
Elect. Comm. in Probab. 14 (2009), 232–244

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

FIRST EIGENVALUE OF ONE-DIMENSIONAL DIFFUSION PRO-
CESSES

JIAN WANG

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, P.R. China

email: jianwang@fjnu.edu.cn

Submitted January 6, 2008, accepted in final form May 3, 2009

AMS 2000 Subject classification: 60J25, 60J27

Keywords: First Dirichlet eigenvalue, Hardy inequality, variational formula, transience, recur-

rence, diffusion operators

Abstract

We consider the first Dirichlet eigenvalue of diffusion operators on the half line. A criterion for

the equivalence of the first Dirichlet eigenvalue with respect to the maximum domain and that to

the minimum domain is presented. We also describle the relationships between the first Dirichlet

eigenvalue of transient diffusion operators and the standard Muckenhoupt’s conditions for the dual

weighted Hardy inequality. Pinsky’s result [17] and Chen’s variational formulas [8] are reviewed,

and both provide the original motivation for this research.

1 Introduction and Main Results

In this paper, we deal with explicit bounds of the first Dirichlet eigenvalue for diffusion operators

on the half line R+ := [0,∞). The work is a continuation or a supplement of [17, 5, 6], and is

also inspired by analogous research for birth-death processes in [7, 19]. Let a(x) be positive ev-

erywhere on (0,∞). For any measurable function b(x) on (0,∞), define C(x) =
∫ x

0
b(u)/a(u)du

for x > 0 and a measure µ(d x) = a(x)−1eC(x)d x . Consider the diffusion operator with diffusion

coefficient a and drift b

L := a(x)d2/d x2 + b(x)d/d x

on R+ with the Dirichlet boundary condition at x = 0. Then, L is a non-negative, self-adjoint

operator on (R+,L2(µ)), and it corresponds to a non-negative, Markovian symmetric and closable

bilinear form (see [10])

D( f , g) =

∫ ∞

0

a(x) f ′(x)g ′(x)µ(d x)

defined for f , g ∈ C∞
0
(R+), the space of smooth functions with compact support on R+. As usual,

denote by ‖ · ‖ and (·, ·) the norm and the inner product on L2(µ), respectively. Let λ0 be the first

eigenvalue of Dirichlet diffusion operator −L. The classical Rayleigh-Ritz variational formula (c.f.
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First Eigenvalue of One-dimensional Diffusion Processes 233

see [18, 16]) gives us

λ0 = inf
f ∈C∞0 (R+) with f (0)=0

−(L f , f )

‖ f ‖2
.

That is,

λ0 = inf{D( f ) : f ∈ C∞
0
(R+),‖ f ‖= 1, f (0) = 0}. (1.1)

Our starting point is the explicit bounds up to multiplicative constant 4 for λ0, taken from [17;

Theorem 1].

Theorem 1.1. [Pinsky’s Result] If the operator L is recurrent, i.e.
∫∞

0
e−C(x)d x =∞, define

δ = sup
x>0

∫ x

0

e−C(y)d y

∫ ∞

x

a(y)−1eC(y)d y. (1.2)

If L is transient, i.e.
∫∞

0
e−C(x)d x <∞, let h(x) =

∫∞
x

e−C(u)du and define

δ = sup
x>0

�
h(x)−1 − h(0)−1

�∫ ∞

x

h(y)a(y)−1eC(y)d y. (1.3)

Then

(4δ)−1 ≤ λ0 ≤ δ
−1.

Theorem 1.1 shows that the bounds for λ0 take two possible forms depending on whether
∫∞

0
e−C(x)d x

is finite or infinite. For the clarity of exposition, we denote δ given in (1.2) and (1.3) by δ1 and

δ2, respectively. As mentioned in [17; Remark 3], it is δ1 (not δ2) that coincides with the standard

Muckenhoupt’s constant for the weighted Hardy inequality (H1):

∫ ∞

0

�∫ x

0

f (t)d t

�2
u(x)d x ≤ C

∫ ∞

0

f (x)2v(x)d x for all f ≥ 0, (1.4)

where u and v are non-negative weighted functions on R+. Let C1 be the optimal constant in

(1.4). Then, [15] gives us

B1 ≤ C1 ≤ 4B1,

where

B1 = sup
x>0

∫ ∞

x

u(t)d t

∫ x

0

v(t)−1d t.

