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Abstract

Consider a random walk in an irreducible random environment on the positive integers. We

prove that the annealed law of the random walk determines uniquely the law of the random

environment. An application to linearly edge-reinforced random walk is given.

1 Introduction and results

Random walk in a random environment. Let G = (N0, E) be the graph with vertex set N0 and set

of undirected edges E = {{n, n+1}, n ∈ N0}. We consider random walk in a random environment

on G defined as follows: Let Ω0 ⊆ N
N0

0 denote the set of all nearest-neighbor paths in G starting in

0. We endow Ω0 with the sigma-field F generated by the canonical projections X t : Ω0 → N0 to

the t-th coordinate, t ∈ N0. For every p = (pn)n∈N ∈ [0,1]N, let Qp be the probability measure on

(Ω0,F ) such for all t ∈ N0 and n ∈ N, one has

Qp(X t+1 = n− 1|X t = n) = 1−Qp(X t+1 = n+ 1|X t = n) = pn, (1)

Qp(X t+1 = 1|X t = 0) = 1. (2)

Thus, Qp is the distribution of the Markovian nearest-neighbor random walk on G starting in 0

which jumps from n to n− 1 with probability pn, n ∈ N, and from 0 to 1 with probability 1.

We say that (X t)t∈N0
is a random walk in a random environment on N0 if there exists a probability

measure P on [0,1]N such that

P((X t)t∈N0
∈ A) =

∫

[0,1]N

Qp((X t)t∈N0
∈ A)P(dp) (3)
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holds for all A∈ F . We call P a mixing measure.

Uniqueness of the mixing measure. For a recurrent random walk in a random environment on

a general locally finite connected graph, the mixing measure is unique if there exists a mixing

measure Q which is supported on transition probabilities of irreducible Markov chains. In this

case, the number of transitions from vertex u to vertex v divided by the number of visits to u

up to time t converges as t → ∞ to a random variable with law given by the distribution of the

corresponding transition probability Qp(X t+1 = v|X t = u) under Q. Similarly, the Q-distribution

of finitely many transition probabilities and, consequently, Q itself are determined. For this argu-

mentation recurrence is essential. In case the underlying graph is N0, we show that recurrence is

not necessary for the uniqueness of the mixing measure:

Theorem 1.1. Let (X t)t∈N0
be a random walk in a random environment on N0 with starting vertex

0 and a mixing measure P supported on (0,1)N. Then the mixing measure is unique.

Linearly edge-reinforced random walk. Theorem 1.1 can be applied to a representation of

linearly edge-reinforced random walk on N0 as a random walk in a random environment. Linearly

edge-reinforced random walk on N0 is a nearest-neighbor random walk with memory on N0. The

walk starts in 0. Initially every edge e ∈ E has an arbitrary weight ae > 0. The random walker

traverses an edge with probability proportional to its weight. After crossing edge e, the weight of

e is increased by one. Thus, the weight of edge e at time t is given by

we(t) := ae +

t
∑

s=1

1e({Xs−1, Xs}) (e ∈ E, t ∈ N0). (4)

The random weights we(t) represent the memory of the random walker. The more familiar he is

with the edge, the more he prefers to use it. We define the transition probability of the random

walker, for every n ∈ N0, by

Pa(X t+1 = n|X0, . . . , X t) =
w{X t ,n}

(t)

w{X t−1,X t}
(t) + w{X t ,X t+1}(t)

1{n−1,n+1}(X t), (5)

where we set w{−1,0}(t) = 0 for all t ∈ N0 to simplify the notation. Especially the probability for

the random walker jumping to vertex one, given he is in zero, equals one, since this is the only

neighbouring vertex to zero.

