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1 Introduction

Let M be a smooth, compact connected d-dimensional Riemannian manifold without boundary,
and let {Xt}t≥0 denote Brownian motion onM . {Xt}t≥0 is a strongly symmetric Markov process
with reference measure given by the Riemannian measure dV and infinitesimal generator 1/2
the Laplace-Beltrami operator ∆M . We use d(x, y) to denote the Riemannian distance between
x, y ∈M , using it whenever computing the diameter or dimension of subsets of M . Let B(x, r)
denote the open ball in M of radius r centered at x. For x in M we have the ε-hitting time

T (x, ε) = inf{t > 0 |Xt ∈ B(x, ε)}.

Then
Cε(M) = sup

x∈M
T (x, ε)

is the ε-covering time of M , i.e. the amount of time needed for the Brownian motion Xt to come
within ε of each point in M . Equivalently, Cε(M) is the amount of time needed for the Wiener
sausage of radius ε to completely cover M . This quantity is closely related to the asymptotics
of the spectrum of the manifold M with a small ball removed.

In [7] we considered Cε(M) for compact manifolds of dimension d = 2. By the use of isothermal
coordinate systems this problem is reduced to the ε-covering time of the two-dimensional (flat)
torus by a (standard) Brownian motion. In this paper we deal with manifolds of dimension
d ≥ 3, for which in general there is no direct reduction to the Euclidean case. Consequently, we
work directly on the manifold, taking advantage of the fact that the Brownian motion is “locally
transient” on such manifolds, in sharp contrast with the situation for d = 2.

To describe our results, let V (M) denote the Riemannian volume of M and define

κM :=
2V (M)

(d− 2)V (Sd−1)
=

Γ(d/2)

(d− 2)πd/2
V (M) , hd(ε) := ε2−d log

1

ε

(where V (Sd−1) = 2πd/2/Γ(d/2) is the volume of the unit sphere of dimension d− 1).

Our first result provides the asymptotics of Cε(M) as ε→ 0.

Theorem 1.1. For Brownian motion in M ,

lim
ε→0

Cε(M)

hd(ε)
= dκM a.s. (1.1)

Since V (Sd) = 2π(d+1)/2/Γ((d+ 1)/2), our theorem implies that

lim
ε→0

Cε(Sd)

hd(ε)
=

2
√
πd

(d− 2)

Γ(d/2)

Γ((d+ 1)/2)
a. s. (1.2)

The asymptotics of E(Cε(Sd)) have been described in [12] (with λ = d there).

Here is the heuristic leading to (1.1): The ε-hitting time T (x, ε) grows with decreasing ε like 1
over the minimal eigenvalue of 1

2∆M on M \B(x, ε). The latter is known to be κ−1M εd−2(1+o(1))
(c.f. [3] and the references therein to earlier works by Ozawa and others). Since B(x, ε) and
B(y, ε) have a substantial overlap whenever d(x, y) ¿ ε, the value of Cε(M) is roughly the
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maximum of O(ε−d) random variables, corresponding to T (x, ε) for x in the centers of an O(ε)-
cover of M . Assuming these variables are only weakly dependent, such maximum scales like
d log(1/ε) times the scaling of each of the variables, leading to (1.1).

We next relate the almost sure asymptotics of the ε-covering time of subsets E ⊆ M to their
upper Minkowski dimension dimm(E) and packing dimension dimp(E).

Theorem 1.2. For Brownian motion in M and any set E ⊆M we have

lim sup
ε→0

sup
x∈E

T (x, ε)
hd(ε)

= dimm(E)κM a. s. (1.3)

Furthermore, for any analytic set E ⊆M we have

sup
x∈E

lim sup
ε→0

T (x, ε)
hd(ε)

= dimp(E)κM a. s. (1.4)

The next theorem describes the multi-fractal structure of {T (x, ε)} for Brownian motion in M
and those points x ∈M for which T (x, ε) is comparable with Cε(M) as ε→ 0.

Theorem 1.3. For Brownian motion in M and for any a ≤ d,

dim
{
x ∈M : lim sup

ε→0

T (x, ε)
hd(ε)

= aκM

}
= d− a a.s. (1.5)

We call a point x ∈ M a late point if x is in the set considered in (1.5) for some a > 0. This
theorem may be compared with our results on the multi-fractal structure of thick points for
Brownian motion, [4, 6]. The first result of this type was the determination by Orey and Taylor
[14] of the dimension of sets of fast points for Brownian motion.