Set u(x) = a(x)−1eC(x) and v(x) = eC(x). It follows that δ1 = B1. Recently the Hardy inequality

(1.4) has been extensively applied to studying the first non-trivial eigenvalue of diffusion operators

and related functional inequalities (c.f. see [2, 8, 12, 14, 21]). For example, assume that the

diffusion operator L is ergodic, i.e.
∫∞

0
e−C(x)d x =∞ and µ(R+) <∞. The other first eigenvalue

eλ0, slightly different from λ0 in (1.1), is given by

eλ0 = inf{D( f ) : f ∈ C1(R+),‖ f ‖= 1, f (0) = 0}, (1.5)

where C1(R+) denotes the space of continuously differential functions. Then, it has been proven

in [8; Theorem 5.7 (2)] or [4; Theorem 1.1] that

(4δ1)
−1 ≤ eλ0 ≤ δ

−1
1

.
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The same estimations hold for λ0 and eλ0 when the operator L is ergodic. However, since the class

of admissible functions in (1.5) is larger than that in (1.1), it only follows that λ0 ≥
eλ0. In view

of these facts, it is natural to question that whether λ0 =
eλ0 in this case. The answer is positive,

and in fact we have a stronger assertion.

Theorem 1.2. For λ0 and eλ0 given by (1.1) and (1.5) respectively, we have λ0 =
eλ0 iff

µ([0,∞)) +

∫ ∞

0

e−C(x)d x =∞. (1.6)

Particularly, (1.6) is satisfied for recurrent diffusion operators on the half line R+.

Theorem 1.2 explains the apparent gap between Muckenhoupt’s conditions for the Hardy in-

equality (1.4) and Pinsky’s result in Theorem 1.1. According to Feller’s classification of bound-

ary points for one-dimensional diffusion, (1.6) means that the boundary point ∞ is not regular

([11, 13]). Thus, in this case the diffusion operator L determines the process uniquely ([1]).

Another viewpoint of (1.6) comes from the theory of Dirichlet forms. Let X min
t

be the minimal

process generated by (D, C∞
0
(R+)), and X max

t
be the maximal process generated by (D,D(D)),

where D(D) = { f ∈ L2(µ) : D( f ) <∞}. Then, (1.6) is equivalent to C∞0 (R+)
‖·‖D1 = D(D), where

the norm is ‖ f ‖D1
= D( f ) + ‖ f ‖2. Therefore, X min

t
coincides with X max

t
under the condition (1.6).

These explanations of (1.6) describe rough idea about the proof of the first assertion in Theorem

1.2. The second conclusion in Theorem 1.2 is a direct consequence of the fact that condition (1.6)

is weaker than the non-explosive condition, i.e.
∫∞

0
µ([0, x))e−C(x)d x =∞ (c.f. see (2.2) below).

Next, we turn to the transient situation. Theorems 1.1 and Theorem 1.2 show that in transient

settings the bounds about λ0 are not the same as what the Muckenhoupt inequalities (1.4) yield.

However, we will see that these bounds are closely connected with the dual Hardy inequality (H2):

∫ ∞

0

�∫ ∞

x

f (t)d t

�2
u(x)d x ≤ C

∫ ∞

0

f (x)2v(x)d x for all f ≥ 0. (1.7)

The difference between (1.4) and (1.7) only lies on small change (i.e. the range of integral inside)

in the left hand side of these two equalities, but the assertions are significantly distinct. Actually,

let C2 be the optimal constant in (1.7). Then, by [15],

B2 ≤ C2 ≤ 4B2,

where

B2 = sup
x>0

∫ x

0

u(t)d t

∫ ∞

x

v(t)−1d t.

The constant B2 is completely different from B1 associated with the Hardy inequality (1.4). Just

like δ1 in Theorem 1.1, we define δT = B2 by letting u(x) = a(x)−1eC(x) and v(x) = eC(x), i.e.

δT = sup
x>0

∫ x

0

a(t)−1eC(t)d t

∫ ∞

x

e−C(t)d t.

Then the following conclusion holds for λ0 given by (1.1).



First Eigenvalue of One-dimensional Diffusion Processes 235

Theorem 1.3. For transient diffusion operators L on the half line R+,

λ0 > 0 iff δT <∞.

