∣

∣

∣

∣

2

−−−→
ε1,ε2↓0

0.

But for this it is sufficient to show that

lim
ε1,ε2↓0

sup
n≥1

∣

∣

∣

∣

∣

P exp

[

− 2
〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ), f

〉

]

(246)

− P exp

[

−
〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ), f

〉

−
〈

L2,ε2,J2

(X̂n,1, Xn,2,m)
(T ), f

〉

]

∣

∣

∣

∣

∣

= 0.

For this, we will use the log-Laplace representation from Lemma 14(c).

7◦ (Reformulation of (246)). In fact, by definition (18) of L2,εi (and interchanging
the order of integration),

〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ) + L2,ε2,J2

(X̂n,1, Xn,2,m)
(T ), f

〉

=

∫ T

0

ds
〈

X̂n,1
s , ψn,m,ε

1,ε2

s

〉

(247)

with

ψn,m,ε
1,ε2

s (x) :=

∫

Rd
Xn,2,m
s (dy) [J1ε1 + J2ε2 ](x− y) fs(y), (248)

0 ≤ s ≤ T, x ∈ Rd. Hence, by Lemma 14(c), applied to X̂n given (Xn,An),

P

{

exp
〈

L2,ε1,J1

(X̂n,1, Xn,2,m)
(T ) + L2,ε2,J2

(X̂n,1, Xn,2,m)
(T ),−f

〉

∣

∣

∣

∣

(Xn,An)

}

(249)

= P

{

exp
[

−

∫ T

0

ds
〈

X̂n,1
s , ψn,m,ε

1,ε2

s

〉

]

∣

∣

∣

∣

(Xn,An)

}

= exp

[

−

∫ T

0

〈

An,1ds , u1,Ts
(

0, ψn,m,ε
1,ε2
)

〉

]

,

with u1,T
(

0, ψn,m,ε
1,ε2
)

solving (29). Similarly, define

ψ̃n,m,ε
1

s (x) := 2

∫

Rd
Xn,2,m
s (dy) J1ε1(x− y) fs(y), 0 ≤ s ≤ T, x ∈ Rd. (250)
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Then, (246) (for fixed m) is equivalent to

lim
ε1,ε2↓0

sup
n≥1

∣

∣

∣

∣

∣

P exp

[

−

∫ T

0

〈

An,1ds , u1,Ts
(

0, ψ̃n,m,ε
1)
〉

]

(251)

− P exp

[

−

∫ T

0

〈

An,1ds , u1,Ts
(

0, ψn,m,ε
1,ε2
)

〉

]

∣

∣

∣

∣

∣

= 0.

8◦ (Proof of (251)). To verify this we want to apply Proposition 34 with

νns (dy) = Xn,2,m
s (dy)fs(y). (252)

First note that by Lemma 38 to every δ ∈ (0, 1) there exists a compact subset
Kδ ⊂MT

f such that

P
(

An,1
(

d(s, x)
)

∈ Kδ
)

≥ 1− δ, n ≥ 1. (253)

On the other hand, choose a compact subset C̃δ of DTMf
such that

P(X̄2 ∈ C̃δ) ≥ 1− δ. (254)

(Here and in similar cases we mean, of course, the restriction of An,1 and X̄2 to
the time interval [0, T ].) Set

Cδ :=
{

ν ∈ PT.η : ∃ ν̃ ∈ C̃δ with ν ≤ ν̃ in PT
}

(255)

and, for k ≥ 1,

Cδ,k :=
{

ν ∈ Cδ : ‖ν‖−η,T ≤ k
}

. (256)

Note that by Lemma 27, Cδ,k is a compact subset of PT,η.
In the expectation expressions in (251) we now distinguish between two cases.

First we assume that Xn,2,m ∈ Cδ,k and An,1 ∈ Kδ. Then by Proposition 34 we
get

lim
ε1,ε2↓0

sup
n≥1

∣

∣

∣
u1,Ts (0, ψ̃n,m,ε

1

) (x)− u1,Ts (0, ψn,m,ε
1,ε2) (x)

∣

∣

∣
= 0, (257)

uniformly in (s, x,Xn,2,m) ∈ [0, T ]×B ×Cδ,k, where B is any compact subset of
Rd. Therefore,

lim
ε1,ε2↓0

sup
n≥1

∣

∣

∣

∣

∫ T

0

ds
〈

An,1ds , u
1,T
s (0, ψ̃n,m,ε

1

)− u1,Ts (0, ψn,m,ε
1,ε2)

〉

∣

∣

∣

∣

= 0, (258)

uniformly on
(

Xn,2,m, An,1
)

∈ Cδ,k × Kδ. This gives (251) if we restrict the ex-

pectations additionally to the event
{

(Xn,1,m, An,1) ∈ Cδ,k ×Kδ
}

.
But by (253) and (254),

P
(

(

Xn,1,m, An,1
)

6∈ Cδ,k ×Kδ
)

≤ P(X̄2 /∈ C̃δ) + P(An,1 /∈ Kδ) ≤ 2δ. (259)

Thus, if in (251) we restrict now to the complementary event, we get the bound
4δ. Since δ was arbitrary, (251) follows immediately.

9◦ (Remaining terms Iε
i,i
n,m). By (243), to complete the proof concerning (230), it

suffices to show that for δ > 0 we can find an m ≥ 1 such that

sup
n≥1, 0<ε≤1

P Iε,in,m ≤ δ, i = 1, 2. (260)



42 FLEISCHMANN AND MYTNIK

By (242),

Iε,in,m =
∣

∣

∣

〈

L2,ε,Ji

(X̂n,1, Xn,2,m,c)
(T ), f

〉

∣

∣

∣
≤
〈

L2,ε,Ji

(X̂n,1,X̄2,m,c)
(T ), |f |

〉

. (261)

By domination X̂n,1 ≤ X̄1 and definition (18) of asymmetric collision local time,
we may continue with

≤ ‖f‖T,∞

∫ T

0

ds

∫

Rd
X̄2,m,c
s (dy) X̄1

s ∗J
i
ε (y), i = 1, 2, (262)

where ‖f‖T,∞ < ∞ by assumption. But X̄ has independent components, hence
X̄2,m,c and X̄1 are independent, and therefore we can built their expectations
separately. Now, by the expectation formula in Lemma 14(d),

PX̄1
s (dz) = µ1∗ p1s (z) dz, (263)

hence,

PIε,in,m ≤ ‖f‖T,∞ P

∫ T

0

ds

∫

Rd
X̄2,m,c
s (dy)µ1∗ p1s∗J

i
ε (y), i = 1, 2. (264)

Take δ′ ∈ (0, T ). First we restrict in the previous integral additionally to s ≤ δ′.
Here, using

X̄2,m,c ≤ X̄2 and PX̄2
s (dy) = µ2∗ p2s(y) dy, (265)

we come to
∫ δ′

0

ds

∫

Rd
dy µ2∗ p2s(y)µ

1∗ p1s∗J
i
ε (y). (266)

Arguing as in step 3◦ of the proof of Proposition 35, we choose a δ′ sufficiently
small, such that (264) with the integral restricted to s ≤ δ′ is smaller than δ/2,
uniformly in n,m, ε, and i = 1, 2.