Analytic tools provide in Section 2 simple uniform estimates on excursion times and exit prob-
abilities for the annuli B(m,R) \ B(m, r). Using these estimates we obtain in Section 3 upper
bounds, first on the tail probability of T (x, ε), then on the limits considered in Theorem 1.2
and the dimensions of the sets considered in Theorem 1.3. The complementary lower bounds
are derived in Section 4 by an adaptation of the methods of [5, 11] and of [12, 13].

While outside the scope of this work, it is interesting to find the structure of consistently late
points, where the lim sup in (1.4) and (1.5) is replaced by lim inf (or lim), changing, if needed,
the scaling function.

2 Excursion time estimates

We start with a uniform estimate on the mean time to exit a small ball B(m,R), allowing us in
the sequel to neglect the contribution of such times.

Lemma 2.1 (Interior mean exit time). Let τ̄R = inf{t ≥ 0 |Xt ∈ Bc(m,R)}. For R
sufficiently small, and any m, x ∈M with d(m,x) < R

Ex (τ̄R) =
R2 − d(m,x)2

d
+O(R3). (2.1)
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Proof of Lemma 2.1: We use geodesic polar coordinates r, θ centered at m. When applied to
radial functions f(r) (r = dist(m,x)), the Laplace-Beltrami operator takes in these coordinates
the form

∆Mf =
∂2f

∂r2
+
(d− 1

r
+O(r)

)∂f
∂r

, (2.2)

which differs from the Euclidean Laplacian in the term denoted O(r) (see [2, page 106]). The
left hand side of (2.1) satisfies

(1/2)∆MF = −1
in B(m,R) with 0 boundary conditions on ∂B(m,R). Set

u±(r) =
1

d
(R2 − r2)±R2(R− r)

Using (2.2) we see that for all R, hence r, sufficiently small, uniformly in m ∈ M and x ∈
B(m,R),

∆M {F − u±} = ±R2
(d− 1

r
+O(1)

)
.

Consequently, F − u± are sub(super)-harmonic in B(m,R) with 0 boundary conditions on
∂B(m,R). Since 0 is the only function harmonic in B(m,R) with 0 boundary conditions on
∂B(m,R), we obtain (2.1).

The next lemma provides an estimate on the mean hitting time of a small ball B(m, r) starting
at distance R > r from its center m. It is this estimate that give rise to the constant κM .

Lemma 2.2 (Exterior mean exit time). Let τr = inf{t ≥ 0 |Xt ∈ B(m, r)}. There exists
finite η(R)→ 0 as R→ 0, such that for all r ≤ R/2 and m ∈M ,

κM (r2−d(1− η(r))−R2−d(1 + η(R))) ≤ inf
x∈∂B(m,R)

Ex(τr) (2.3)

≤ sup
x∈∂B(m,R)

Ex(τr) ≤ κM (r2−d(1 + η(r))−R2−d(1− η(R))) .

Further, for some c <∞, r0 > 0, all 0 < r ≤ r0 and all m ∈M ,

‖τr‖ := sup
x∈M

Ex(τr) ≤ cr2−d . (2.4)

Proof of Lemma 2.2: We use the fact that for any smooth compact d ≥ 3 dimensional
manifold there exists a function G(x, y), (the Green’s function), defined for x 6= y with the
following properties: G(x, y) satisfies ∆M,xG(x, y) = 1

V (M) where ∆M,x denotes the Laplace-

Beltrami operator with respect to the variable x and, G(x, y) = ad(d(x, y))
2−d(1 + F (x, y)) for

ad = ((d − 2)V (Sd−1))−1 and some function F (x, y) which is continuous for x 6= y, and such
that η(r) := sup{|F (x, y)| : d(x, y) = r} → 0 as r → 0 (c.f. [2, page 108], see also [8]).

Now let e(x) = Ex(τr). We have that 1
2∆Me(x) = −1 on M \B(m, r) and e(x) = 0 on ∂B(m, r).

