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Abstract

We prove that the scaling limit of nearest-neighbour senile reinforced random walk is Brownian

Motion when the time T spent on the first edge has finite mean. We show that under suitable

conditions, when T has heavy tails the scaling limit is the so-called fractional kinetics process, a

random time-change of Brownian motion. The proof uses the standard tools of time-change and

invariance principles for additive functionals of Markov chains.

1 Introduction

The senile reinforced random walk is a toy model for a much more mathematically difficult model

known as edge-reinforced random walk (for which many basic questions remain open [e.g. see

[15]]). It is characterized by a reinforcement function f : N → [−1,∞), and has the property

that only the most recently traversed edge is reinforced. As soon as a new edge is traversed, rein-

forcement begins on that new edge and the reinforcement of the previous edge is forgotten. Such

walks may get stuck on a single (random) edge if the reinforcement is strong enough, otherwise

(except for one degenerate case) they are recurrent/transient precisely when the corresponding

simple random walk is [9].

Formally, a nearest-neighbour senile reinforced random walk is a sequence {Sn}n≥0 of Zd -valued

random variables on a probability space (Ω,F ,P f ), with corresponding filtration {Fn = σ(S0, . . . ,Sn)}n≥0,

defined by:

• S0 = o, P f -almost surely, and P f (S1 = x) = (2d)−1 I{|x |=1}.

• For n ∈ N, en = (Sn−1,Sn) is an Fn-measurable undirected edge and

mn =max{k ≥ 1 : en−l+1 = en for all 1≤ l ≤ k} (1.1)

is an Fn-measurable, N-valued random variable.
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Scaling limit of senile RRW 105

• For n ∈ N and x ∈ Zd such that |x |= 1,

P f (Sn+1 = Sn + x |Fn) =
1+ f (mn)I{(Sn,Sn+x)=en}

2d + f (mn)
. (1.2)

Note that the triple (Sn, en, mn) (equivalently (Sn,Sn−1, mn)) is a Markov chain. Hereafter we

suppress the f dependence of the probability P f in the notation.

The diffusion constant is defined as limn→∞ n−1
E[|Sn|

2] (=1 for simple random walk) whenever

this limit exists. Let T denote the random number of consecutive traversals of the first edge

traversed, and p = P(T is odd). Then when E[T] <∞, the diffusion constant is given by ([9] and

[11])

v =
dp

(d − p)E[T]
, (1.3)

which is not monotone in the reinforcement. Indeed one can prove that (1.3) holds for all f (in

the case d = 1 and f (1) = −1 this must be interpreted as “ 1/0=∞”). The reinforcement regime

of most interest is that of linear reinforcement f (n) = Cn for some C . In this case, by the second

order mean-value theorem applied to log(1− x), x < 1 we have

P(T ≥ n) :=

n−1
∏

j=1

1+ f ( j)

2d + f ( j)
= exp







n−1
∑

j=1

log

�

1−
2d − 1

2d + C j

�







=exp







−

n−1
∑

j=1

2d − 1

2d + C j
−

n−1
∑

j=1

(2d − 1)2

2(2d + C j)2(1− u j)
2







=exp







−

n−1
∑

j=1

2d − 1

2d + C j
−

∞
∑

j=1

(2d − 1)2

2(2d + C j)2(1− u j)
2
+ o(1)







=exp

½

−
2d − 1

C
log(2d + C(n− 1)) + γ+ o(1)

¾

∼
κ

n
2d−1

C

,

(1.4)

where ui ∈ (0, 2d−1

2d+C j
), and γ is a constant arising from the summable infinite series and the ap-

proximation of the finite sum by a log. An immediate consequence of (1.4) is that for f (n) = Cn,

E[T] is finite if and only if C < 2d − 1.

A different but related model, in which the current direction (rather than the current edge) is

reinforced according to the function f was studied in [12, 10]. For such a model, T is the number

of consecutive steps in the same direction before turning. In [10], the authors show that in all

dimensions the scaling limit is Brownian motion when σ2 =Var(T)<∞ and σ2+1−1/d > 0. In

the language of this paper, the last condition corresponds to the removal of the special case d = 1

and f (1) = −1. Moreover when d = 1 and T has heavy tails (in the sense of (2.1) below) they

show that the scaling limit is an α-stable process when 1 < α < 2 and a random time change of

an α-stable process when 0< α < 1. See [10] for more details.