We restrict now the integral in (264) to δ′ ≤ s ≤ T. Here we exploit that

sup
δ′≤s≤T

‖µ1∗ ps‖∞ <∞ and

∫

Rd
dz J iε(z) = 1. (267)

Thus, to complete the proof of (260), it remains to verify that

P

∫ T

0

ds ‖X̄2,m,c
s ‖ −→

m↑∞
0. (268)

But by (237) and (240),

‖X̄2,m,c
s ‖ ↘

m↑∞
0, P × ds–almost everywhere, (269)

and ‖X̄2,m,c
s ‖ ≤ ‖X̄2

s ‖ where P
∫ T

0
ds ‖X̄2

s ‖ = T ‖µ2‖ < ∞. Hence, by domi-
nated convergence, (268) follows. This finishes the proof of (260), thus the proof
concerning (230), and hence of the second term at the right hand side of (228).

10◦ (Third term). It remains to explain the modifications which we need to make
to get also the Cauchy property for the third term at the right hand side of (228).
Instead of condition (233) we work with

η ∈
(

(d− α2)+ , min(α1/β1 , d)
)

, (270)
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which again is based on (10). Define X̄1,m and X̄1,m,c analogously to (236) etc.

Pass once more to the asymmetric version L2,εi of the approximating collision local
time and bound

∣

∣

∣

∣

〈

L2,ε1,J1

(X̂n,2, X̄1)
(T ), f

〉

−
〈

L2,ε2,J2

(X̂n,2, X̄1)
(T ), f

〉

∣

∣

∣

∣

(271)

analogously to (243). In the definition (248) of the ψn,m,ε
1,ε2

s (x) now X̄1,m enters
instead of Xn,2,m

s , and for the log-Laplace expression (249) condition additionally
on X̄1. The further procedure is even simpler, since we have less n–dependence.
We skip any further obvious details.

This finishes the proof of Lemma 39 altogether.

5.3. Continuous convergence of collision local times. One can easily derive
from Lemma 39 the existence of collision local time for any solution to the mar-

tingale problem (MP)
α,β
µ with µ ∈ Mf,e . The main purpose of this subsection

is to show that the family of approximating collision local times corresponding to

solutions of (MP)
α,β
µ is relatively compact in CMf

(the precise meaning of this

will be clear from Proposition 42). But first let us prove the following result.

Lemma 40 (Existence of collision local times). Let (X,A) be any solution

to the martingale problem (MP)
α,β
µ with α,β satisfying (10) and µ ∈Mf,e . Then

the local time LX exists. Moreover, for any sequence {εn : n ≥ 1} converging to
0 as n ↑ ∞, there exists a subsequence {ε′n : n ≥ 1} such that

L
ε′n
X (t) −→

ε′n↓0
LX(t) in Mf (272)

uniformly in t on any compact interval of continuity of t 7→ LX(t), P–almost
surely.

Proof. Fix arbitrary T > 0 and εn ↓ 0. Let D denote a countable dense subset of
bC
(

[0, T ]× Rd
)

. By Lemma 39, for each f ∈ D, and any mollifier J, the limit in
probability

lim
n↑∞

〈

Lεn,JX (T ), f
〉

=: LX(T, f) (273)

exists and does not depend on the mollifier J. We can use this and a diagonalization
argument to show that along some subsequence ε′n ↓ 0,

〈

L
ε′n,J
X (T ), f

〉

−→
n↑∞

LX(T, f), f ∈ D, P–a.s. (274)

Define the measures

νε
(

d(t, x)
)

:= PL2,ε,J
X

(

d(t, x)
)

1[0,T ](t) (275)

≤ µ1∗ p1t ∗Jε (x)µ
2∗ p2t (x) 1[0,T ](t) dtdx,

where the inequality follows by the domination X ≤ X̄ and Lemma 14(d). Arguing
as in step 3◦ of the proof of Proposition 35, it is easy to check that {νε : 0 < ε ≤ 1}
is tight in MT

f . This combined with (274), Lemma A7 (with d replaced by d+1)
and Lemma 2 implies, that there is a random measure LX ∈M

T
f such that

L
2,ε′n
X

(

d(t, x)
)

1[0,T ](t) −→
n↑∞

LX
(

d(s, x)
)

in MT
f , P–a.s. (276)
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Now we can define the non-decreasing measure-valued process

t 7→ LX(t,dx) :=

∫ t

0

LX
(

d(s, x)
)

, 0 < t ≤ T. (277)

Since T was arbitrary, the process t 7→ LX(t) can be easily defined for all t ≥ 0.

Moreover, by weak convergence properties of the measures L
2,ε′n
X we get that P–

almost surely,

L
2,ε′n
X (t) −→

n↑∞
LX(t) in Mf (278)

for all points t > 0 of continuity of s 7→ LX(s). Finally, the uniformity statement
on (272) follows easily by a standard theorem on convergence of monotone functions
(see e.g. Theorem 10.10 in [Doo94]).

Now, for any solution (X,A) to prove the uniform in time convergence of L
ε′n
X

to LX (as needed for Theorem 7), it is enough to show that LX is a continuous
Mf–valued process. The simplest way to do this is to use the continuity of the
LX̄–process (Corollary 37) and the domination X ≤ X̄.

Corollary 41 (More on collision local time). Let (X,A) be any solution to

(MP)
α,β
µ with α,β satisfying (10) and with µ ∈Mf,e . Then the following state-

ments hold:

(a) (Continuity): TheMf–valued process t 7→ LX(t) is continuous.

(b) (Convergence on path space): For any sequence εn ↓ 0 there is a sub-
sequence ε′n ↓ 0 such that

L
ε′n
X −→

n↑∞
LX in CMf

, P–a.s. (279)

Proof. (a) Use the domination X ≤ X̄ and the convergence

LεX
(

d(t, x)
)

1[0,T ](t) −→
ε↓0

LX
(

d(t, x)
)

1[0,T ](t) in MT
f , T > 0, in P–probability,

to get the domination

LX
(

d(t, x)
)

≤ LX̄
(

d(t, x)
)

. (280)

By Corollary 37, LX̄ is continuous, non-decreasing, Mf–valued, and hence LX is
also continuous.

(b) follows immediately from (a) and Lemma 40. The proof is complete.

Now we are ready to prove relative compactness of approximating collision local
times as we announced at the beginning of this subsection.