Hence, with m fixed

∆M

(
G(x,m) +

1

2V (M)
e(x)

)
= 0 on M \B(m, r).
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Thus by the maximum principle for all x ∈M \B(m, r)

inf
y∈∂B(m,r)

G(y,m) ≤ G(x,m) +
1

2V (M)
e(x) ≤ sup

y∈∂B(m,r)
G(y,m).

Our lemma follows immediately (using (2.1) to provide the bound (2.4) also for x ∈ B(m, r)
and r sufficiently small).

The next lemma shows that the probability of hitting a small ball B(m, ε) upon exit of a small
annuli B(m,R) \B(m, ε) is (uniformly) comparable to that for M = Rd.

Lemma 2.3 (Hitting probabilities). Let τ̄ε,R = inf{t ≥ 0 |Xt ∈ Bc(m,R) ∪ B(m, ε)} and
pxε,R = Px(d(m,Xτ̄ε,R) = ε). Define pε,R(r) = (r2−d−R2−d)/(ε2−d−R2−d). For any δ > 0 there
exists R0(δ) > 0 such that if R0 ≥ R ≥ 2r ≥ 4ε, then for all m ∈M ,

(1 + δ)pε,R(r) ≥ sup
x∈∂B(m,r)

pxε,R ≥ inf
x∈∂B(m,r)

pxε,R ≥ (1− δ)pε,R(r) (2.5)

Proof of Lemma 2.3: We follow an argument similar to that used in proving Lemma 2.1.
Let g(x) = pxε,R, noting that ∆Mg = 0 for all x ∈ B(m,R) \B(m, ε), with boundary conditions
g = 0 on ∂B(m,R) and g = 1 on ∂B(m, ε). Set

u±(r) =
r2−d −R2−d ± (r2.5−d −R2.5−d)

ε2−d −R2−d ± (ε2.5−d −R2.5−d)
.

It is easy to check that for R small enough and R ≥ 2r ≥ 4ε,

(1−O(
√
R))pε,R(r) ≤ u±(r) ≤ pε,R(r)(1 +O(

√
R)) .

Note that g − u± is 0 at the boundary of the annulus B(m,R) \B(m, ε) and by (2.2), for all R
small enough, uniformly in m ∈M and x in this annulus,

∆M {g − u±} = ±Cε,Rr
0.5−d(1 + o(R)) ,

where Cε,R = 0.5(d − 2.5)/(ε2−d − R2−d ± (ε2.5−d − R2.5−d)) > 0. Consequently, g − u± are
sub(super)-harmonic in this annulus with 0 boundary conditions. Since 0 is the only function
harmonic in this annulus with 0 boundary conditions, we obtain (2.5).

Fixing x ∈M and constants 0 < r < R let

τ (0) = inf{t ≥ 0 |Xt ∈ ∂B(x,R)} (2.6)

σ(1) = inf{t ≥ 0 |Xt+τ (0) ∈ ∂B(x, r)} (2.7)

and define inductively for j = 1, 2, . . .

τ (j) = inf{t ≥ σ(j) |Xt+Tj−1 ∈ ∂B(x,R)}, (2.8)

σ(j+1) = inf{t ≥ 0 |Xt+Tj
∈ ∂B(x, r)}, (2.9)

where Tj =
∑j

i=0 τ
(i) for j = 0, 1, 2, . . .. Thus, τ (j) is the length of the j’th excursion Ej from

∂B(x,R) to itself via ∂B(x, r), and σ(j) is the amount of time it takes to hit ∂B(x, r) during
the j’th excursion Ej .
The next lemma which shows that excursion times are concentrated around their mean, will be
used to relate excursions to hitting times.
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Lemma 2.4. With the above notation, for any N ≥ N0, δ0 > 0 small enough, 0 < δ < δ0,
0 < 2r < R < R0(δ), and x, x0 ∈M ,

Px0




N∑

j=0

τ (j) ≤ (1− δ)κM (r2−d −R2−d)N


 ≤ e−Cδ2N (2.10)

and

Px0




N∑

j=0

τ (j) ≥ (1 + δ)κM (r2−d −R2−d)N


 ≤ e−Cδ2N (2.11)

Moreover, C = C(R, r) > 0 depends only upon δ0 as soon as R > r1−δ0.