Furthermore, define

λ0,T = inf{D( f ) : f ∈ C∞
0
(R+),‖ f ‖= 1}. (1.8)

We have

(4δT )
−1 ≤ λ0,T ≤ δ

−1
T

. (1.9)

The absence of the condition f (0) = 0 in the definition (1.8) indicates that λ0,T is in fact the

first Neumann eigenvalue of transient diffusion operator L on R+; the proof of this equivalence

being deferred to Section 2.2. As an alternative probabilistic viewpoint (c.f. see [7; Proposition

1.1]), λ0,T is the rate of the exponential decay of transient diffusion process, and it is the largest ǫ

such that ‖Pt f ‖ ≤ ‖ f ‖e−ǫ t for all f ∈ C∞
0
(R+). Theorem 1.3 establishes the relationships among

the dual Hardy inequality (1.7), the first Dirichlet eigenvalue λ0 and the first eigenvalue λ0,T of

transient diffusion operators. As a byproduct, Theorem 1.3 implies that λ0 > 0 iff λ0,T > 0, though

it is true on general grounds that λ0 ≥ λ0,T .

The proofs of our theorems are presented in the next section. Here, Chen’s variational formulas

(c.f. [4, 5, 6]) for the first eigenvalue of ergodic diffusion processes are reviewed. We also use

them to improve Theorem 1.1. Although we restrict ourselves on the half line in this paper, the

corresponding results for the whole line, higher-dimensional situations and Riemannian manifolds

follow from similar ideas in [17, 5, 6].

2 Proofs

2.1 Improvement of Theorem 1.1 and Proof of Theorem 1.2

We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Set D(D) = { f ∈ C1(R+) : D( f ) + ‖ f ‖<∞}. Then, it holds that

eλ0 = inf{D( f ) : f ∈D(D),‖ f ‖= 1 and f (0) = 0}.

To prove our conclusion, it suffices to verify that

C∞0 (R
+)
‖·‖D1

=D(D). (2.1)

Adopting the standard Feller’s notations (c.f. see [11, 13]) for one-dimensional diffusion oper-

ator, µ(d x) and s(x) :=
∫ x

0
e−C(u)du are called speed measure and scale function, respectively.

Moreover, L can be expressed as

L f =
d

dµ

d f

ds
= DµDs f ,

and the boundary behavior of the corresponding process is also described by speed measure and

scale function. Particularly,∞ is said to be not regular if and only if

∫ ∞

0

s(x)dµ(d x) +

∫ ∞

0

µ([0, x])s′(x)d x =∞. (2.2)
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Now, denote by H the complement of C∞0 (R
+)
‖·‖D1 in the Hilbert space (D(D),‖ · ‖D1

). Following

the arguments of [10; Example 1.2.2], H = ; if and only if ∞ is not a regular point. Therefore,

(2.1) and (2.2) are equivalent.

Next, we claim that (1.6) and (2.2) are also equivalent. On the one hand, if
∫ ∞

0

s(x)dµ(d x) +

∫ ∞

0

µ([0, x])s′(x)d x =∞,

then

2

�
µ([0,∞)) +

∫ ∞

0

e−C(x)d x

�2
≥

∫ ∞

0

s(x)dµ(d x) +

∫ ∞

0

µ([0, x])s′(x)d x =∞,

and so

µ([0,∞)) +

∫ ∞

0

e−C(x)d x =∞.

On the other hand, assume that

µ([0,∞)) +

∫ ∞

0

e−C(x)d x =∞.

If ∫ ∞

0

s(x)dµ(d x) =∞,

then ∫ ∞

0

s(x)dµ(d x) +

∫ ∞

0

µ([0, x])s′(x)d x =∞;

if ∫ ∞

0

s(x)dµ(d x)<∞,

then, the integration by parts formula yields
∫ ∞

0

µ([0, x])s′(x)d x = µ([0, x])s(x)

����
∞

0

−

∫ ∞

0

s(x)µ(d x) = µ([0,∞))s(∞)−

∫ ∞

0

s(x)dµ(d x) =∞,

and so it also holds that
∫ ∞

0

s(x)dµ(d x) +

∫ ∞

0

µ([0, x])s′(x)d x =∞.