Davis [4] showed that the scaling limit of once-reinforced random walk in one dimension is not

Brownian motion (see [15] for further discussion).
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In Section 2 we state and discuss the main result of this paper, which describes the scaling limit

of Sn when either E[T] < ∞ or P(T ≥ n) ∼ n−αL(n) for some α > 0 and L slowly varying at

infinity. When P(T < ∞) < 1 the walk has finite range since it traverses a random (geometric)

number of edges before getting stuck on a random edge. To prove the main result, in Section 3 we

observe the walk at the times that it has just traversed a new edge and describe this as an additive

functional of a particular Markov chain. In Section 4 we prove the main result assuming the joint

convergence of this time-changed walk and the associated time-change process. In Section 5 we

prove the convergence of this joint process.

2 Main result

The assumptions that will be necessary to state the main theorem of this paper are as follows:

(A1) P(T <∞) = 1, and either d > 1 or P(T = 1)< 1.

(A2a) Either E[T]<∞, or for some α ∈ (0,1] and L slowly varying at infinity,

P(T ≥ n)∼ L(n)n−α. (2.1)

(A2b) If (2.1) holds but E[T] =∞, then we also assume that

when α= 1, ∃ ℓ(n) ↑ ∞ such that (ℓ(n))−1 L(nℓ(n))→ 0, and (ℓ(n))−1

⌊nℓ(n)⌋
∑

j=1

j−1 L( j)→ 1,

when α < 1, P(T ≥ n, T odd)∼ Lo(n)n
−αo , and P(T ≥ n, T even)∼ Le(n)n

−αe ,

(2.2)

where ℓ, Lo and Le are slowly varying at ∞ and Lo and Le are such that if αo = αe then

Lo(n)/Le(n)→ β ∈ [0,∞] as n→∞.

Note that both (2.1) and E[T] <∞ may hold when α= 1 (e.g. take L(n) = (log n)−2).

By [6, Theorem XIII.6.2], when α < 1 there exists ℓ(·)> 0 slowly varying such that

(ℓ(n))−α L
�

n
1

α ℓ(n)
�

→ (Γ(1−α))−1. (2.3)

For α > 0 let

gα(n) =

(

E[T]n , if E[T] <∞

n
1

α ℓ(n) , otherwise
(2.4)

By [3, Theorem 1.5.12], there exists an asymptotic inverse function g−1
α (·) (unique up to asymp-

totic equivalence) satisfying gα(g
−1
α (n)) ∼ g−1

α (gα(n)) ∼ n, and by [3, Theorem 1.5.6] we may

assume that gα and g−1
α are monotone nondecreasing.

A subordinator is a real-valued process starting at 0, with stationary, independent increments,

such that almost every path is nondecreasing and right continuous. Let Bd(t) be a standard d-

dimensional Brownian motion. For α ≥ 1, let Vα(t) = t and for α ∈ (0,1), let Vα be a standard

α-stable subordinator (independent of Bd(t)). This is a strictly increasing pure-jump Levy process

whose law is specified by the Laplace transform of its one-dimensional distributions (see e.g. [2,

Sections 1.1 and 1.2])

E[e−λVα(t)] := e−tλα . (2.5)
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Define the right-continuous inverse of Vα(t) and (when α < 1 the fractional-kinetics process) Zα(s)

by

V−1
α (s) := inf{t : Vα(t)> s}, Zα(s) = Bd(V

−1
α (s)). (2.6)

Since Vα is strictly increasing, both V−1
α and Zα are continuous (almost-surely). The main result

of this paper is the following theorem, in which D(E,Rd) is the set of cadlag paths from E to Rd .

Throughout this paper =⇒ denotes weak convergence.

Theorem 2.1. Suppose that f is such that (2.1) holds for some α > 0, then as n→∞,

S⌊nt⌋
Æ

p

d−p
g−1
α (n)

=⇒ Zα(t), (2.7)

where the convergence is in D([0,1],Rd) equipped with the uniform topology.

2.1 Discussion

The limiting object in Theorem 2.1 is the scaling limit of a simple random walk jumping at random

times τi with i.i.d. increments Ti = τi − τi−1 (e.g. see [13]) that are independent of the position

and history of the walk. In [1] the same scaling limit is obtained for a class of (continuous time)

trap models with d ≥ 2, where a random jump rate or waiting time is chosen initially at each site

and remains fixed thereafter. In that work, when d = 1, the mutual dependence of the time spent

at a particular site on successive returns remains in the scaling limit, where the time change/clock

process depends on the (local time of the) Brownian motion itself. The independence on returning

to an edge is the feature which makes our model considerably easier to handle. For the senile

reinforced random walk, the direction of the steps of the walk is dependent on the clock and we

need to prove that the dependence is sufficiently weak so that it disappears in the limit.