Proof of Lemma 2.4: Applying Kac’s moment formula for the first hitting time τr of the
strong Markov process Xt (see [9, Equation (6)]), it follows by (2.4) that for any integer k, all
m ∈M and r ≤ r0 ≤ 1,

sup
y

Ey(τkr ) ≤ k!‖τr‖k ≤ k!ckrk(2−d) . (2.12)

Hence, for some λ > 0,

sup
0<r≤r0

sup
m,y

Ey(eλτrr
d−2

) <∞.

Reducing r0 as needed, by the same argument, Lemma 2.1 implies that

sup
R≤r0

sup
m

sup
z∈B(m,R)

Ez(eλτ̄R) <∞.

By the strong Markov property of Xt at τ
(0) and at τ (0) + σ(1) we then deduce that

sup
0<2r≤R<r0

sup
x,y

Ey(eλT1rd−2
) <∞. (2.13)

Fixing δ > 0, let 0 < R0(δ) ≤ r0 be such that for all R ≤ R0 both η(R) < η := δ/6 and

‖τ̄R‖ := sup
m

sup
z∈B(m,R)

Ez (τ̄R) ≤ ηκMR2−d (2.14)

(see (2.1)). Fixing x ∈M and 0 < 2r ≤ R ≤ r0, let τ = τ (1) and v = κM (r2−d−R2−d). It follows
from (2.3) and (2.12) that there exists a universal constant c4 < ∞ such that for ρ = c4r

2(2−d)

and all θ ≥ 0,

sup
x

sup
y∈∂B(x,R)

Ey(e−θτ ) ≤ sup
x

sup
y∈∂B(x,R)

Ey(e−θτr)

≤ 1− θ inf
x

inf
y∈∂B(x,R)

Ey(τr) +
θ2

2
sup
x

sup
y∈∂B(x,R)

Ey(τ2r ) (2.15)

≤ 1− θ(1− η)v + ρθ2 ≤ exp(ρθ2 − θ(1− η)v) .

Since τ (0) ≥ 0, using Chebycheff’s inequality we bound the left hand side of (2.10) by

Px0

( N∑

j=1

τ (j) ≤ (1− η − δ/2)vN
)
≤ eθ(1−η−δ/2)vNEx0

(
e−θ

∑N
j=1 τ (j)

)

≤ e−θvNδ/2
[
eθ(1−η)v sup

y∈∂B(x,R)
Ey(e−θτ )

]N
, (2.16)
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where the last inequality follows by the strong Markov property of Xt at {Tj}. Combining (2.15)
and (2.16) for θ = δv/(4ρ), results with (2.10), where C = v2/16ρ > 0 is bounded below by
(1− 8−δ0)2κ2M/(16c4) if r

1−δ0 < R.

To prove (2.11) we first note that for λ > 0 as in (2.13), it follows that

Px0

(
τ (0) ≥ δ

6
vN

)
≤ e−λrd−2v(δ/6)NEx0(eλτ

(0)rd−2
) ≤ c5e

−c6δN ,

where c5 < ∞ is a universal constant and c6 = c6(R, r) > 0 does not depend upon N , δ, x0
or x, and is bounded below by some c7(δ0) > 0 when r1−δ0 < R. Thus, the proof of (2.11), in
analogy to that of (2.10), comes down to bounding

Px0

( N∑

j=1

τ (j) ≥ (1 + 2η + δ/2)vN
)
≤ e−θδvN/2

(
e−θ(1+2η)v sup

y∈∂B(x,R)
Ey(eθτ )

)N

Noting that, by (2.3), (2.14) and (2.13), there exists a universal constant c8 <∞ such that for
ρ = c8r

2(2−d) and all 0 < θ < (λ/2)rd−2,

sup
x

sup
y∈∂B(x,R)

Ey(eθτ ) ≤ 1 + θ(1 + 2η)v + sup
x

sup
y∈∂B(x,R)

∞∑

n=2

θn

n!
Ey(τn)

≤ 1 + θ(1 + 2η)v + ρθ2 ≤ exp(θ(1 + 2η)v + ρθ2) ,

the proof of (2.11) now follows as in the proof of (2.10).

3 Hitting time estimates and upper bounds

The first step in getting upper bounds is to control the tail probabilities of T (x, ε), uniformly
in x and the initial position x0.