The required assertion follows by the above facts. �

According to Theorem 1.2, in recurrent settings we can use Chen’s variational formulas to improve

the estimations for λ0 in Theorem 1.1. For instance, define four classes of functions:

FII ={ f ∈ C(R+) : f (0) = 0 and f > 0},

fFII ={ f ∈ C(R+) : f (0) = 0, there exists x0 such that f = f (· ∧ x0) and f |(0,x0]
> 0},

FI ={ f ∈ C1(R+) : f (0) = 0 and f ′ > 0},

fFI ={ f ∈ C1(R+) : f (0) = 0, there exists x0 such that f = f (· ∧ x0), f ∈ C1([0, x0]) and f ′|(0,x0)
> 0}.

Then, [4, 5, 6] give us the following two powerful variational formulas for λ0 given by (1.1).



First Eigenvalue of One-dimensional Diffusion Processes 237

Theorem 2.1. [Chen’s Formulas] For recurrent diffusion operator L,

inf
f ∈ fFII

sup
x>0

II( f )(x)−1 = inf
f ∈ fFI

sup
x>0

I( f )(x)−1 ≥ λ0 ≥ sup
f ∈FI

inf
x>0

I( f )(x)−1 = sup
f ∈FII

inf
x>0

II( f )(x)−1,

(2.3)

where

I( f )(x) =
e−C(x)

f ′(x)

∫ ∞

x

�
f eC/a
�
(u)du, II( f )(x) =

1

f (x)

∫ x

0

d ye−C(y)

∫ ∞

y

�
f eC/a
�
(u)du.

Moreover, both inequalities in (2.3) become equalities if a and b are continuous.

Next, we turn to the transient situation. To handle this case, [17] employs the h-transformed

operator Lh := h−1 ◦ L ◦ h, where h=
∫∞
·

e−C(u)du. When written out, we get

Lh = h−1 ◦ L ◦ h= a(x)d/d x2+ (b(x) + 2h(x)−1a(x)h′(x))d/d x := a(x)d/d x2+ b∗(x)d/d x .

Letting

eC(x) =
∫ x

0

b∗(u)/a(u)du= C(x) + 2 ln(h(x)/h(0)),

one has ∫ ∞

0

e−
eC(u)du= h(0)−2

∫ ∞

0

e−C(u)h(u)−2du=∞.

Thus, the diffusion operator Lh with diffusion coefficient a and the new drift b∗ is recurrent. Note

that the spectrum is variant under h-transforms. So, λ0 = λ
h
0
, where λh

0
is the first Dirichlet

eigenvalue of Lh on R+ with an absorbing boundary at x = 0. That is, the transformed operator

Lh reduces transient cases into recurrent ones. It immediately follows that (4δ∗
2
)−1 ≤ λ0 ≤ δ

∗−1
2 ,

where

δ∗
2
= sup

x>0

∫ x

0

e−C∗(y)d y

∫ ∞

x

a(y)−1eC∗(y)d y.

Furthermore,

δ∗
2
= sup

x>0

h2(0)

∫ x

0

e−C(y)h(y)−2d y · h(0)−2

∫ ∞

x

a(y)eC(y)h2(y)d y

= sup
x>0

(h(x)−1 − h(0)−1)

∫ ∞

x

a(y)eC(y)h2(y)d y,

(2.4)

which is just δ2 defined in (1.3).

Again we use Chen’s variational formulas to refine the estimations for λ0 in Theorem 1.1. Theorem

2.1 along with the remark above yields that the following statement for λ0 given by (1.1).

Theorem 2.2. For transient diffusion operator L,

inf
f ∈ fFII

sup
x>0

II∗( f )(x)−1 = inf
f ∈ fFI

sup
x>0

I∗( f )(x)−1 ≥ λ0 ≥ sup
f ∈FI

inf
x>0

I∗( f )(x)−1 = sup
f ∈FII

inf
x>0

II∗( f )(x)−1,

(2.5)
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where

I∗( f )(x) =
e−C∗(x)

f ′(x)

∫ ∞

x

�
f eC∗/a
�
(u)du, II∗( f )(x) =

1

f (x)

∫ x

0

d ye−C∗(y)

∫ ∞

y

�
f eC∗/a
�
(u)du,

C∗(x) = C(x) + 2 ln h(x), h(x) =
∫∞

x
e−C(u)du and C(x) =

∫ x
0

b(u)/a(u)du. Moreover, both in-

equalities in (2.5) become equalities if a and b are continuous.