While the slowly varying functions in gα and g−1
α are not given explicitly, in many cases of interest

one can use [6, Theorem XIII.6.2] and [3, Section 1.5.7] to explicitly construct them. For example,

let L(n) = κ(log n)β for some β ≥−1. For α= 1 we can take

ℓ(n) =







κ log n, if β = 0

κ(log log n), if β = −1

|β−1|κ(log n)β+1, otherwise,

and g−1
α (n) =







n(κ log n)−1, if β = 0

n(κ log log n)−1, if β =−1

n|β |(κ log n)−(β+1), otherwise.

(2.8)

If α < 1 we can take

ℓ(n) =

�

κΓ(1−α)

�

log n

α

�β
�

1

α

, and g−1
α (n) = nα
�

κ(α log n)β
�−α

. (2.9)

Assumption (A1) is simply to avoid the trivial cases where the walk gets stuck on a single edge

(i.e. when (1+ f (n))−1 is summable [9]) or is a self-avoiding walk in one dimension. For linear

reinforcement f (n) = Cn, (1.4) shows that assumption (A2) holds with α = (2d − 1)/C . It may

be of interest to consider the scaling limit when f (n) grows like nℓ(n), where lim infn→∞ ℓ(n) =∞
but such that (1+ f (n))−1 is not summable. An example is f (n) = n log n, for which P(T ≥ n) ∼

(C log n)−1 satisfies (2.1) with α= 0.

The condition (2.2) when α = 1 is so that one can apply a weak law of large numbers. The

condition holds for example when L(n) = (log n)k for any k ≥ −1. For the α < 1 case, the
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condition (2.2) holds (with αo = αe and Lo = Le) whenever there exists n0 such that for all

n ≥ n0, f (n) ≥ f (n − 1) − (2d − 1) (so in particular when f is non-decreasing). To see this,

observe that for all n≥ n0

P(T ≥ n, T even) =

∞
∑

m=⌊ n+1

2
⌋

P(T = 2m) =

∞
∑

m=⌊ n+1

2
⌋

P(T = 2m+ 1)
2d + f (2m+ 1)

1+ f (2m)

≥

∞
∑

m=⌊ n+1

2
⌋

P(T = 2m+ 1) = P(T ≥ n+ 1, T odd).

(2.10)

Similarly, P(T ≥ n, T odd) ≥ P(T ≥ n+ 1, T even) for all n ≥ n0. If αo 6= αe in (2.2), then (2.1)

implies that α= αo∧αe and L is the slowly varying function corresponding to α ∈ {αo,αe} in (2.2).

If αo = αe then trivially L ∼ Lo + Le (∼ Lo if Lo(n)/Le(n)→∞). One can construct examples of

reinforcement functions giving rise to different asymptotics for the even and odd cases in (2.2),

for example by taking f (2m) = m2 and f (2m+ 1) = Cm for some well chosen constant C > 0

depending on the dimension.

3 Invariance principle for the time-changed walk

In this section we prove an invariance principle for any senile reinforced random walk (satisfying

(A1)) observed at stopping times τn defined by

τ0 = 0, τk = inf{n> (τk−1 ∨ 1) : Sn 6= Sn−2}. (3.1)

It is easy to see that τn = 1+
∑n

i=1
Ti for each n ≥ 1, where the Ti , i ≥ 1 are independent and

identically distributed random variables (with the same distribution as T), corresponding to the

number of consecutive traversals of successive edges traversed by the walk.

Proposition 3.1. If (A1) is satisfied, then
� p

d−p
n
�− 1

2 Sτ⌊nt⌋
=⇒ Bd(t) as n → ∞, where the conver-

gence is in D([0,1],Rd) with the uniform topology.

The process Sτn
is a simpler one than Sn and one may use many different methods to prove

Proposition 3.1 (see for example the martingale approach of [11]). We give a proof based on

describing Sτn
as an additive functional of a Markov chain. This is not necessarily the simplest

representation, but it is the most natural to the author.

Let X denote the collection of pairs (u, v) such that v is one of the unit vectors ui ∈ Z
d , for

i ∈ {±1,±2, · · · ± d} (labelled so that u−i = −ui) and u is either 0 ∈ Zd or one of the unit vectors

ui 6= −v. The cardinality of X is then |X |= 2d + 2d(2d − 1) = (2d)2.