Lemma 3.1. For any δ > 0 we can find c <∞ and ε0 > 0 so that for all ε ≤ ε0 and y ≥ 0

Px0 (T (x, ε) ≥ yhd(ε)) ≤ cε(1−δ)2κ−1
M

y (3.1)

for all x, x0 ∈M .

Proof of Lemma 3.1: We use the notation of the last lemma and its proof, with 2r < R <
R0(δ). Let nε := (1− δ)κ−1M (r2−d −R2−d)−1yhd(ε). It is easy to see that

Px0

(
T (x, ε) ≥ yhd(ε)

)
≤ Px0

(
T (x, ε) ≥

nε∑

j=0

τ (j)
)
+ Px0

( nε∑

j=0

τ (j) ≥ yhd(ε)
)

(3.2)

It follows from Lemma 2.4 that

Px0

( nε∑

j=0

τ (j) ≥ yhd(ε)
)
≤ e−C′yhd(ε)
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for some C ′ = C ′(δ) > 0. On the other hand, the first probability in the right hand side of (3.2)
is bounded above by the probability of not hitting the ball B(x, ε) during nε excursions, each
starting at ∂B(x, r) and ending at ∂B(x,R), so that by Lemma 2.3, for all ε > 0, small enough

Px0

(
T (x, ε) ≥

nε∑

j=0

τ (j)
)
≤
(
1− εd−2(r2−d −R2−d)(1− δ)

)nε ≤ e−(1−δ)2κ−1
M

y| log ε|

and (3.1) follows.

We next provide the required upper bound in Theorem 1.3. Namely, with the notation

Late≥a =
{
x ∈M : lim sup

ε→0

T (x, ε)
hd(ε)

≥ aκM

}
, (3.3)

we will show that for any a ∈ (0, d],

dim(Late≥a) ≤ d− a , a.s. (3.4)

Fix δ > 0, ε̃0, and define set ε̃n inductively so that

hd(ε̃n+1) = (1 + δ)hd(ε̃n).

Since, for ε̃n+1 ≤ ε ≤ ε̃n we have

T (x, ε̃n+1)

hd(ε̃n+1)
=

hd(ε̃n)

hd(ε̃n+1)

T (x, ε̃n+1)

hd(ε̃n)
≥ (1 + δ)−1

T (x, ε)
hd(ε)

, (3.5)

it is easy to see that for any a > 0,

Late≥a ⊆ Da := {x ∈M
∣∣∣ lim sup

n→∞

T (x, ε̃n)
hd(ε̃n)

≥ (1− δ)aκM}.

Fix x0 ∈M and let {xj : j = 1, . . . , K̄n}, denote a maximal collection of points in M , such that
inf 6̀=j d(x`, xj) ≥ δε̃n. Let An be the set of 1 ≤ j ≤ K̄n, such that

T (xj , (1− δ)ε̃n) ≥ (1− 2δ)ahd(ε̃n)κM .

It follows by Lemma 3.1 that

Px0(T (x, (1− δ)ε̃n) ≥ (1− 2δ)ahd(ε̃n)κM ) ≤ c ε̃ (1−10δ)a
n ,

for some c = c(δ) <∞, all sufficiently large n and any x ∈M . Thus, for all sufficiently large n,
any j and a > 0,

Px0(j ∈ An) ≤ c ε̃ (1−10δ)a
n , (3.6)

implying that
Ex0 |An| ≤ c′ ε̃ (1−10δ)a−d

n . (3.7)

Let Vn,j = B(xj , δε̃n). For any x ∈ M there exists j ∈ {1, . . . , K̄n} such that x ∈ Vn,j , hence
B(x, ε̃n) ⊇ B(xj , (1 − δ)ε̃n). Consequently, ∪n≥m ∪j∈An Vn,j forms a cover of Da by sets of
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maximal diameter 2δε̃m. Fix a ∈ (0, 2]. Let d(B) denote the diameter of a set B ∈ M . Since
d(Vn,j) = 2δε̃n, it follows from (3.6) that for γ = d− (1− 11δ)a > 0,

Ex0

∞∑

n=m

∑

j∈An

d(Vn,j)γ ≤ c′ (2δ)γ
∞∑

n=m

ε̃ δa
n <∞ .