The power of (2.3) and (2.5) are the following: (1) the variational formulas with single integral

yield the Muckenhoupt’s estimations in Theorem 1.1 (see [5; Theorem 2.1] for ergodic cases); (2)

the variational formulas containing double integrals allow for more sharp estimates on λ0 (see [6;

Theorem 1.2] for ergodic cases).

For the completeness, we will prove that the formula (2.5) implies the second assertion in Theorem

1.1. By similar arguments, Theorem 2.1 also improves the first assertion in Theorem 1.1. Firstly,

the proof of [5; Theorem 1.1] yields

sup
f ∈FI

inf
x>0

I∗( f )(x)−1 ≥ (4δ2)
−1. (2.6)

In fact, take f (x) =
�∫ x

0
e−C∗(u)du
�1/2

. Then, f ∈FI and

I∗( f )(x) = 2

�∫ x

0

e−C∗(u)du

�1/2 ∫ ∞

x

�∫ z

0

e−C∗(u)du

�1/2
a(z)−1eC∗(z)dz.

By the integration by parts formula and (2.4),

∫ ∞

x

�∫ z

0

e−C∗(u)du

�1/2
a(z)−1eC∗(z)dz

= −

∫ ∞

x

�∫ z

0

e−C∗(u)du

�1/2
d

�∫ ∞

z

a(u)−1eC∗(u)du

�

≤

�∫ x

0

e−C∗(u)du

�1/2 ∫ ∞

x

a(u)−1eC∗(u)du

+
1

2

∫ ∞

x

�∫ ∞

z

a(u)−1eC∗(u)du

��∫ z

0

e−C∗(u)du

�−1/2

e−C∗(z)dz

≤ δ2

�∫ x

0

e−C∗(u)du

�−1/2

+
δ2

2

∫ ∞

x

�∫ z

0

e−C∗(u)du

�−3/2

e−C∗(z)dz

= δ2

�∫ x

0

e−C∗(u)du

�−1/2

−δ2

∫ ∞

x

d

�∫ z

0

e−C∗(u)du

�−1/2

≤ 2δ2

�∫ x

0

e−C∗(u)du

�−1/2

.

Thus,

I∗( f )(x)≤ 2

�∫ x

0

e−C∗(u)du

�1/2
· 2δ2

�∫ x

0

e−C∗(u)du

�−1/2

= 4δ2.
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The required assertion (2.6) follows.

Secondly, we claim that

δ−1
2
≥ inf

f ∈ fFI

sup
x>0

I∗( f )(x)−1. (2.7)

For fixed x > 0, take f (y) := fx(y) =
∫ x∧y

0
e−C∗(u)du. Then f ∈ fFI . For any y < x , f ′(y) =

e−C∗(y), and

I∗( f )(y) =

∫ ∞

y

∫ x∧u

0

e−C∗(s)dsa(u)−1eC∗(u)du

≥

∫ x

0

e−C∗(u)du

∫ ∞

x

a(u)−1eC∗(u)du.

Noting that f ′(y) = 0 for y ≥ x ,

inf
y>0

I∗( f )(y) = inf
0<y<x

I∗( f )(y)≥

∫ x

0

e−C∗(u)du

∫ ∞

x

a(u)−1eC∗(u)du.

Since x is arbitrary,

sup
f ∈ fFI

inf
y>0

I∗( f )(y)≥ sup
x>0

∫ x

0

e−C∗(u)du

∫ ∞

x

a(u)−1eC∗(u)du= δ2,

which gives us (2.7). Therefore, according to (2.6) and (2.7), the required conclusion follows.

We end this subsection with an illustration of the improvements offered by Theorem 2.1 over the

bounds provided in Theorem 1.1. Let a(x) = 1 and b(x) = −x . The corresponding diffusion is

recurrent and it is an easy exercise that λ0 = 1 with eigenfunction f (x) = x . From [17; Remark

1] (or see [5; Example 3.9]) we know

δ1 = sup
x>0

∫ x

0

et2/2d t

∫ ∞

x

e−t2/2d t ≈ 0.4788.