It was observed by Pemantle [Pem88] that the edge-reinforced random walk on a tree has the

same distribution as a certain random walk in a random environment. For N0, his result states the

following:

Theorem 1.2 ([Pem88]). Let (X t)t∈N0
be the edge-reinforced random walk on N0 with starting

vertex 0 and initial edge weights a=(ae)e∈E ∈ (0,∞)E . Let Pa denote the following product of beta

distributions:

Pa :=
⊗

n∈N

beta

�

a{n−1,n} + 1

2
,

a{n,n+1}

2

�

. (6)

Then the following holds for all A∈ F :

Pa((X t)t∈N0
∈ A) =

∫

[0,1]N

Qp((X t)t∈N0
∈ A)Pa(dp) (7)

where Qp is the measure defined by (1) and (2).
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Using this theorem, our uniqueness result Theorem 1.1 implies:

Corollary 1.3. The mixing measure Pa in (7) is unique.

It was shown in [MR07] that the edge-reinforced random walk on a general locally finite graph is

a mixture of irreducible Markov chains. In that case, uniqueness of the mixing measure is open.

2 Proofs

We prepare the proof of Theorem 1.1 with three lemmas.

Lemma 2.1. Let (X t)t∈N0
be a random walk in a random environment on N0 with starting vertex 0

and a mixing measure P supported on (0,1)N. Then, for every mixing measure P∗, one has

Qp(lim sup
t→∞

X t =+∞) = 1 for P∗-almost all p. (8)

Proof. Since (X t)t∈N0
is a random walk in a random environment with mixing measure P, one has

P(lim sup
t→∞

X t = +∞) =

∫

[0,1]N

Qp(lim sup
t→∞

X t = +∞)P(dp). (9)

The measure P is supported on (0,1)N, so for P-almost all p the Markov chain with law Qp is

irreducible. Every irreducible Markov chain visits all points in the state space, and since the

underlying graph is a line this implies Qp(lim supt→∞ X t = +∞) = 1 for P-almost all p. Inserting

this into (9) yields P(lim supt→∞ X t =+∞) = 1.

If P∗ is an arbitrary mixing measure, equation (9) holds for P∗ instead of P and we already know

that the left-hand side equals 1. Thus, the claim (8) follows.

The key idea in the proof of Theorem 1.1 consists in studying the following stopping times Tn,

n ∈ N:

Lemma 2.2. Let (X t)t∈N0
be a random walk in a random environment on N0 with starting vertex

0 and a mixing measure P supported on (0,1)N. For n ∈ N, denote by Tn the number of visits in

n before n+ 1 is visited for the first time, and let P∗ be an arbitrary mixing measure. Then for P∗-

almost all p, (Tn)n∈N is a family of independent random variables under the measure Qp with Tn ∼

geometric(1− pn) for all n ∈ N.

Proof. We know from Lemma 2.1 that Qp(lim supt→∞ X t = +∞) = 1 for P∗-almost all p. Conse-

quently, Tn is finite for every n ∈ N Qp-a.s. for P∗-almost all p. For these p, the following holds:

If the random walker is in n, he decides with probability pn to go back and not to visit n + 1

right now. In this case, he will return Qp-almost surely, since lim supt→∞ X t = +∞ Qp-a.s. With

probability 1− pn the walker decides to visit n+1, when he is in n and under Qp his decision does

not depend on his decisions at his last visits. Hence, Qp(Tn = k) = pk−1
n
(1− pn) for all k ∈ N. The

decisions at each vertex are made irrespective of the decisions at the other vertices and under Qp

the transition probabilities do not depend on the past. The independence of (Tn)n∈N follows.