Given a senile reinforced random walk Sn with parameter p = P(T odd) ∈ (0,1], we define an

irreducible, aperiodic Markov chain Xn = (X
[1]
n

, X [2]
n
) with natural filtration Gn = σ(X1, . . . , Xn),

and finite state-space X , as follows.

For n ≥ 1, let Xn = (Sτn−1 − Sτ(n−1)
,Sτn
− Sτn−1), and Yn = X [1]

n
+ X [2]

n
. It follows immediately that

Sτn
=
∑n

m=1
Ym and

P(X1 = (0,ui)) =
1− p

2d
, and P(X1 = (ui ,u j)) =

p

2d(2d − 1)
, for each i, j, ( j 6=−i).

(3.2)
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Now Tn is independent of X1, . . . , Xn−1, and conditionally on Tn being odd (resp. even), Sτn
−Sτ(n−1)

(resp. Sτn
− Sτn−1) is uniformly distributed over the 2d − 1 unit vectors in Zd other than −X

[2]

n−1

(resp. other than X
[2]

n−1). It is then an easy exercise to verify that {Xn}n≥1 is a finite, irreducible

and aperiodic Markov chain with initial distribution (3.2) and transition probabilities given by

P
�

Xn = (u, v)|Xn−1 = (u
′, v′)
�

=
1

2d − 1
×







p, if u= 0 and v 6=−v′,

1− p, if u=−v′ and v 6= v′,

0, otherwise.

(3.3)

By symmetry, the first 2d entries of the unique stationary distribution ~π ∈ M1(X ) are all equal

(say πa) and the remaining 2d(2d − 1) entries are all equal (say πb), and it is easy to check that

πa =
p

2d
, πb =

1− p

2d(2d − 1)
. (3.4)

As an irreducible, aperiodic, finite-state Markov chain, {Xn}n≥1 has exponentially fast, strong mix-

ing, i.e. there exists a constant c and t < 1 such that for every k ≥ 1,

α(k) := sup
n

n

|P(F ∩ G)− P(F)P(G)| : F ∈ σ(X j , j ≤ n), G ∈ σ(X j , j ≥ n+ k)
o

≤ c tk. (3.5)

Since Yn is measurable with respect to Xn, the sequence Yn also has exponentially fast, strong

mixing. To verify Proposition 3.1, we use the following multidimensional result that follows easily

from [8, Corollary 1] using the Cramér-Wold device.

Corollary 3.2. Suppose that Wn = (W
(1)
n

, . . . ,W (d)
n
), n ≥ 0 is a sequence of Rd -valued random

variables such that E[Wn] = 0, E[|Wn|
2] <∞ and E[n−1

∑n

i=1

∑n

i′=1
W
( j)

i
W
(l)

i′
]→ σ2 I j=l , as n→

∞. Further suppose that Wn is α-strongly mixing and that there exists β ∈ (2,∞] such that

∞
∑

k=1

α(k)1−2/β <∞, and lim sup
n→∞

‖Wn‖β <∞, (3.6)

then Wn(t) := (σ2n)−
1

2

∑⌊nt⌋

i=1
Wi =⇒ Bd(t) as n → ∞, where the convergence is in D([0,1],Rd)

equipped with the uniform topology.

3.1 Proof of Proposition 3.1

Since Sτn
=
∑n

m=1
Ym where |Ym| ≤ 2, and the sequence {Yn}n≥0 has exponentially fast strong

mixing, Proposition 3.1 will follow from Corollary 3.2 provided we show that

E





1

n

n
∑

i=1

n
∑

i′=1

Y
( j)

i
Y
(l)

i′



→
p

d − p
I j=l , (3.7)

where the superscript ( j) denotes the jth component of the vector, e.g. Ym = (Y
(1)
m

, . . . , Y (d)
m
). By

symmetry, E[Y
( j)

i
Y
(l)

i′
] = 0 for all i, i′ and j 6= l, and it suffices to prove (3.7) with j = l = 1.

For n≥ 2, E[X [2],(1)
n
|Xn−1] =

2p−1

2d−1
X
[2],(1)

n−1 , so by induction and the Markov property,

E[X [2],(1)
n
|Xm] =

�

2p− 1

2d − 1

�n−m

X [2],(1)
m

, for every n≥ m≥ 1. (3.8)
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For n≥ 2, E[Y (1)
n
|Xn−1] =

p−2d(1−p)

2d−1
X
[2],(1)

n−1 , and the Markov property for Xn implies that

E[Y (1)
n
|Xm] =

p− 2d(1− p)

2d − 1

�

2p− 1

2d − 1

�n−1−m

X [2],(1)
m

, for n> m≥ 1. (3.9)