Now, take f (x) =
�∫ x

0
eu2/2du
�1/2

. Then,

δ′
II

:= sup
x>0

II( f )(x) = sup
x>0

�∫ x

0

eu2/2du

�−1/2
∫ x

0

e y2/2

∫ ∞

y

e−t2/2

�∫ t

0

eu2/2du

�1/2
d td y ≈ 1.0928.

On the other hand, for every x > 0, take fx(y) :=
∫ x∧y

0
eu2/2du. Then,

δ′′
II

:= sup
x>0

inf
z>0

II( fx)(z) = sup
x>0

inf
z>0

�∫ z∧x

0

eu2/2du

�−1
∫ z

0

e y2/2

∫ ∞

y

e−t2/2

�∫ x∧t

0

eu2/2du

�
d td y

= sup
x>0

¨��∫ x

0

eu2/2du

�−1
∫ x

0

e−u2/2

�∫ u

0

et2/2d t

�2
du

�
+

∫ ∞

x

e−t2/2d t

∫ x

0

eu2/2du

�«

≈0.9285.

Therefore, for this example Theorem 1.1 gives us

δ−1 = 2.0886> λ0 = 1> (4δ)−1 = 0.5221;

while Theorem 2.1 yields that

δ′′−1
II
= 1.0770> λ0 = 1> δ′−1

II
= 0.9150.
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2.2 Proof of Theorem 1.3 and Extensions

We begin by proving that the variational formula (1.8) produces the familiar Neumann eigenvalue

(c.f. see [9, 20, 3])

λ∗
0,T
= inf{D( f ) : f ∈ C∞

0
(R+),‖ f ‖= 1, f ′(0) = 0}. (2.8)

Proof. Clearly, λ∗
0,T
≥ λ0,T . For any f ∈ C∞

0
(R+) with ‖ f ‖ = 1, there exists z > 0 such that

supp f ⊂ [0, z], f (z) = 0 and f ′|[z,∞) = 0. Define

f ∗(x) =

∫ ∞

x

| f ′|(t)d t for x > 0.

Then, f ∗ ∈ C∞
0
(R+) and f ∗ ≥ f . We get

D( f ∗)

‖ f ∗‖2
=

∫∞
0

a(x) f ′(x)2µ(d x)
�∫∞

0
f ∗(x)2µ(d x)
�2 ≤
∫∞

0
a(x) f ′(x)2µ(d x)
�∫∞

0
f (x)2µ(d x)
�2 = D( f ).

Note the the function f ∗ is decreasing, so f ∗
′
(0) = 0. This fact along the inequality above gives us

λ∗
0,T
≤ D( f ), thanks to the definition (2.8) of λ∗

0,T
. Since f is arbitrary, it follows that λ∗

0,T
≤ λ0,T .

Therefore, λ∗
0,T
= λ0,T . �

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. (1) Define

δ∗
2
= sup

x>0

h(x)−1

∫ ∞

x

h2(y)a(y)−1eC(y)d y.

Then, it holds that

δ∗
2
/2≤ δT ≤ 2δ∗

2
. (2.9)

Let g(x) = µ([0, x)) =
∫ x

0
eC(y)d y . Thanks to the facts that h′ ≤ 0 and h(∞) = 0, for x > 0,

∫ ∞

x

h2(y)a(y)−1eC(y)d y =

∫ ∞

x

h2(y)d g(y)≤ h2(∞)g(∞)− 2

∫ ∞

x

g(y)h(y)h′(y)d y

≤

�
sup
x>0

h(x)g(x)

��
h(∞)− 2

∫ ∞

x

h′(y)d y

�
= 2h(x)

�
sup
x>0

h(x)g(x)

�
.

That is,

h(x)−1

∫ ∞

x

h2(y)a(y)−1eC(y)d y ≤ 2δT .

This yields the first inequality in (2.9) upon taking the supremum with respect to x > 0. For any
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x > 0,

∫ x

0

a(y)−1eC(y)d y =

∫ x

0

a(y)−1eC(y)h2(y)h(y)−2d y

=−

∫ x

0

h(y)−2d

�∫ ∞

y

a(z)−1eC(z)h2(z)dz

�

≤h(0)−2

∫ ∞

0

a(z)−1eC(z)h2(z)dz+

∫ x

0

�∫ ∞

y

a(z)−1eC(z)h2(z)dz

�
dh(y)−2

≤

�
sup
x>0

h(x)−1

∫ ∞

x

h2(y)a(y)−1eC(y)d y

��
h(0)−1 +

∫ x

0

h(y)dh(y)−2

�

≤2h(x)−1

�
sup
x>0

h(x)−1

∫ ∞

x

h2(y)a(y)−1eC(y)d y

�
.