Proposition 42 (Relative compactness in CMf
). Let

{

(Xn,An) : n ≥ 1
}

be a

sequence of solutions to (MP)
α,β
µ as in Theorem 7. Then for each sequence εk ↓ 0

and nk ↑ ∞ there is a subsequence {(ε′k , n
′
k) : k ≥ 1} such that the families

{

L
1,ε′k

X
n′
k
: k ≥ 1

}

and
{

L
X
n′
k
: k ≥ 1

}

(281)

are relatively compact in CMf
, P–almost surely.
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Proof. Recall the domination

Xn ≤ X̄, n ≥ 1, P–a.s. (282)

By Corollary 41(b) and a simple application of Lemma 2, for any εk ↓ 0 we can
find a subsequence ε′k ↓ 0 such that

{

L
1,ε′k
X̄

: k ≥ 1
}

converges in CMf
, P–a.s. (283)

Then, from (282), for 0 ≤ s ≤ t and f ∈ bC,
∣

∣

∣

∣

〈

L
1,ε′k

X
n′
k
(t), f

〉

−
〈

L
1,ε′k

X
n′
k
(s), f

〉

∣

∣

∣

∣

≤

∣

∣

∣

∣

〈

L
1,ε′k
X̄

(t), f
〉

−
〈

L
1,ε′k
X̄

(s), f
〉

∣

∣

∣

∣

. (284)

Hence, by Arcela-Ascoli, from (283) we get that for each f ∈ bC,
{

t 7→
〈

L
1,ε′k

X
n′
k
(t), f

〉

: k ≥ 1
}

is relatively compact in C(R+ ,R), P–a.s. (285)

Adding the fact that for any T > 0 the set
{

L1,ε
Xn(s) : 0 ≤ s ≤ T, 0 < ε ≤ 1, n ≥ 1

}

(286)

of measures is P–a.s. tight in Mf [use again (282)], we get that
{

L
1,ε′k

X
n′
k
: k ≥ 1

}

is relatively compact in CMf
a.s. (287)

The proof of almost sure relative compactness of {LXn : n ≥ 1} goes along the
same lines (use the domination LXn ≤ LX̄ , n ≥ 1), so we omit it.

5.4. Proof of Theorem 7. Let
{

(Xn,An) : n ≥ 1
}

be as in the theorem. Com-
bining Lemmas 39, 40, and a diagonalization argument, we can easily get that for
each sequence εk ↓ 0 and nk ↑ ∞ there is a subsequence

{

(ε′k , n
′
k) : k ≥ 1

}

such
that for T > 0 and P–a.s.,

∣

∣

∣

〈

L
1,ε′k

X
n′
k
(t), f

〉

−
〈

L
X
n′
k
(t), f

〉∣

∣

∣
−→
k↑∞

0, t ∈ Q+ ∩ [0, T ], f ∈ bC. (288)

Moreover, by Proposition 42,
{

(

L
1,ε′k

X
n′
k
, L

X
n′
k

)

: k ≥ 1
}

is relatively compact in C2Mf
, P–a.s. (289)

Hence, the convergence statement in (288) holds uniformly in t on each compact
subset of R+ , that is

sup
0≤t≤T

∣

∣

∣

〈

L
1,ε′k

X
n′
k
(t), f

〉

−
〈

L
X
n′
k
(t), f

〉∣

∣

∣
−→
k↑∞

0, T > 0, f ∈ bC, (290)

P–a.s. Since the sequence {(εk , nk) : k ≥ 1} was arbitrary, the proof is finished
by a simple application of Lemma 2 and its proof, and by [Kal97, Lemma 3.2].

5.5. Continuity of the map X 7→ LX . For the proof of Theorem 9, which
is based on construction of the converging sequence of approximating competing
species models, we will need the following result.

Proposition 43 (Continuity of the map X 7→ LX). For each n ≥ 0, consider

solutions (Xn,An) to (MP)
α,β
µ as in Theorem 7. Suppose that Xn→ X0 as

n ↑ ∞ in D2
Mf

, P–a.s. Then:

(a) LXn → LX0 as n ↑ ∞, in CMf
in P–probability.

(b) LεnXn → LX0 as n ↑ ∞ and εn ↓ 0, in CMf
in P–probability.
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(c) Li,εnXn → LX0 as n ↑ ∞ and εn ↓ 0, in CMf
in P–probability, i = 1, 2.

Proof. (a) is proved along the lines of the proof of Lemma 3.5 in [EP94, p.135].
That is, LX is a uniform limit of continuous maps,

LεXn −−−−→
Xn→X0

LεX0 , ε ≥ 0, (291)

and by Theorem 7, LX is the uniform (in probability space) limit of these mappings
as ε ↓ 0. Hence, the limiting mapping is also continuous.

We skip the proof of (b) and (c), since it uses the same reasoning.

5.6. A general tightness result. Here we will prove some tightness criterion that
will be useful in the proof of Theorem 9 in Subsection 6.2.

Proposition 44 (General tightness criterion). Let (Xn,An) be any sequence

of solutions to (MP)
α,β
µ . Suppose that the family An ∈ C2Mf

is tight in law. Then
the family

(Xn,An) ∈ D2
Mf
×D2

Mf
, n ≥ 1, (292)

is tight in law, too.

Remark 45 (Tightness in C2Mf
). Note that from Lemma 38 we know the tight-

ness in law of the An as measures on [0, T ]× Rd, for any T. However, this propo-
sition requires more from the An : namely, to be tight in C2Mf

. 3

Proof of Proposition 44. For the proof it is enough to check that the sequence
{Xn : n ≥ 1} ⊂ D2

Mf
is tight in law. By the domination

Xn ≤ X̄, n ≥ 1, (293)

(recall Corollary 23), it suffices to verify that for (ϕ1, ϕ2) ∈ Φ2
+ the sequence

{

(

〈Xn,1, ϕ1〉, 〈Xn,2, ϕ2〉
)

: n ≥ 1
}

⊂ D2(R+ ,R) is tight in law. (294)

By Aldous’ criterion of tightness (see, for instance, [Wal86, Theorem 6.8]), state-
ment (294) is true if the following two conditions hold:

(i) For each t ∈ Q+ , the family of random variables
{

〈Xn,i
t , ϕi〉 : n ≥ 1, i = 1, 2

}

is tight in law.
(ii) For any sequence {τn : n ≥ 1} of bounded stopping times and δn ↓ 0,

∣

∣

∣

〈

Xn
τn+δn ,ϕ

〉

−
〈

Xn
τn ,ϕ

〉

∣

∣

∣

P
−→
n↑∞

0.

By the domination (293), part (i) follows trivially. Next check (ii). Assume τn ≤ T,
n ≥ 1. Again by the domination (293),

{

〈

Xn
τn+δn ,ϕ

〉

,
〈

Xn
τn ,ϕ

〉

: n ≥ 1
}

is tight in law. (295)

Hence, it is enough to check that

P
∣

∣

∣
exp

〈

Xn
τn+δn ,−ϕ

〉

− exp
〈

Xn
τn ,−ϕ

〉

∣

∣

∣

2

−→
n↑∞

0. (296)

For this it suffices to demonstrate that

In :=
∣

∣

∣
Pe−〈X

n
τn+δn

,2ϕ〉 − Pe−〈X
n
τn+δn

,ϕ〉−〈Xn
τn
,ϕ〉
∣

∣

∣
−→
n↑∞

0, (297a)

IIn :=
∣

∣

∣
Pe−〈X

n
τn+δn

,ϕ〉−〈Xn
τn
,ϕ〉 − Pe−〈X

n
τn
,2ϕ〉

∣

∣

∣
−→
n↑∞

0. (297b)
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We will verify (297a) since (297b) goes along the same lines with obvious modifi-
cations.