For n> m≥ 1, and letting r =
2p−1

2d−1
we have

E[Y (1)
n

Y (1)
m
] =E[Y (1)

m
E[Y (1)

n
|Xm]] =

p− 2d(1− p)

2d − 1
rn−1−m

E[Y (1)
m

X [2],(1)
m

]

=
p− 2d(1− p)

2d − 1
rn−1−m
�

E[X [1],(1)
m

X [2],(1)
m

] +E[(X [2],(1)
m

)2]
�

=
p− 2d(1− p)

2d − 1
rn−1−m ×

(

1−p

d(2d−1)
+ 1

d
, m≥ 2

p

d(2d−1)
+ 1

d
, m= 1.

(3.10)

Lastly E[|Y1|
2] = (1− p) +

4dp

2d−1
and E[|Ym|

2] = p+
4d(1−p)

2d−1
, for m≥ 2.

Combining these results, we get that

E





n
∑

l=1

n
∑

m=1

Y
(1)

l
Y (1)

m



 =2

n
∑

l=2

l−1
∑

m=2

E[Y
(1)

l
Y (1)

m
] + 2

n
∑

l=2

E[Y
(1)

l
Y
(1)

1 ] +

n
∑

l=1

E[|Y
(1)

l
|2]

=
2

d

p− 2d(1− p)

2d − 1





�

2d − p

2d − 1

� n
∑

l=2

l−2
∑

k=0

rk +

n
∑

l=2

2d − 1+ p

2d − 1
r l−2





+
1− p

d
+

4p

2d − 1
+ (n− 1)

�

p

d
+

4(1− p)

2d − 1

�

.

(3.11)

Since r < 1, the second sum over l is bounded by a constant, uniformly in n. Thus, this is equal to

2

d

p− 2d(1− p)

2d − 1

�

2d − p

2d − 1

� n
∑

l=2

1− r l−2

1− r
+ n

�

p

d
+

4(1− p)

2d − 1

�

+ O (1)

=n

�

2

d(1− r)

p− 2d(1− p)

2d − 1

�

2d − p

2d − 1

�

+
p

d
+

4(1− p)

2d − 1

�

+ O (1)

=n

�

(p− 2d(1− p))(2d − p)

d(d − p)(2d − 1)
+

p

d
+

4(1− p)

2d − 1

�

+ O (1) = n
p

d − p
+ O (1).

(3.12)

Dividing by n and taking the limit as n→∞ verifies (3.7) and thus completes the proof of Propo-

sition 3.1.

4 Proof of Theorem 2.1

Theorem 2.1 is a consequence of convergence of the joint distribution of the rescaled stopping

time process and the random walk at those stopping times as in the following proposition.

Proposition 4.1. Suppose that assumptions (A1) and (A2) hold for some α > 0, then as n→∞,







Sτ⌊nt⌋

Æ

p

d−p
n

,
τ⌊nt⌋

gα(n)





 =⇒
�

Bd(t), Vα(t)
�

, (4.1)
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where the convergence is in
�

D([0,1],Rd),U
�

×
�

D([0,1],R), J1

�

, and where U and J1 denote the

uniform and Skorokhod J1 topologies respectively.

Proof of Theorem 2.1 assuming Proposition 4.1. Since ⌊g−1
α (n)⌋ is a sequence of positive integers

such that ⌊g−1
α (n)⌋ →∞ and n/gα(⌊g

−1
α (n)⌋)→ 1 as n→∞, it follows from (4.1) that as n→∞,







Sτ
⌊⌊g−1
α (n)⌋t⌋

Æ

p

d−p
⌊g−1
α (n)⌋

,
τ⌊⌊g−1

α (n)⌋t⌋

n





 =⇒
�

Bd(t), Vα(t)
�

, (4.2)

in
�

D([0,1],Rd),U
�

×
�

D([0,1],R), J1

�

.

