
Elect. Comm. in Probab. 14 (2009), 116–121

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

MOMENT IDENTITIES FOR SKOROHOD INTEGRALS ON THE WIENER
SPACE AND APPLICATIONS

NICOLAS PRIVAULT1

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong

Kong

email: nprivaul@cityu.edu.hk

Submitted January 27, 2009, accepted in final form February 2, 2009

AMS 2000 Subject classification: 60H07, 60G30.
Keywords: Malliavin calculus, Skorohod integral, Skorohod isometry, Wiener measure, random
isometries.

Abstract

We prove a moment identity on the Wiener space that extends the Skorohod isometry to arbitrary
powers of the Skorohod integral on the Wiener space. As simple consequences of this identity
we obtain sufficient conditions for the Gaussianity of the law of the Skorohod integral and a
recurrence relation for the moments of second order Wiener integrals. We also recover and extend
the sufficient conditions for the invariance of the Wiener measure under random rotations given
in [3].

1 Introduction and notation

In [3], sufficient conditions have been found for the Skorohod integral δ(Rh) to have a Gaussian
law when h ∈ H = L2(IR+, IRd) and R is a random isometry of H, using an induction argument.

In this paper we state a general identity for the moments of Skorohod integrals, which will allow
us in particular to recover the result of [3] by a direct proof and to obtain a recurrence relation
for the moments of second order Wiener integrals.

We refer to [1] and [4] for the notation recalled in this section. Let (Bt)t∈IR+ denote a standard

IRd -valued Brownian motion on the Wiener space (W,µ) with W = C 0(IR+, IRd). For any separable
Hilbert space X , consider the Malliavin derivative D with values in H = L2(IR+, X ⊗ IRd), defined
by

Dt F =

n
∑

i=1

1[0,t i]
(t)∂i f (Bt1

, . . . , Btn
), t ∈ IR+, ,
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Moment identities for Skorohod integrals 117

for F of the form
F = f (Bt1

, . . . , Btn
), (1.1)

f ∈ C∞
b
(IRn, X ), t1, . . . , tn ∈ IR+, n ≥ 1. Let IDp,k(X ) denote the completion of the space of smooth

X -valued random variables under the norm

‖u‖IDp,k(X )
=

k
∑

l=0

‖Dlu‖Lp(W,X⊗H⊗l ), p > 1,

where X ⊗ H denotes the completed symmetric tensor product of X and H. For all p,q > 1 such
that p−1 + q−1 = 1 and k ≥ 1, let

δ : IDp,k(X ⊗H)→ IDq,k−1(X )

denote the Skorohod integral operator adjoint of

D : IDp,k(X )→ IDq,k−1(X ⊗H),

with
E[〈F,δ(u)〉X ] = E[〈DF,u〉X⊗H], F ∈ IDp,k(X ), u ∈ IDq,k(X ⊗H).

Recall that δ(u) coincides with the Itô integral of u ∈ L2(W ; H) with respect to Brownian motion,
i.e.

δ(u) =

∫ ∞

0

ut dBt ,

when u is square-integrable and adapted with respect to the Brownian filtration.

Each element of X ⊗H is naturally identified to a linear operator from H to X via

(a⊗ b)c = a〈b, c〉, a⊗ b ∈ X ⊗H, c ∈ H.

For u ∈ ID2,1(H) we identify Du = (Dtus)s,t∈IR+ to the random operator Du : H → H almost surely
defined by

(Du)v(s) =

∫ ∞

0

(Dtus)vt d t, s ∈ IR+, v ∈ L2(W ; H),

and define its adjoint D∗u on H ⊗H as

(D∗u)v(s) =

∫ ∞

0

(D†
s
ut)vt d t, s ∈ IR+, v ∈ L2(W ; H),

where D†
s
ut denotes the transpose matrix of Dsut in IRd ⊗ IRd .

Recall the Skorohod [2] isometry

E[δ(u)2] = E[〈u,u〉H] + E
�

trace (Du)2
�

, u ∈ ID2,1(H), (1.2)

with

trace (Du)2 = 〈Du, D∗u〉H⊗H

=

∫ ∞

0

∫ ∞

0

〈Dsut , D†
t
us〉IRd⊗IRd dsd t,

and the commutation relation

Dδ(u) = u+δ(D∗u), u ∈ ID2,2(H). (1.3)
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2 Main results

First we state a moment identity for Skorohod integrals, which will be proved in Section 3.

Theorem 2.1. For any n≥ 1 and u ∈ IDn+1,2(H) we have

E[(δ(u))n+1] =

n
∑

k=1

n!

(n− k)!
(2.1)

E



(δ(u))n−k

 

〈(Du)k−1u,u〉H + trace (Du)k+1 +

k
∑

i=2

1

i
〈(Du)k−iu, D trace (Du)i〉H

!