We start with comparing the first term in (297a) with

P exp

[

−
〈

Xn
τn+δn , 2ϕ

〉

−

∫ τn+δn

τn

〈Ands , 2ϕ〉

]

. (298)

Then its absolute difference is bounded by

P

∣

∣

∣

∣

1− exp
[

−

∫ τn+δn

τn

〈Ands , 2ϕ〉
]

∣

∣

∣

∣

. (299)

By our assumption, the family {An : n ≥ 1} ⊂ C2Mf
is tight in law. Therefore, the

expectation (299) will vanish as n ↑ ∞.
Similarly, we compare the second term in (297a) with

P exp

[

−
〈

Xn
τn+δn ,ϕ

〉

−
〈

Xn
τn ,ϕ

〉

−

∫ τn+δn

τn

〈Ands ,ϕ〉

]

. (300)

By the same argument, the difference will converge to 0 as n ↑ ∞.
Next we compare (298) with

P exp

[

−
〈

Xn
τn+δn , 2ϕ

〉

−

∫ τn+δn

τn

〈

Ands ,u
τn+δn
s (2ϕ,0)

〉

]

, (301)

with u from Definition 13. Its absolute difference is bounded by

P exp

[

−

∫ τn+δn

τn

〈

Ands ,
∣

∣2ϕ− uτn+δns (2ϕ,0)
∣

∣

〉

]

. (302)

But by Lemma 15(b),

sup
τn≤s≤τn+δn

∥

∥2ϕi − ui,τn+δns (2ϕi, 0)
∥

∥

∞
−→
n↑∞

0, (303)

and therefore (302) converges to 0 as n ↑ ∞.
In a similar way, we compare (300) with

P exp

[

−
〈

Xn
τn+δn ,ϕ

〉

−
〈

Xn
τn ,ϕ

〉

−

∫ τn+δn

τn

〈

Ands ,u
τn+δn
s (ϕ,0)

〉

]

. (304)

By the same reasoning, the difference will vanish as n ↑ ∞.

Since 2ϕi = ui,τn+δnτn+δn
(2ϕi, 0), by the exponential martingale Proposition 17 we

can rewrite (301) as

P exp
[

−
〈

Xn
τn ,u

τn+δn
τn (2ϕ,0)

〉

]

. (305)

Analogously, (304) equals

P exp
[

−
〈

Xn
τn ,u

τn+δn
τn (ϕ,0) +ϕ

〉

]

. (306)

But by time-homogeneity,

ui,τn+δnτn (2ϕi, 0) = ui,δn0 (2ϕi, 0), (307)

and again by Lemma 15(b),
∥

∥ui,δn0 (2ϕi, 0)− 2ϕi
∥

∥

∞
−→
n↑∞

0. (308)
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Recalling domination (293), the difference between (305) and

P exp
[

−
〈

Xn
τn , 2ϕ

〉

]

(309)

will go to 0 as n ↑ ∞.
In the same way, (306) approaches (309) as n ↑ ∞, too.
Consequently, In → 0 as n ↑ ∞, that is, (297a) follows, and the proof is

complete.

6. Construction of the competing species model

Here we want to prove Theorem 9, based on approximating competing species
processes which will be constructed afterwards (Subsections 6.3–6.5).

6.1. Approximating competing species model. Recall from Lemma 2 the ap-
proximating collision local times L1,ε

Y and L2,ε
Y of a pair Y = (Y 1, Y 2) ∈ D2

Mf
.

Definition 46 (Martingale problem (MP)
α,β,λ,ε
µ ). For fixed pairs α,β, and

ϑ as in (1), µ ∈ M2
f , a pair λ = (λ1, λ2) ∈ R2

+ , and ε ∈ (0, 1], let Xε =
(Xε,1, Xε,2) be an F·–adapted process (in D2

Mf
) such that, for each ϕ = (ϕ1, ϕ2) ∈

Φ2
+ ,

t 7→ e−〈X
ε
t ,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈X
ε
s,ϕ〉

〈

Xε
s , ∆αϕ−ϕ

1+β
〉

(310)

−

∫ t

0

〈

Λεds ,ϕ
〉

e−〈X
ε
s,ϕ〉, t ≥ 0,

is an F·–martingale starting from 0 at time t = 0, where

Λε = (Λ1,ε,Λ2,ε) :=
(

λ1L1,ε
Xε , λ

2L2,ε
Xε

)

. (311)

Then we say that Xε solves the martingale problem (MP)
α,β,λ,ε
µ . 3

In a sense, (MP)
α,β,λ,ε
µ describes an approximating competing species model.

Heuristically, each particle with path s 7→ ξs in the first population Xε,1 is killed

according to the additive functional t 7→ λ1
∫ t

0
ds Xε,2 ∗ Jε(ξs), and conversely for

the particles from the second population. Our goal is to show that whenever ε ↓ 0,

then the weak limiting points of the solutions to (MP)
α,β,λ,ε
µ satisfy (MP)

α,β,λ
µ ,

which in turn will give a proof of Theorem 9. But first we need to state the existence

of a solution to (MP)
α,β,λ,ε
µ .

Proposition 47 (Approximating competing species model).For each choice
of our constants α,β,ϑ,µ,λ, and ε, there is a solution Xε to the martingale prob-

lem (MP)
α,β,λ,ε
µ .

The proof of this proposition is deferred to Subsections 6.3–6.5.

6.2. Proof of Theorem 9. Fix α,β,ϑ,µ,λ as in the theorem, and a sequence
εn ↓ 0 (as n ↑ ∞). Consider Xεn from Proposition 47 and Λεn as in (311).

Lemma 48 (Tightness). The family (Xεn ,Λεn) ∈ D2
Mf
× C2Mf

is tight in law.

Proof. By Proposition 44, it is enough to prove that the family {Λεnt : n ≥ 1} of
processes in C2Mf

is tight in law. But this follows from Proposition 42.

Based on this lemma, now we prove the following result.
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Lemma 49 (Limit points). Let (X,Λ) be any weak limit point of (Xεn ,Λεn).
Then

Λ = (λ1LX , λ
2LX), (312)

and X is a solution to the martingale problem (MP)
α,β,λ
µ .

Proof. By Lemma 48, we can choose from {(Xεn ,Λεn) : n ≥ 1} a subsequence
converging in law on D2

Mf
× C2Mf

. By an abuse of notation, we denote this sub-
sequence by the same symbol. Going to the Skorohod space, we may assume that
there exists (X,Λ) such that

(Xεn ,Λεn) −→
n↑∞

(X,Λ) in D2
Mf
× C2Mf

, P–a.s. (313)

But by Proposition 43, convergence of Xεn implies that

Λi,εn = λiLi,εnXεn −→
n↑∞

λiLX in CMf
, in P–probability. (314)

Combining (313) and (314), we get

(Xεn ,Λεn) −→
n↑∞

(

X, λ1LX , λ
2LX

)

in D2
Mf
× C2Mf

, P–a.s. (315)

In particular, we get this convergence in the weak sense on the original probability
space, and (312) follows.