Let

Yn(t) =
Sτ
⌊⌊g−1
α (n)⌋t⌋

Æ

p

d−p
⌊g−1
α (n)⌋

, and Tn(t) =
τ⌊⌊g−1

α (n)⌋t⌋

n
, (4.3)

and let T −1
n
(t) := inf{s ≥ 0 : Tn(s) > t} = inf{s ≥ 0 : τ⌊⌊g−1

α (n)⌋s⌋
> nt}. It follows (e.g. see the

proof of Theorem 1.3 in [1]) that Yn(T
−1

n
(t)) =⇒ Bd(V

−1
α (t)) in
�

D([0,1],Rd),U
�

. Thus,

Sτ
⌊⌊g−1
α (n)⌋T −1

n (t)⌋

Æ

p

d−p
g−1
α (n)

=⇒ Bd(V
−1
α (t)). (4.4)

By definition of T −1
n

, we have τ⌊⌊g−1
α (n)⌋T

−1
n (t)⌋−1 ≤ nt ≤ τ⌊⌊g−1

α (n)⌋T
−1

n (t)⌋ and hence |S⌊nt⌋−Sτ
⌊⌊g−1
α (n)⌋T −1

n (t)⌋
| ≤

3. Together with (4.4) and the fact that g−1
α (n)/⌊g

−1
α (n)⌋ → 1, this proves Theorem 2.1.

5 Proof of Proposition 4.1

The proof of Proposition 4.1 is broken into two parts. The first part is the observation that the

marginal processes converge, i.e. that the time-changed walk and the time-change converge to

Bd(t) and Vα(t) respectively, while the second is to show that these two processes are asymptoti-

cally independent.

5.1 Convergence of the time-changed walk and the time-change.

Lemma 5.1. Suppose that assumptions (A1) and (A2) hold for some α > 0, then as n→∞,

Sτ⌊nt⌋

Æ

p

d−p
n
=⇒ Bd(t) in (D([0,1],Rd),U ), and

τ⌊nt⌋

gα(n)
=⇒ Vα(t) in (D([0,1],R), J1). (5.1)

Proof. The first claim is the conclusion of Proposition 3.1, so we need only prove the second claim.

Recall that τn = 1+
∑n

i=1
Ti where the Ti are i.i.d. with distribution T . Since gα(n) → ∞, it is

enough to show convergence of τ∗
⌊nt⌋
= (τ⌊nt⌋ − 1)/gα(n).

For processes with independent and identically distributed increments, a standard result of Sko-

rokhod essentially extends the convergence of the one-dimensional distributions to a functional

central limit theorem. When E[T] exists, convergence of the one-dimensional marginals τ∗
⌊nt⌋
/nE[T] =⇒

t is immediate from the law of large numbers. The case α < 1 is well known, see for example

[6, Section XIII.6] and [16, Section 4.5.3]. The case where α = 1 but (2.1) is not summable is

perhaps less well known. Here the result is immediate from the following lemma.
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Lemma 5.2. Let Tk ≥ 0 be independent and identically distributed random variables satisfying (2.1)

and (2.2) with α= 1. Then for each t ≥ 0,

τ∗
⌊nt⌋

nℓ(n)

P
−→ t. (5.2)

Lemma 5.2 is a corollary of the following weak law of large numbers due to Gut [7].

Theorem 5.3 ([7], Theorem 1.3). Let Xk be i.i.d. random variables and Sn =
∑n

k=1
Xk. Let gn =

n1/αℓ(n) for n≥ 1, where α ∈ (0,1] and ℓ(n) is slowly varying at infinity. Then

Sn − nE
�

X I{|X |≤gn}

�

gn

P
−→ 0, as n→∞, (5.3)

if and only if nP(|X |> gn)→ 0.

Proof of Lemma 5.2. Note that

E

�

T I{T≤nℓ(n)}

�

=

⌊nℓ(n)⌋
∑

j=1

P(nℓ(n)≥ T ≥ j) =

⌊nℓ(n)⌋
∑

j=1

P(T ≥ j)− ⌊nℓ(n)⌋P(T ≥ nℓ(n)). (5.4)

Now by assumption (A2b),

n

nℓ(n)
E

�

T I{|T |≤nℓ(n)}

�

=

∑⌊nℓ(n)⌋

j=1
P(T ≥ j)

ℓ(n)
−
⌊nℓ(n)⌋

ℓ(n)
P(T ≥ nℓ(n))

∼

∑⌊nℓ(n)⌋

j=1
j−1 L( j)

ℓ(n)
−
⌊nℓ(n)⌋

ℓ(n)
(nℓ(n))−1 L(nℓ(n))→ 1.

(5.5)

Theorem 5.3 then implies that (nℓ(n))−1τn
P
−→ 1, from which it follows immediately that

(nℓ(n))−1τ⌊nt⌋ = (nℓ(n))
−1⌊nt⌋ℓ(⌊nt⌋)(⌊nt⌋ℓ(⌊nt⌋))−1τ⌊nt⌋

P
−→ t. (5.6)

This completes the proof of Lemma 5.2, and hence Lemma 5.1.