 ,

where

trace (Du)k+1 =

∫ ∞

0

· · ·

∫ ∞

0

〈D†
tk−1

utk
, Dtk−2

utk−1
· · ·Dt0

ut1
Dtk

ut0
〉IRd⊗IRd d t0 · · · d tk.

For n= 1 the above identity coincides with the Skorohod isometry (1.2).

In particular we obtain the following immediate consequence of Theorem 2.1. Recall that trace (Du)k =

0, k ≥ 1, when the process u is adapted with respect to the Brownian filtration.

Corollary 2.2. Let n≥ 1 and u ∈ IDn+1,2(H) such that 〈u,u〉H is deterministic and

trace (Du)k+1 +

k
∑

i=2

1

i
〈(Du)k−iu, D trace (Du)i〉H = 0, a.s., 1≤ k ≤ n. (2.2)

Then δ(u) has the same first n + 1 moments as the centered Gaussian distribution with variance

〈u,u〉H .

Proof. The relation D〈u,u〉= 2(D∗u)u shows that

〈(Dk−1u)u,u〉= 〈(D∗u)k−1u,u〉=
1

2
〈u, (D∗)k−2D〈u,u〉〉= 0, k ≥ 2, (2.3)

when 〈u,u〉 is deterministic, u ∈ ID2,1(H). Hence under Condition (2.2), Theorem 2.1 yields

E[(δ(u))n+1] = n〈u,u〉H E
�

(δ(u))n−1
�

,

and by induction

E[(δ(u))2m] =
(2m)!

2mm!
〈u,u〉m

H
, 0≤ 2m≤ n+ 1,

and E[(δ(u))2m+1] = 0, 0≤ 2m≤ n, while E[δ(u)] = 0 for all u ∈ ID2,1(H). �

We close this section with some applications.

1. Random rotations

As a consequence of Corollary 2.2 we recover Theorem 2.1-b) of [3], i.e. δ(Rh) has a
centered Gaussian distribution with variance 〈h,h〉H when u = Rh, h ∈ H, and R is a
random mapping with values in the isometries of H, such that Rh ∈ ∩p>1 IDp,2(H) and

trace (DRh)k+1 = 0, k ≥ 1. Note that in [3] the condition Rh ∈ ∩p>1,k≥2 IDp,k(H) is assumed
instead of Rh ∈ ∩p>1 IDp,2(H).
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2. Second order Wiener integrals

Let d = 1. The second order Wiener integral I2( f2) of a symmetric function f2 ∈ H ⊗ H =

L2(IR2
+
) can be written as I2( f2) = δ(u) with ut = δ( f2(·, t)), t ∈ IR+. Its law is infinitely

divisible with Lévy measure

ν(d y) = 1{y>0}

∑

k;ak>0

1

2|y|
e−y/ak d y + 1{y<0}

∑

k;ak<0

1

2|y|
e−y/ak d y, (2.4)

when f2 is decomposed as

f2 =
1

2

∞
∑

k=0

akhk ⊗ hk

in a complete orthonormal basis (hk)k∈IN of H. Letting

g
(k+1)
2 (s, t) =

∫

IRk

f2(s, t1) f2(t1, t2) · · · f2(tk−1, tk) f2(tk, t)d t1 · · · d tk,

we have trace (Du)k+1 =

∫

IR2

g
(k+1)
2 (s, t)dsd t, and using the relation

δ( f1)δ(g1) = I2( f1 ⊗ g1) + 〈 f1, g1〉H , f1, g1 ∈ H,

we get

〈(Du)k−1u,u〉H =

∫

IRk−1

δ( f2(·, t1)) f2(t1, t2) · · · f2(tk−1, tk)δ( f2(·, tk))d t1 · · · d tk

=

∫

IRk−1

I2( f2(·, t1)⊗ f2(·, tk)) f2(t1, t2) · · · f2(tk−1, tk)d t1 · · · d tk

+

∫

IRk−1

f2(t0, t1) f2(t1, t2) · · · f2(tk−1, tk) f2(tk, t0)d t0 · · · d tk

= I2(g
(k+1)
2 ) + trace (Du)k+1,

hence Theorem 2.1 yields the recurrence relation

E[(I2( f2))
n+1] =

n
∑

k=1

n!

(n− k)!
E
h

(I2( f2))
n−k(I2(g

(k+1)
2 ) + 2 trace (Du)k+1)

i

= 2
n−1
∑

k=0

n!

k!

∫

IR2

g
(n−k+1)
2 (s, t)dsd tE

�

(I2( f2))
k
�

+

n−1
∑

k=0

k
∑

l=1

(−1)k+1−l n!

(k)!(k+ 1)!