The last thing to check is that the X we constructed is a solution to (MP)
α,β,λ
µ .

By the exponential martingale Proposition 17, for each n ≥ 1, T > 0, and ϕ ∈ Φ2
+ ,

t 7→ Mεn
t (ϕ) := exp

[

−
〈

Xεn
t ,u

T
t (ϕ,0)

〉

−

∫ t

0

〈

Λεnds ,u
T
s (ϕ,0)

〉

]

, (316)

0 ≤ t ≤ T, is a martingale. Switch again to the Skorohod space where (315) holds.
Since the martingales M εn(ϕ) are bounded uniformly in n, they converge to the
martingale

t 7→Mt(ϕ) := exp

[

−
〈

Xt ,u
T
t (ϕ,0)

〉

−

∫ t

0

〈

Λds ,u
T
s (ϕ,0)

〉

]

, (317)

0 ≤ t ≤ T, with Λ from (312). Again by Proposition 17, (X,Λ) solves (MP)
α,β
µ ,

and therefore X is a solution of (MP)
α,β,λ
µ , finishing the proof.

Consequently, based on Proposition 47 (which proof was deferred), we con-

structed a solution to the martingale problem (MP)
α,β,λ
µ , that is, we verified

Theorem 9.

6.3. Outline of the proof of Proposition 47. In the finite variance competing
species model of [EP94], approximating competing species processes had been con-
structed by an application of Girsanov’s theorem. As we have already mentioned,
this “luctionary” tool is not available in our case, so we have to take another root.
Actually, we use tools developed in the previous sections. Since the matter here is
even simpler, we do not provide all the details.

Fix α,β,ϑ,λ,µ, ε as in the martingale problem (MP)
α,β,λ,ε
µ of Definition 46.

Loosely speaking, for each m ≥ 1 we would like to start from a solution Xm =

(Xm,1, Xm,2) of the following martingale problem (MP)
α,β,λ,ε,m
µ :
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For each ϕ ∈ Φ2
+ ,

t 7→ e−〈X
m
t ,ϕ〉 − e−〈µ,ϕ〉 +

∫ t

0

ds e−〈X
m
s ,ϕ〉

〈

Xm
s , ∆αϕ−ϕ

1+β
〉

(318)

−

∫ t

0

〈

Λ
ε,m
ds , ϕ

〉

e−〈X
m
s ,ϕ〉, t ≥ 0,

is a martingale starting from 0 at time t = 0. Here, Λε,m = (Λ1,ε,m,Λ2,ε,m) is
defined as follows:

Λi,ε,mt (dx) := λi
∫ t

0

Li,εXm

(

d(s, x)
)

jm,is , i = 1, 2, (319)

where

jm,is :=

{

2 if 2k−i
m ≤ s < 2k+1−i

m , k ≥ 1,

0 otherwise.

That is, on time intervals of length 1
m , starting with an odd multiple of 1

m , only

the first population Xm,1 is affected by killing provided by λ1L1,ε
Xm . Conversely,

on the remaining time intervals only the second population Xm,2 is affected by
killing using λ2L2,ε

Xm . Clearly, as m ↑ ∞ we expect the weak limiting points to

solve the martingale problem (MP)
α,β,λ,ε
µ of Definition 46.

In the following subsections we want to define precisely these processes Xm, to
show their tightness in law, and to prove that any weak limit point Xε is a solution

to (MP)
α,β,λ,ε
µ . This will verify Proposition 47.

6.4. Processes with “one-sided” conditioned killing. For i = 1, 2, let
(

◦Ω, ◦F, ◦F· , Q
i
r,µi,κi

)

(320)

be the canonical stochastic basis of the (αi, d, βi)–superprocess X̃i with killing
rate κi, without immigration, and starting at time r ≥ 0 with measure µi ∈ Mf

(recall Subsection 3.2). Now, for fixed λ = (λ1, λ2) ∈ R2
+ and ε ∈ (0, 1], let

κ1 := 0 and κ2 := 2λ2 X̃1(ω1)∗Jε . (321)

That is, autonomously X̃1 is the critical (α1, d, β1)–superprocess (without immi-

gration), and, given a realization X̃1(ω1) of X̃1, the process X̃2 is constructed

as the (α2, d, β2)–superprocess with killing at rate 2λ2 X̃1
s (ω

1)∗Jε (x) at time s at
site x. Write

1Pr,µ(dω) := Q1
r,µ1,0(dω

1)Q2
r,µ2,2λ2X̃1(ω1)∗Jε

(dω2), (322)

ω = (ω1, ω2) ∈ ◦Ω× ◦Ω, for the joint law of X̃ : = (X̃1, X̃2) in the present special
case of one-sided conditioned killing. For i = 1, 2 denote by F i· a right-continuous

filtration generated by X̃i. Note that the process (X,A) defined by

X1 := 0, A1 := 0 and X2 := X̃2, A2 := 2λ2L2,ε

X̃
, (323)

solves our martingale problem (MP)
α,β
µ under the law 1P0,µ{ · | F

1
∞} (implying a

degenerate first component).
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Lemma 50 (Another exponential martingale). Let X̃ have the law 1P0,µ as
introduced in (322). Then for any T > 0, and ϕ ∈ Φ2

+ ,

t 7→Mt(ϕ) := exp

[

−
〈

X̃t ,u
T
t (ϕ,0)

〉

− 2λ2
∫

[0,t]×Rd
L2,ε

X̃

(

d(s, x)
)

u2,Ts (ϕ2, 0) (x)

]

,

(with uT (ϕ,0) from Definition 13) is an
(

F1
· ⊗F

2
·

)

–martingale on [0, T ].

Proof. Fix r ∈ [0, T ) and D ∈ F1
r ⊗F

2
r . Then, for t ∈ [r, T ],

P 1DMt(ϕ) = P 1D e−〈X̃
1
t ,u

1,T
t (ϕ1,0)〉 P

{

exp
[

−
〈

X̃2
t , u

2,T
t (ϕ2, 0)

〉

(324)

− 2λ2
∫

[0,t]×Rd
L2,ε

X̃

(

d(s, x)
)

u2,Ts (ϕ2, 0)(x)
]

∣

∣

∣

∣

F1
∞ ⊗F

2
r

}

.