5.2 Asymptotic Independence

Tightness of the joint process in Proposition 4.1 is an easy consequence of the tightness of the

marginal processes (Lemma 5.1), so we need only prove convergence of the finite-dimensional

distributions (f.d.d.s). For α ≥ 1 this is simple and is left as an exercise. To complete the proof of

Proposition 4.1, it remains to prove convergence of the f.d.d.s when α < 1 (hence p < 1).

Let G1 and G2 be convergence determining classes of bounded, C-valued functions on Rd and

R+ respectively, each closed under conjugation and containing a non-zero constant function, then

{g(x1, x2) := g1(x1)g2(x2) : gi ∈ Gi} is a convergence determining class for Rd × R+. This

follows as in [5, Proposition 3.4.6] where the closure under conjugation allows us to extend the

proof to complex-valued functions. Therefore, to prove convergence of the finite-dimensional

distributions in (4.1) it is enough to show that for every 0≤ t1 < · · ·< t r ≤ 1, k1, . . . , kr ∈ R
d and

η1, . . . ,ηr ≥ 0,

E





exp

¨

i

r
∑

j=1

k j · Sτ⌊nt j ⌋

Æ

p

d−p
n
−η j

τ⌊nt j⌋

gα(n)

«





→ E



exp

¨

i

r
∑

j=1

k j · Bd(t j)

«


E



exp

¨

−

r
∑

j=1

η jVα(t j)

«


 .

(5.7)
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From (2.6) and the fact that Vα has independent increments, the rightmost expectation can be

written as exp{−
∑r

l=1
(η∗

l
)α(t l − t l−1)}, where η∗

l
=
∑r

j=l
η j .

Let An =
�

i ∈ {1, . . . , n} : Ti is odd
	

, A⌊n~t⌋ = (A⌊nt1⌋
\ A⌊nt0⌋

, . . . ,A⌊nt r⌋
\ A⌊nt r−1⌋

) and t0 = 0.

For fixed n and ~t, we write A = (A(1), . . . ,A(r)) to denote an element of the range of the random

variableA⌊n~t⌋, where A(i) ⊆ {⌊nt i−1⌋+1, . . . , ⌊nt i⌋} for each i ∈ 1, . . . , r. Observe that |A
(l)

⌊n~t⌋
| has a

binomial distribution with parameters ⌊nt l⌋− ⌊nt l−1⌋ and p. Then for ε ∈ (0, 1

2
) and Bn(~t) := {A :

||A(l)| − (⌊nt l p⌋ − ⌊nt l−1p⌋)| ≤ n1−ε for each l}, we have that P(Bn(~t)
c)→ 0 as n→∞. Defining

Qn
~k
(~t) = exp
n

i
∑r

j=1

k j ·Sτ⌊nt j ⌋
Æ

p

d−p
n

o

, and conditioning onA⌊n~t⌋, the left hand side of (5.7) is equal to

e
− 1

gα(n)

∑r

j=1 η j

∑

A

E

�

Qn
~k
(~t)exp

¨

−

r
∑

j=1

η j

τ∗
⌊nt j⌋

gα(n)

«

¯

¯

¯

¯

¯

{A⌊n~t⌋ = A}

�

P(A⌊n~t⌋ = A)

=
∑

A∈Bn(~t)

E

�

Qn
~k
(~t)exp

¨

−

r
∑

j=1

η j

τ∗
⌊nt j⌋

gα(n)

«

¯

¯

¯

¯

¯

{A⌊n~t⌋ = A}

�

P(A⌊n~t⌋ = A) + o(1)

=
∑

A∈Bn(~t)

E

�

Qn
~k
(~t)

¯

¯

¯{A⌊n~t⌋ = A}

�

E

�

exp

¨

−

r
∑

j=1

η j

∑⌊nt j⌋

i=1
Ti

gα(n)

«

¯

¯

¯

¯

¯

{A⌊n~t⌋ = A}

�

P(A⌊n~t⌋ = A) + o(1),

(5.8)

where we have used the fact that Sτn
is conditionally independent of the collection {Ti}i≥1 given

I{Ti even}, i = 1, . . . , n, to obtain the last equality.

Writing
∑⌊nt j⌋

i=1
Ti =
∑ j

l=1

∑⌊nt l⌋

i=⌊nt l−1⌋+1
Ti and using the mutual independence of Ti , i ≥ 1, the last

line of (5.8) is equal to a term o(1) plus

∑

A∈Bn(~t)

E

�

Qn
~k
(~t)

¯

¯

¯{A⌊n~t⌋ = A}

�

P(A⌊n~t⌋ = A)

r
∏

l=1

E

�

exp

¨

−η∗
l

∑⌊nt l⌋

i=⌊nt l−1⌋+1
Ti

gα(n)

«

¯

¯

¯

¯

¯

{A
(l)

⌊n~t⌋
= A(l)}

�

.