Thus,
∑∞

n=m

∑
j∈An

d(Vn,j)γ is finite a.s. implying that dim(Late≥a) ≤ dim(Da) ≤ γ a.s. Taking
δ ↓ 0 completes the proof of the upper bound (3.4).

We conclude this section with the derivation of the upper bound for (1.3), that is, for any E ⊆M

lim sup
ε→0

sup
x∈E

T (x, ε)
hd(ε)

≤ dimm(E)κM , a.s. (3.8)

Fix x0 ∈ M and let {xj : j = 1, . . . , kn}, denote a maximal collection of points in E, such that
inf 6̀=j d(x`, xj) ≥ δε̃n. Let An(E) be the set of 1 ≤ j ≤ kn, such that

T (xj , (1− δ)ε̃n) ≥ (1− 2δ)ahd(ε̃n)κM .

If dimm(E) = γ, we have that for any δ > 0

knε̃
(γ+δ)
n → 0.

Thus, as in (3.7) we have
Ex0 |An(E)| ≤ c′ ε̃(1−10δ)a−(γ+δ)

n .

Therefore with a = (γ + 2δ)/(1− 10δ)

∞∑

n=1

Px0(|An(E)| ≥ 1) ≤
∞∑

n=1

Ex0 |An(E)| ≤ c′
∞∑

n=1

ε̃δn <∞ .

By Borel-Cantelli, it follows thatAn(E) is empty a.s. for all n > n0(ω) and some n0(ω) <∞. For
any x ∈ E there exists j ∈ {1, . . . , kn} such that x ∈ B(xj , δε̃n), henceB(x, ε̃n) ⊇ B(xj , (1−δ)ε̃n).
We then see from (3.5) that for some C = C(γ, d) <∞, all δ > 0 small enough and n > n1(δ, ω)

sup
0<ε≤εn1

sup
x∈E

T (x, ε)
hd(ε)

≤ (γ + Cδ)κM ,

and (3.8) follows by taking δ ↓ 0.

4 Lower bounds

For any E ⊆M we define
Cε(E) = sup

x∈E
T (x, ε). (4.1)

The following is a restatement of (1.3).
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Lemma 4.1. Let E be a subset of M . Then

lim sup
ε→0

Cε(E)

hd(ε)
= dimm(E)κM a. s. (4.2)

Proof of Lemma 4.1: The almost sure upper bound in (4.2) was established in Section 3.
Hence it suffices to show that

Ex0

(
lim sup

ε→0

Cε(E)

hd(ε)

)
≥ dimm(E)κM , (4.3)

when dimm(E) = γ > 0. For any 1 > δ > 0 we can find a sequence εn ↓ 0 and a collection
of points {xn,j : j = 1, . . . , kn} in E \ B(x0, ε

1−δ
n ), such that inf`6=j d(xn,`, xn,j) ≥ ε1−δ

n and

kn ≥ ε
−γ(1−2δ)
n . Let τn,j = inf{t ≥ 0 |Xt ∈ B(xn,j , εn)}. By (2.3) we have for all n sufficiently

large
inf
6̀=j

inf
x∈B(xn,`,εn)

⋃
{x0}

Ex(τn,j) ≥ (1− δ)κM ε2−d
n .

Recall that hd(ε) = ε2−d log 1
ε , so by Theorem 2.6 of [12] this implies that for all n ≥ N

Ex0 (Cεn(E)) ≥ (1− 4δ)γκMhd(εn). (4.4)

Let τ̃n,j = inf{t ≥ 0 |Xt ∈ B(yn,j , εn)}, where yn,j are the centers of a minimal cover of M by

balls of radius εn (in particular, having at most ε
−(d+1)
n such points for n large enough). Since

Ex(τ̃n,j) ≤ cε2−d
n for all n sufficiently large and x ∈ M (c.f. (2.4)), it follows from Theorem 2.6

of [12] that for all n ≥ N
sup
x∈M

Ex (Cεn(E)) ≤ (d+ 1)chd(εn). (4.5)

Combining (4.4) and (4.5) we see that for some c1 <∞ and all n,

ξn := sup
x∈M

Median [Cεn(E)] ≤ 2 sup
x∈M

Ex (Cεn(E)) ≤ c1Ex0 (Cεn(E)) . (4.6)

By the Markov property of Xt at kξn, for any x ∈M and k = 0, 1, . . .,

Px[Cεn(E) > (k + 1)ξn | Cεn(E) > kξn]

≤ Ex
[
PXkξn (Cεn(E) > ξn | Cεn(E) > kξn)

]
≤ 1

2
.