�

k

l

�

lk+1E[(I2( f2))
k+1]

+

n−1
∑

k=0

k+1
∑

l=1

(−1)k+1−l n!

(k)!(k+ 1)!

�

k

l − 1

�

E

�

I2

�

(l − 1) f2 + g
(n−k+1)
2

�k+1
�

,

for the computation of the moments of second order Wiener integrals, by polarisation of

(I2( f2))
n−k I2(g

(n−k+1)
2 ).
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3 Proofs

In the sequel, all scalar products will be simply denoted by 〈·, ·〉.

We will need the following lemma.

Lemma 3.1. Let n≥ 1 and u ∈ IDn+1,2(H). Then for all 1≤ k ≤ n we have

E
�

(δ(u))n−k〈(Du)k−1u, Dδ(u)〉
�

− (n− k)E
�

(δ(u))n−k−1〈(Du)ku, Dδ(u)〉
�

= E



(δ(u))n−k

 

〈(Du)k−1u,u〉+ trace (Du)k+1 +

k
∑

i=2

1

i
〈(Du)k−iu, D trace (Du)i〉

!

 .

Proof. We have (Du)k−1u ∈ ID(n+1)/k,1(H), δ(u) ∈ ID(n+1)/(n−k+1),1(IR), and using Relation (1.3) we
obtain

E
�

(δ(u))n−k〈(Du)k−1u, Dδ(u)〉
�

= E
�

(δ(u))n−k〈(Du)k−1u,u+δ(D∗u)〉
�

= E
�

(δ(u))n−k〈(Du)k−1u,u〉
�

+ E
�

(δ(u))n−k〈(Du)k−1u,δ(Du)〉
�

= E
�

(δ(u))n−k〈(Du)k−1u,u〉
�

+ E
�

〈D∗u, D((δ(u))n−k(Du)k−1u)〉
�

= E
�

(δ(u))n−k〈(Du)k−1u,u〉
�

+ E
�

(δ(u))n−k〈D∗u, D((Du)k−1u)〉
�

+E
�

〈D∗u, ((Du)k−1u)⊗ D(δ(u))n−k〉
�

= E
�

(δ(u))n−k
�

〈(Du)k−1u,u〉+ 〈D∗u, D((Du)k−1u)〉
��

+(n− k)E
�

(δ(u))n−k−1〈D∗u, ((Du)k−1u)⊗ Dδ(u)〉
�

= E
�

(δ(u))n−k
�

〈(Du)k−1u,u〉+ 〈D∗u, D((Du)k−1u)〉
��

+(n− k)E
�

(δ(u))n−k−1〈(Du)ku, Dδ(u)〉
�

.

Next,

〈D∗u, D((Du)k−1u)〉=

∫ ∞

0

· · ·

∫ ∞

0

〈D†
tk−1

utk
, Dtk
(Dtk−2

utk−1
· · ·Dt0

ut1
ut0
)〉d t0 · · · d tk

=

∫ ∞

0

· · ·

∫ ∞

0

〈D†
tk−1

utk
, Dtk−2

utk−1
· · ·Dt0

ut1
Dtk

ut0
〉d t0 · · · d tk

+

∫ ∞

0

· · ·

∫ ∞

0

〈D†
tk−1

utk
, Dtk
(Dtk−2

utk−1
· · ·Dt0

ut1
)ut0
〉d t0 · · · d tk

= trace (Du)k+1 +

k−2
∑

i=0

∫ ∞

0

· · ·

∫ ∞

0

〈D†
tk−1

utk
, Dtk

utk+1
· · ·Dt i+1

ut i+2
(Dt i

Dtk
ut i+1
)Dt i−1

ut i
· · ·Dt0

ut1
ut0
〉d t0 · · · d tk

= trace (Du)k+1 +

k−2
∑

i=0

1

k− i

∫ ∞

0

· · ·

∫ ∞

0

〈Dt i
〈D†

tk−1
utk

, Dtk
utk+1
· · ·Dt i+1

ut i+2
Dtk

ut i+1
〉, Dt i−1

ut i
· · ·Dt0

ut1
ut0
〉d t0 · · · d tk
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= trace (Du)k+1 +

k−2
∑

i=0

1

k− i
〈(Du)iu, D trace (Du)k−i〉.

�

Proof of Theorem 2.1. We decompose

E[(δ(u))n+1] = E[〈u, D(δ(u))n〉] = nE[(δ(u))n−1〈u, Dδ(u)〉]

=

n
∑

k=1

n!

(n− k)!

�

E
�

(δ(u))n−k〈(Du)k−1u, Dδ(u)〉
�

− (n− k)E
�

(δ(u))n−k−1〈(Du)ku, Dδ(u)〉
��

,

as a telescoping sum and then apply Lemma 3.1, which yields (2.1). �
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