Recall that (X,A) defined by (323) solves (MP)
α,β
µ under 1P0,µ{ · | F

1
∞}. Hence,

by Proposition 17, the expression inside the conditional expectation in (324) is an
F1
∞ ⊗F

2
· –martingale. Thus, (324) equals

P

(

1D e−〈X̃
1
t ,u

1,T
t (ϕ1,0)〉 × (325)

exp
[

−
〈

X̃2
r , u

2,T
r (ϕ2, 0)

〉

− 2λ2
∫

[0,r]×Rd
L2,ε

X̃

(

d(s, x)
)

u2,Ts (ϕ2, 0)(x)
]

)

= P

(

1D exp
[

−
〈

X̃2
r , u

2,T
r (ϕ2, 0)

〉

− 2λ2
∫

[0,r]×Rd
L2,ε

X̃

(

d(s, x)
)

u2,Ts (ϕ2, 0)(x)
]

× P
{

e−〈X̃
1
t ,u

1,T
t (ϕ1,0)〉

∣

∣

∣
F1
r ⊗F

2
r

}

)

.

Now apply Proposition 17 to X̃1 alone without killing [recall (321)], to see that

the latter conditional expectation equals e−〈X̃
1
r ,u

1,T
r (ϕ1,0)〉. Then we arrive at the

expression P 1DMr(ϕ). Since r and D were arbitrary, M(ϕ) has the claimed
martingale property, and the proof is finished.

Next we alternate the previous construction, that is, we let X̃ = (X̃1, X̃2) be
distributed according to

2Pr,µ(dω) := Q2
r,µ2,0(dω

2)Q1
r,µ1,2λ1X̃2(ω2)∗Jε

(dω1). (326)

In other words, X̃2 is an autonomous critical superprocess under 2Pr,µ , and then,

conditioned on X̃2, the process X̃1 is constructed with killing rate 2λ1 X̃2
s ∗Jε .

6.5. Alternating conditional killing. Now we put together the pieces for our
Trotter type construction of the process Xm. Let F i· denote the right-continuous
filtration generated by Xm,i (which we want to construct). On the time interval
[0, 1

m ], let Xm evolve according to the law 1P0,µ . Conditioned on F1
1/m ⊗ F

1
1/m ,

starting at time 1
m with Xm

1/m , let X
m evolve on [ 1m ,

2
m ] according to 2P 1

m ,X
m
1/m

.

Continuing this way, we define the process Xm.
Recall definition (319) of Λε,m = (Λ1,ε,m,Λ2,ε,m). From the given construction

of (Xm,Λε,m) and Lemma 50, it is easy to get that

t 7→ Mm,ε
t (ϕ) := exp

[

−
〈

Xm
t ,u

T
t (ϕ,0)

〉

−

∫ t

0

〈

Λ
ε,m
ds ,u

T
s (ϕ,0)

〉

]

, (327)
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is an F1
· ⊗ F

2
· –martingale on [0, T ], for any T > 0 and ϕ ∈ Φ2

+ . Hence, by the
second part of Proposition 17, (Xm,Λε,m) is a solution to the martingale problem

(MP)
α,β
µ , for each m ≥ 1 (and the fixed ε).

Lemma 51 (Tightness of (Xm,Λε,m)). The sequence
{

(Xm,Λε,m) : m ≥ 1
}

∈ D2
Mf
× C2Mf

(328)

is tight in law, and any weak limit point of the Xm is a solution to the martingale

problem (MP)
α,β,λ,ε
µ .

Proof. As we mentioned just before the lemma,
{

(Xm,Λε,m) : m ≥ 1
}

is a family

of solutions to the martingale problem (MP)
α,β
µ . Hence, by Proposition 44, to

show the tightness in law on D2
Mf

× C2Mf
it is enough to check the tightness of

{Λε,m : m ≥ 1} in law on C2Mf
.

By domination Xm ≤ X̄, we immediately get the domination

Λε,m ≤ 2
(

λ1L1,ε

X̄
, λ2L2,ε

X̄

)

, m ≥ 1. (329)

Since Λi,ε,m is a non-decreasing measure-valued process, for any m ≥ 1 and
i = 1, 2, and Li,ε

X̄
is a non-decreasing, continuous, measure-valued process, we im-

mediately get from the domination (329) the tightness of {Λε,m : m ≥ 1} in law on
C2Mf

. Altogether, by Proposition 44 we get the tightness of
{

(Xm,Λε,m) : m ≥ 1
}

in law on D2
Mf
× C2Mf

.

Now let (X,Aε) be any weak limit point of
{

(Xm,Λε,m) : m ≥ 1
}

. Then on
an appropriate Skorohod space,

(Xm,Λε,m) −→
m↑∞

(X,Aε), P–a.s. (330)

(by passing to a subsequence if necessary). From the definition of (Xm,Λε,m) it is
easy to see that, as Xm −→m↑∞ X, then

Λε,m −→
m↑∞

(λ1L1,ε
X , λ2L2,ε

X ), P–a.s., (331)

that is Aε = Λε. Also, on the same Skorohod space, the martingales Mm,ε(ϕ)
defined in (327) converge to the martingale

t 7→ Mε
t (ϕ) := exp

[

−
〈

Xt ,u
T
t (ϕ,0)

〉

−

∫ t

0

〈

Λεds ,u
T
s (ϕ,0)

〉

]

, (332)

0 ≤ t ≤ T, ϕ ∈ Φ2
+ . Then by the second part of Proposition 17, (X,Λε) is a

solution to (MP)
α,β
µ , and hence, X solves the martingale problem (MP)

α,β,λ,ε
µ .

This finishes the proof of Lemma 51.

With Lemma 51 also the proof of Proposition 47 is finished.

Appendix: Auxiliary facts

A.1. Some convergences in bCco
(

[0, T ]× Rd
)

. For convenience, here we collect
some standard facts; cf. for instance with [Myt99, Lemma A.4].

Fix T ≥ 1. Introduce GT acting on measurable ψ : [0, T ]× Rd → R by

(GTψ)r(x) :=

∫ T

r

ds Ss−rψs (x), (r, x) ∈ [0, T ]× Rd, (A1)
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with S and p denoting the semigroup respectively the continuous transition kernel
of the symmetric α–stable process with generator ∆α := −ϑ(−∆)α/2, 0 < α ≤ 2,
ϑ > 0. Recall our notation ‖ · ‖T,∞ introduced in (97).

Lemma A1 (Relative compactness). For m ≥ 1, let ψm be (real-valued) mea-
surable functions defined on [0, T ]× Rd such that

sup
m≥1

‖ψm‖T,∞ < ∞. (A2)

Then the set
{

GTψm : m ≥ 1
}

is relatively compact in the space bCco
(

[0, T ]× Rd
)

of continuous functions on [0, T ] × Rd equipped with the topology of uniform con-
vergence on compacta.

Proof. First of all, for 0 ≤ r ≤ r′ ≤ T and x ∈ Rd,
∫ r′

r

ds Ss−rψ
m
s (x) ≤ ‖ψm‖T,∞ (r′ − r), (A3)

in particular, the set
{

GTψm : m ≥ 1
}

is uniformly bounded on [0, T ] × Rd. By
Arcela-Ascoli it remains to show its equip-continuity on [0, T ] × C, say, where
C ⊂ Rd is compact. For this purpose, consider 0 ≤ r ≤ r′ ≤ T and x, x′ ∈ C.
Then

∣

∣

∣
(GTψm)r(x)− (GTψm)r′(x

′)
∣

∣

∣
≤

∫ r′

r

ds Ss−r|ψ
m
s | (x) (A4)

+

∫ T

r′
ds

∫

Rd
dy
∣

∣ps−r(y − x)− ps−r′(y − x
′)
∣

∣

∣

∣ψms (y)
∣

∣.