Hence, Cεn(E)/ξn is stochastically dominated by a Geometric(1/2) random variable (for any n).
Considering (4.6), the sequence {Cεn(E)/Ex0(Cεn(E))}n is then uniformly integrable, implying
by an extension of Fatou’s lemma (c.f. [1, Theorem 7.5.2]), that,

Ex0

(
lim sup
n→∞

Cεn(E)

Ex0(Cεn(E))

)
≥ 1

Thus, by (4.4)

Ex0

(
lim sup

ε→0

Cε(E)

hd(ε)

)
≥ (1− 4δ)γκM

and (4.3) follows by taking δ ↓ 0.
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We claim that in fact

lim sup
n→∞

C1/n(E)

hd(1/n)
= dimm(E)κM a.s. (4.7)

The upper bound is obvious. Now observe that for any 0 < ε < ε0 we can find an n with
1/(n+ 1) < ε < 1/n. Then

C1/(n+1)(E)

hd(1/n)
≥ Cε(E)

hd(ε)

and the lower bound follows since hd(n
−1)/hd((n+ 1)−1)→ 1.

Recall that

Late≥a =
{
x ∈M : lim sup

ε→0

T (x, ε)
hd(ε)

≥ aκM

}
.

The statement (1.4) will follow immediately from the next result.

Lemma 4.2. For any analytic set E ⊆M

Px0(E ∩ Late≥a 6= ∅) =
{

1 if dimp(E) > a
0 if dimp(E) < a.

(4.8)

Proof of Lemma 4.2: If dimp(E) < a, then by regularization we can represent E as a countable
union E = ∪nEn with dimm(En) < a. It follows immediately from (4.2) that En ∩ Late≥a = ∅
a.s., and therefore E ∩ Late≥a = ∅ a.s.
Now assume that dimp(E) > a. By [10], we can find a closed E? ⊂ E, such that for all open
sets V , whenever E? ∩ V 6= ∅, then for some δ > 0

dimm

(
E? ∩ V

)
= a+ δ. (4.9)

Define the open sets

Aa(k) =
{
x ∈M :

T (x, 1/k)
hd(1/k)

> aκM

}

and

Aa =
∞⋂

n=1

∞⋃

k=n

Aa(k).

Since Aa ⊆ Late≥a it suffices to show that with probability one, Aa ∩ E? 6= ∅. Define the open
sets Ba(n) := ∪∞k=nAa(k), n ≥ 1. We claim that for all n ≥ 1, the relatively open set Ba(n)∩E?

is a.s. d-dense in (the complete metric space) E?. If so, Baire’s category theorem implies that
E? ∩

⋂∞
n=1Ba(n) is dense in E? and in particular, nonempty. Since Aa = ∩nBa(n), the result

follows. Fix an open set V such that V ∩ E? 6= ∅. Using (4.9) and (4.7) with E replaced by
V ∩E? we see that Aa(n) ∩ V ∩E? 6= ∅ for infinitely many n, a.s. Thus Ba(n) ∩ V ∩E? 6= ∅ for
all n a.s.; by letting V run over a countable base for the open sets, we conclude that Ba(n)∩E?

is a.s. d-dense in E?.

Proof of Theorem 1.3: The upper bound has already been proven in Section 3. Set A+
a =

∩∞m=1Aa−1/m and B+
a = A+

a − ∪∞m=1Late≥a+1/m. It is easy to see that

B+
a ⊆ Latea =:

{
x ∈M : lim sup

ε→0

T (x, ε)
hd(ε)

= aκM

}
.
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It follows from the argument in the proof of Corollary 3.3 in [5] that for any analytic set E ⊆M
with dimp(E) > a, we have B+

a ∩ E 6= ∅ a.s. For the convenience of the reader we reproduce
the short proof. Let Λm(n) := ∪∞k=nAa−1/m(k). Since dimp(E) > a, by [10] there exists a closed
E? ⊂ E such that dimp

(
E? ∩ V

)
= a for any open set V such that E? ∩ V 6= ∅, implying as in

the last proof that Λm(n) ∩E? is a.s. dense in the complete metric space E?. Consequently, by
Baire’s theorem it follows that E? ∩ (∩∞n=1 ∩∞m=1 Λm(n)) is dense in E?, a.s., and in particular
is non-empty. Obviously, dimp(E?) = a, so by Lemma 4.2, Late≥a+1/m ∩E? = ∅, a.s.. It follows
that B+

a ∩ E 6= ∅, a.s. as claimed.