(5.9)

Let {T o
i
}i∈N be i.i.d. random variables satisfying P(T o

i
= k) = P(T = k|T odd), and similarly define

T e
i

to be i.i.d. with P(T e
i
= k) = P(T = k|T even). The l th term in the product in (5.9) is

E

�

exp

¨

−η∗
l

∑|A(l)|

i=1
T o

i

gα(n)

«�

E

�

exp

¨

−η∗
l

∑⌊nt l⌋−⌊nt l−1⌋−|A
(l)|

i=1
T e

i
}

gα(n)

«�

. (5.10)

For T o we have P(T o ≥ n) = p−1
P (T ≥ n, T odd) ∼ p−1n−αo Lo(n) and there exists ℓo such that

(ℓo(n))
−αo p−1 Lo(n

1

αo ℓo(n))→ (Γ(1− α))
−1. Define go

αo
(n) = n

1

αo ℓo(n). Similarly define g e
αe
(n) =

n
1

αe ℓe(n).

Observe that

∑|A(l)|

i=1
T o

i

gα(n)
=

∑nl

i=1
T o

i

go
αo
(nl)

go
αo
(nl)

gα(nl)

gα(nl)

gα(n)
+ O







∑|A(l)|

i=1
T o

i
−
∑nl

i=1
T o

i

go
αo
(n∗

l
)

go
αo
(n∗

l
)

gα(n
∗
l
)

gα(n
∗
l
)

gα(n)





 , (5.11)

where nl := ⌊nt l p⌋ − ⌊nt l−1p⌋ and n∗
l

:= ||A(l)| − nl | ≤ n1−ε since A ∈ Bn(~t). By definition of

gα and standard results on regular variation we have that gα(nl)/gα(n) → (p(t l − t l−1))
1

α and
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gα(n
∗
l
)/gα(n) → 0. Since α = αo ∧ αe ≤ αo, the O term on the right of (5.11) converges in

probability to 0. Thus, as in the second claim of Lemma 5.1, we get that

∑|A(l)|

i=1
T o

i

gα(n)
=⇒ Vα(1)(p(t l − t l−1))

1

α lim
n→∞

go
αo
(nl)

gα(nl)
, (5.12)

where for α < 1 the limit ρo := limn→∞

go
αo
(nl )

gα(nl )
exists in [0,∞] since α ≤ αo and in the case of

equality, the limit Lo/Le exists in [0,∞]. Note that we were able to replace αo with α in various

places in (5.12) due to the presence of the factor
go
αo
(nl )

gα(nl )
which is zero when αo > α. Therefore

E

�

exp

¨

−η∗
l

∑|A(l)|

i=1
T o

i

gα(n)

«�

→E
h

exp{−η∗
l
Vα(1)(p(t l − t l−1))

1

αρo}
i

, and similarly,

E











exp







−η∗
l

∑⌊nt l⌋−⌊nt l−1⌋−|A
(l)|

i=1
T e

i

gα(n)

















→E
h

exp{−η∗
l
Vα(1)((1− p)(t l − t l−1))

1

αρe}
i

.

(5.13)

Since E[e−ηVα(1)] = exp{−ηα}, it remains to show that

�

(p(t l − t l−1))
1

αρo

�α

+
�

((1− p)(t l − t l−1))
1

αρe

�α

= t l − t l−1, i.e. pρα
o
+ (1− p)ρα

e
= 1.

(5.14)

If αo < αe (or αo = αe and Lo/Le → ∞), then α = αo, and L ∼ Lo. It is then an easy exercise

in manipulating slowly varying functions to show that ℓo ∼ p−1/αℓ and therefore ρo = p−1/α

and ρe = 0, giving the desired result. Similarly if αo > αe (or αo = αe and Lo/Le → 0) we

get the desired result. When αo = αe < 1 and Lo/Le → β ∈ (0,∞) we have that L ∼ Lo + Le ∼

(1+β)Le ∼ (1+β
−1)Lo. It follows that ℓe ∼ ((1−p)(1+β))−1/αℓ. Similarly ℓo ∼ (p(1+β

−1))−1/αℓ,
and therefore ρo = (p(1 + β

−1))−1/α and ρe = ((1 − p)(1 + β))−1/α. The result follows since

(1+ β)−1 + (1+ β−1)−1 = 1.
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