To prove the uniquenss of the mixing measure for the random walk in a random environment on

N0, we show first that the moments of any mixing measure are uniquely determined.
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Lemma 2.3. Let (X t)t∈N0
be a random walk in a random environment on N0 with starting vertex 0

and a mixing measure P supported on (0,1)N. For every mixing measure P∗, for every n ∈ N, and for

all k1, . . . , kn ∈ N0, the following holds
∫

[0,1]N

n
∏

i=1

p
ki

i
P∗(dp) =

∫

[0,1]N

n
∏

i=1

p
ki

i
P(dp). (10)

Proof. Since P∗ is a mixing measure, Lemma 2.2 implies for all m ∈ N, i1, . . . , im ∈ N, with i j 6= il
for all j 6= l, and for all k1, . . . , km ∈ N,

P(Ti1
= k1, . . . , Tim

= km) =

∫

[0,1]N

Qp(Ti1
= k1, . . . , Tim

= km) P
∗(dp)

=

∫

[0,1]N

m
∏

j=1

Qp(Ti j
= k j) P

∗(dp) =

∫

[0,1]N

m
∏

j=1

p
k j−1

i j
(1− pi j

) P∗(dp). (11)

By the same argument, this equation holds for the mixing measure P, and hence, we conclude that
∫

[0,1]N

m
∏

j=1

p
k j−1

i j
(1− pi j

) P∗(dp) =

∫

[0,1]N

m
∏

j=1

p
k j−1

i j
(1− pi j

) P(dp). (12)

It is sufficient to show for all m ∈ N, i1, . . . , im ∈ Nwith i j 6= il for all j 6= l, and for all k1, . . . , km ∈ N
∫

[0,1]N

m
∏

j=1

p
k j

i j
P∗(dp) =

∫

[0,1]N

m
∏

j=1

p
k j

i j
P(dp). (13)

Then choose i1, . . . , im the indices with exponent non-zero in equation (10).

We prove equation (13) by induction over m.

Case m= 1: For every i ∈ N and k ∈ N, equation (12) yields
∫

[0,1]N

(pk−1
i
− pk

i
) P∗(dp) =

∫

[0,1]N

(pk−1
i
− pk

i
) P(dp). (14)

Choose K ∈ N arbitrarily. Summing both sides of the last equation over k ∈ {1, . . . , K}, we obtain
∫

[0,1]N

(1− pK
i
) P∗(dp) =

∫

[0,1]N

(1− pK
i
) P(dp). (15)

Since P and P∗ are probability measures, equation (13) holds for m= 1.

Induction step: Now assume equation (13) holds for 1, . . . , m−1. Choose K1, . . . , Km ∈ N arbitrarily.

Summing the left-hand side of (12) over k j ∈ {1, . . . , K j} for all j ∈ {1, . . . , m} yields

K1
∑

k1=1

. . .

Km
∑

km=1

∫

[0,1]N

m
∏

j=1

(p
k j−1

i j
− p

k j

i j
) P∗(dp)

=

∫

[0,1]N

m
∏

j=1

K j
∑

k j=1

�

p
k j−1

i j
− p

k j

i j

�

P∗(dp) =

∫

[0,1]N

m
∏

j=1

(1− p
K j

i j
) P∗(dp). (16)
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Summing the right-hand side of (12) over k j ∈ {1, . . . , K j}, j ∈ {1, . . . , m}, we obtain the same

identity with P instead of P∗. Hence, we conclude for all K1, . . . , Km ∈ N:

∫

[0,1]N

m
∏

j=1

(1− p
K j

i j
) P∗(dp) =

∫

[0,1]N

m
∏

j=1

(1− p
K j

i j
) P(dp). (17)

After expanding both products, the same linear combination of integrals remains on both sides.

Since only one integral with m different indices occurs, the claim follows from the induction

hypothesis.

Now we collected everything to prove the main result.

Proof of Theorem 1.1. Let P be a mixing measure supported on (0,1)N and let P∗ be an

arbitrary mixing measure. The n-dimensional marginals of both measures are distributions on

[0,1]n. Therefore, they are determined by their Laplace transforms, which are determined by

the joint moments. By Lemma 2.3, these moments agree. Consequently, all finite-dimensional

marginals of P and P∗ agree, and it follows from Kolmogorov’s consistency theorem that P = P∗.
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