By (A3), the first term on the right hand side is bounded by ‖ψm‖T,∞ (r′− r). On
the other hand, by a change of variables, the second term is bounded from above
by

‖ψm‖T,∞

∫ T

0

ds

∫

Rd
dy
∣

∣ps+r−r′(y − x)− ps(y − x
′)
∣

∣. (A5)

Fix 0 < ε < 1. If we restrict the integration in (A5) additionally to s ≤ ε, then
the restricted double integral is bounded by 2ε. On the other hand, we can find a
compact set K ⊂ Rd such that

sup
x∈C

∫ T+1

0

ds

∫

Kc

dy ps(y − x) ≤ ε. (A6)

Now fix δ ∈ (0, ε) such that for all

x, x′ ∈ C and 0 ≤ r ≤ r′ ≤ T satisfying |x− x′|+ |r − r′| ≤ δ, (A7)

we have
∫ T

ε

ds

∫

K

dy
∣

∣ps+r−r′(y − x)− ps(y − x
′)
∣

∣ ≤ ε. (A8)

Hence, by (A3)-(A8) we get
∣

∣(GTψm)r(x)− (GTψm)r′(x
′)
∣

∣ ≤ 5 sup
m≥1

‖ψm‖T,∞ ε, (A9)

for x, x′r, r′ as in (A7). Since ε was arbitrary, equi-continuity follows, and we are
done.
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Corollary A2 (Convergence). If, in addition to the assumptions in Lemma A1,

lim
m↑∞

‖ψm‖T,K = 0, for each compact set K ⊂ Rd, (A10)

then

GTψm −−→
m↑∞

0 in bCco
(

[0, T ]× Rd
)

. (A11)

Proof. Fix a compact set C ⊂ Rd. For any ε > 0, take a compact set K ⊂ Rd,
such that (A6) is satisfied. Then,

‖GTψm‖T,C ≤ ε ‖ψm‖T,∞ + T ‖ψm‖T,K , (A12)

and the claim follows.

We need also another version of the previous result:

Lemma A3 (Convergence). Let ψm ≥ 0, m ≥ 0, be (real-valued) measurable
functions defined on [0, T ]× Rd satisfying

sup
m≥0

‖ψm‖T,∞ < ∞ (A13)

and such that in MT
f ,

ψms (x) dsdx −−→
m↑∞

ψ0
s(x) dsdx. (A14)

Then,

GTψm −−→
m↑∞

GTψ0 in bCco
(

[0, T ]× Rd
)

. (A15)

Proof. It is easy to check that

(GTψm)r(x) −−→
m↑∞

(GTψ0)r(x), (r, x) ∈ [0, T ]× Rd. (A16)

Since by Lemma A1,
{

GTψm : m ≥ 1
}

is relatively compact in bCco
(

[0, T ]× Rd
)

,
claim (A15) follows.

For convenience, we add here another simple statement.

Lemma A4 (Uniform convergence). For n ≥ 1, consider fn ∈ C̄. Suppose

sup
n≥1

‖fn‖∞ < ∞ (A17)

and that

fn → 0 as n ↑ ∞, uniformly on compacta of Rd. (A18)

Then, for all T > 0,

sup
0≤s≤T

Ssfn → 0 as n ↑ ∞, uniformly on compacta of Rd. (A19)

Proof. Fix T > 0 and a compact set C ⊂ Rd. Then the set of measures
{

µs,x(dy) := ps(y − x) dy : (s, x) ∈ (0, T ]× C
}

(A20)
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on Rd is tight. Consequently, for each δ > 0 we can find a compact set Kδ ⊂ Rd

such that µs,x(K
c
δ) ≤ δ, for any (s, x) ∈ (0, T ]× Rd. Therefore it is easy to check

that

sup
0<s≤T, x∈C

〈

µs,x , fn
〉

≤ δ sup
n≥1

‖fn‖∞ + sup
y∈K

∣

∣fn(y)
∣

∣ −→
n↑∞

δ sup
n≥1

‖fn‖∞ , (A21)

where in the last step we used (A18). By (A17), the claim follows, since δ was
arbitrary.

A.2. On the fractional Laplacian ∆α . This subsection is devoted to some el-
ementary properties of the (weighted) fractional Laplacian ∆α = −ϑ(−∆)α/2,
0 < α ≤ 2, ϑ > 0. Recall first that D(∆α) = Φ, introduced in the beginning
of Subsection 2.1.

Lemma A5 (Run away functions). For k ≥ 1, let ϕk ∈ Φ+ satisfy ϕk ≤ 1
and

ϕk(x) =

{

0 for x ∈ Bk(0),

1 for x ∈ Bc
k+1(0),

(A22)

(with Bk = Bk(0) =
{

x ∈ Rd : |x| < k
}

). Then

|∆αϕk| −→
k↑∞

0 uniformly on compacta of Rd. (A23)

Proof. For the proof, we may assume that ϑ = 1 (otherwise, use scaling). The
following representation is well-known, see, e.g., [Yos74, formula (9.11.5)]:

∆αϕ (x) =
1

Γ(−α/2)

∫ ∞

0

ds s−1−α/2
[

ϕ(x)− S(2)s ϕ (x)
]

, ϕ ∈ Φ, (A24)

where S(2) denotes the semigroup of Brownian motion in Rd related to ∆, and Γ
is Euler’s Gamma function.

Fix an N ≥ 1, and consider x ∈ BN (0). Then, for all k sufficiently large we
have ϕk(x) = 0 and ϕk(x+y) = 0 for all |y| ≤ k−N. Using representation (A24)
for ϕk , it suffices to show that

∫ ∞

0

ds s−1−α/2
∫

|y|≥k

dy s−d/2 e−|y|
2/4s −→

k↑∞
0, (A25)

which follows immediately by dominated convergence.

Corollary A6 (Run away functions). Fix T > 0 and µ ∈ Mf . Then, with
{ϕk : k ≥ 1} ⊂ Φ+ from Lemma A5,

∫ T

0

ds
〈

µ,Ss|∆αϕk|
〉

−→
k↑∞

0. (A26)

Proof. By Lemma A5, |∆αϕk| → 0 as k ↑ ∞, uniformly on compacta. Hence, by
Lemma A4,

sup
0≤s≤T

Ss|∆αϕk| → 0 uniformly on compacta of Rd. (A27)

Since µ is finite, this gives the claim.
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A.3. On weak convergence in Mf . We need the following simple fact.