We now wish to conclude the proof of the lower bound of Theorem 1.3 by appealing to Lemma
3.4 of [11]. However, the statement and proof of that Lemma are for sets in [0, 1]d, whereas our
sets are in M . This can be easily remedied as follows. Let φ : M ′ 7→ [0, 1]d be a diffeomorphism
from some subset M ′ ⊆M . We can choose φ, M ′ so that for some δ > 0

B(φ(x), (1− δ)r) ⊆ φ(B(x, r)) ⊆ B(φ(x), (1 + δ)r)

for all x ∈ M ′ and r sufficiently small. This is enough to show that for any K ⊆ M ′ we
have dim(φ(K)) = dim(K) where the first dimension is computed in [0, 1]d using the Euclidean
distance while the second is computed in M using the Riemannian distance. Our theorem now
follows from the above cited Lemma 3.4 of [11].

Proof of Theorem 1.1: In view of (1.3) it suffices to show that

lim inf
ε→0

Cε(M)

hd(ε)
≥ dκM a. s.

To this end, fix η > 0, δ > 0 and R0 > 0 small such that (2.3) holds with η(R) ≤ η/2 for
all R ≤ R0. Let εn = (1 − η)n and fix points {xn,j : j = 0, 1, . . . ,Kn} in B(x0, R0/3) such

that xn,0 = x0, inf 6̀=j d(xn,`, xn,j) ≥ ε1−δ
n , and Kn ≥ ε

−d(1−2δ)
n for all n large enough. Let

τn,j = inf{t ≥ 0 |Xt ∈ B(xn,j , εn)} for j = 1, . . . ,Kn, noting that Cεn(M) ≥ maxj τn,j := Ĉn.
With Cε(M) non-increasing in ε and hd(ε) non-decreasing in ε, such that

d hd(εn+1) ≤ (1− η)1−d(1− 2δ)ε2−d
n logKn ,

for all n large enough, it suffices to show that

lim inf
n→∞

Ĉn
ε2−d
n logKn

≥ (1− η)(1− 2η)κM a. s. (4.10)

By (2.3) we have for all n large enough

inf
6̀=j

inf
x∈∂B(xn,`,εn)

Ex(τn,j) ≥ (1− η)κM ε2−d
n := vn . (4.11)

Combining (4.11) with (2.12) we get that for some constant c0 = c0(η) <∞, all n large enough
and all θ ≥ 0,

gn(θ) := sup
6̀=j

sup
x∈B(xn,`,εn)

Ex(e−θτn,j ) ≤ 1− θvn +
c0
2
θ2v2n (4.12)
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(see (2.15) for a similar derivation). Note that gn(θ) ≤ 1. Further, it is not hard to verify that
Theorem 1.3 of [13] applies here, leading to the bound

Ex0

[
e−θĈn

]
≤

Kn∏

i=1

i

i− 1 + 1/gn(θ)
≤

Kn∏

i=1

i

i+ 1− gn(θ)

≤ 4e−(θvn−
c0
2
θ2v2

n) logKn , (4.13)

where the last inequality follows from (4.12) and the fact that

k∏

i=1

i

i+ b
≤ exp

(∫ k

1
log(

x

x+ b
)dx

)
≤ 4e−b log k ,

for all integer k and b ∈ [0, 1]. Setting θ = 2η/(c0vn) > 0, it follows from Chebycheff’s inequality
and (4.13) that for some c2 = c2(η, δ) > 0 and all n large,

Px0(Ĉn ≤ (1− 2η)vn logKn) ≤ e(1−2η)θvn logKnEx0

[
e−θĈn

]

≤ 4e−ηθvn logKn ≤ 4(1− η)−c2n .

By Borel-Cantelli we get (4.10), completing the proof of the theorem.

Acknowledgments We are grateful to Leon Karp for helping us with Brownian motion on
manifolds.
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