Lemma A7 (Sufficient criterion for weak convergence inMf). Let D be a
countable dense subset of the separable Banach space C̄, and {Yn : n ≥ 1} be
a sequence of random finite measures on Rd defined on some probability space
(Ω,F ,P). Assume that

〈Yn , f〉 −→
n↑∞

some Y (f) ∈ R+ , f ∈ D, P–a.s., (A28)

{PYn : n ≥ 1} is relatively compact in Mf . (A29)

Then there is a random finite measure Y on Rd such that

Yn −→
n↑∞

Y in Mf , P–a.s., (A30)

〈Y, f〉 = Y (f), f ∈ D, P–a.s. (A31)

Proof. Take Ω0 ∈ F such that the convergence statement in (A28) holds for all

ω ∈ Ω0 . Fix such ω. We may think of Yn(ω) as measures in Mf(Ṙ
d), where

Ṙd = Rd ∪ {∞} is the one-point compactification of Rd. By [Doo94, Theorems 8.4
and 8.5], it follows from (A28) that there exists a finite random measure Y (ω) on

Ṙd such that

Yn(ω) −→
n↑∞

Y (ω) in Mf(Ṙ
d). (A32)

The proof will be finished, if we show that
〈

Y (ω), 1{∞}
〉

= 0. (A33)

In fact, then

Yn(ω) −→
n↑∞

Y (ω) in Mf , (A34)

implying the claims (A30) and (A31).
Take ϕk := 1Bk

with Bk = Bk(0). Clearly, ϕk ↓ 1{∞} =: ϕ as k ↑ ∞, pointwise

on Ṙd. By monotone convergence
〈

Y (ω), ϕk
〉

↓ 〈Y (ω), ϕ〉 as k ↑ ∞, (A35)

hence

P 〈Y, ϕk〉 ↓ P 〈Y, ϕ〉 as k ↑ ∞. (A36)

Assume for the moment that P
〈

Y (ω), ϕ
〉

= 0, then (A33) follows, restricting the
set Ω0 if needed. But by (A36) and Fatou,

P 〈Y, ϕ〉 = lim
k↑∞

P 〈Y, ϕk〉 ≤ lim
k↑∞

lim inf
n↑∞

P 〈Yn , ϕk〉. (A37)

In view of (A29), for any δ > 0 there exists Nδ ≥ 1 such that

sup
n≥1

P 〈Yn , ϕk〉 < δ, k ≥ Nδ . (A38)

Then (A37) gives P 〈Y, ϕ〉 ≤ δ. Since δ was arbitrary, the proof is finished.
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A.4. Some first order considerations of log-Laplace functions. First we
provide the

Proof of Lemma 15. Fix t, ϕ, ψ as in the lemma.

(a) From the log-Laplace equation (29),

1

ε

(

ui,t+εt (ϕ, 0) (x)− ϕ(x)
)

=
1

ε

(

Siεϕ (x)− ϕ(x)
)

(A39)

−
1

ε

∫ t+ε

t

dr Sir−t
(

(ui,tr )1+β
i)

(x), x ∈ Rd.

By letting ε go to 0 the result follows easily.

(b) By a minor change in (A39), for s ∈ [t, t+ ε] we have

1

ε

∥

∥ui,t+εs (ϕ, 0)− ϕ
∥

∥

∞
(A40)

≤
1

ε

∥

∥

∥

∫ t+ε−s

0

dr Sir(∆αiϕ)
∥

∥

∥

∞
+

1

ε

∥

∥

∥

∫ t+ε

s

dr Sir−s
(

(ui,tr )1+β
i)
∥

∥

∥

∞

≤
1

ε

∫ t+ε−s

0

dr ‖∆αiϕ‖∞ +
1

ε

∫ t+ε

s

dr ‖ui,tr ‖
1+βi

∞

≤ ‖∆αiϕ‖∞ + ‖ϕ‖1+β
i

∞ ,

where for the last inequality we used the domination

ui,tr (ϕ,ψ) ≤ Sit−rϕ +

∫ t

r

dr′ Sir′−rψr′ , 0 ≤ r ≤ t. (A41)

(c) From the log-Laplace equation (29),

1

ε

(

ui,tr (εϕ, εψ)
)

− Sit−rϕ −

∫ t

r

ds Sis−rψs (A42)

= −
1

ε

∫ t

r

ds Sis−r

(

(

ui,ts (εϕ, εψ)
)1+βi

)

,

so we need only to deal with the last term. But by domination (A41),
∥

∥

∥
Sis−r

(

(

ui,ts (εϕ, εψ)
)1+βi

)∥

∥

∥

∞
≤
∥

∥

∥

(

ui,ts (εϕ, εψ)
)1+βi

∥

∥

∥

∞
(A43)

≤ ε1+β
i(

‖ϕ‖∞ + t‖ψ‖t,∞
)

[recall notation (97)]. This implies claim (c), finishing the proof of Lemma 15.

Proof of Lemma 16. (a) Choose ϕn ∈ bB such that ϕn ↑ ϕ. By subadditivity
(Lemma 33) and domination, for n ≥ m we immediately get
∣

∣ui,tr (ϕn , 0)− u
i,t
r (ϕm , 0)

∣

∣ ≤ ui,tr (ϕn − ϕm , 0) ≤ Sit−r(ϕn − ϕm) −→
n,m↑∞

0

uniformly on compacts of Rd, for each fixed r < t. This gives the existence of a
continuous limit

ui,tr (ϕ, 0) := lim
n↑∞

ui,tr (ϕn , 0). (A44)

The fact that ui,t solves (29) follows easily by monotone convergence. The unique-
ness argument is standard.
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(b) First of all, Sit−rϕε → Sit−rϕ0 uniformly on compacts on Rd. Since
∥

∥ui,tr (ϕε , 0)
∥

∥

∞
≤
∥

∥Sit−rϕε , 0)
∥

∥

∞
≤ ess sup

x∈Rd

∣

∣ϕε(x)
∣

∣ , (A45)

by Lemma A1, setting

ψεs(x) :=
(

ui,ts (ϕε , 0)
)1+βi

, 0 ≤ s < t, x ∈ Rd, (A46)

we have that {Gtψε : 0 < ε ≤ 1} is relatively compact in bCco
(

[0, t]× Rd
)

. Argu-
ing as in the proof of Proposition 34, it is easy to check that each limit point solves
the required equation, and the convergence is uniform on compacts.

Acknowledgment Much of this work was carried out while the first author was
visiting the Technion in Haifa and the second author the Weierstrass Institute in
Berlin. Kind hospitality is acknowledged. We are grateful to Luis Gorostiza for his
helpful hints concerning the fractional Laplacian. Thanks go also to Ingo Bremer
for his assistance with LATEX. Finally, we acknowledge the referee’s and an associate
editor’s remarks which lead to an improvement of the exposition.

References

[BEP91] M.T. Barlow, S.N. Evans, and E.A. Perkins. Collision local times and measure-valued
processes. Canad. J. Math., 43(5):897–938, 1991.

[Daw78] D.A. Dawson. Geostochastic calculus. Canadian J. Statistics, 6:143–168, 1978.

[Daw93] D.A. Dawson. Measure-valued Markov processes. In P.L. Hennequin, editor, École
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