Thus,

h(x)

∫ x

0

a(y)−1eC(y)d y ≤ 2δ∗
2
.

The second required inequality in (2.9) also follows.

Now, if δ2 = ∞, then δ∗
2
= ∞. Assume that δ∗

2
= ∞. If
∫∞

0
h(y)2a(y)−1eC(y)d y = ∞, then

δ2 =∞; if
∫∞

0
h(y)2a(y)−1eC(y)d y <∞, then

δ2 ≥ sup
x>1

�
h(x)−1 − h(0)−1

�∫ ∞

x

h(y)2a(y)−1eC(y)d y

≥
�
1− h(1)/h(0)
�

sup
x>1

h(x)−1

∫ ∞

x

h(y)2a(y)−1eC(y)d y =∞,

by using the decreasing property of h. Hence, the qualities δ2 and δ∗
2

are equivalent. The first

required conclusion follows by this assertion and (2.9).

(2) According to the definition of λ0,T , the Muckenhoupt’s condition for (1.7) gives us λ0,T ≥

(4δ)−1. We now prove that λ0,T ≤ δ
−1. Fix m < n. Take f (x) =

∫ n
m

e−C(z)dz, x ∈ [0, m];

f (x) =
∫ n

x
e−C(z)dz, x ∈ [m, n] and f (x) = 0, x > n. Then,

‖ f ‖2 = µ([0, m])

�∫ n

m

e−C(u)du

�2
+

∫ n

m

�∫ n

x

e−C(z)dz

�2
µ(d x)

and

D( f ) =

∫ n

m

e−2C(x)µ(d x) =

∫ n

m

e−C(x)d x .

Hence,

λ0,T ≤D( f )/‖ f ‖2 ≤

�
µ([0, m])

∫ n

m

e−C(u)du

�−1

.

Letting n → ∞ and then taking infimum with respect to m > 0, the second required assertion

follows. The proof is complete. �



242 Electronic Communications in Probability

Remark 2.3. As shown by part (2) in the proof above, the admissible function f ∈ C∞
0
(R+) for

the definition of λ0,T only satisfies that f (∞) = 0 not f (0) = 0. This is the crucial distinction

between λ0,T and eλ0 given by (1.5). Just due to this difference, one only links λ0,T with the dual

Hardy inequality (1.7), but connects eλ0 with the other Hardy inequality (1.4).

To conclude this section, we give a stronger conclusion (i.e. the variational formula) for λ0,T than

that in Theorem 1.3. Similar to Theorem 2.1, we need other four classes of functions:

FIIT
={ f ∈ C(R+) : f > 0 and f (∞) = 0},

fFIIT
={ f ∈ C(R+) : there exists x0 such that f = f (· ∧ x0), f |[0,x0)

> 0 and f (x0) = 0},

FIT
={ f ∈ C1(R+) : f ′ < 0 and f (∞) = 0},

fFIT
={ f ∈ C1(R+) : there exists x0 such that f = f (· ∧ x0), f ∈ C1([0, x0]), f ′|(0,x0)

< 0 and f (x0) = 0}.

Theorem 2.4. The following Chen-type variational formulas are satisfied for λ0,T :

inf
f ∈ fFIIT

sup
x>0

IIT ( f )(x)
−1 = inf

f ∈ fFIT

sup
x>0

IT ( f )(x)
−1 ≥ λ0,T ≥ sup

f ∈FIT

inf
x>0

IT ( f )(x)
−1 = sup

f ∈FIIT

inf
x>0

IIT ( f )(x)
−1,

(2.10)

where

IT ( f )(x) = −
e−C(x)

f ′(x)

∫ x

0

�
f eC/a
�
(u)du, IIT ( f )(x) =

1

f (x)

∫ ∞

x

d ye−C(y)

∫ y

0

�
f eC/a
�
(u)du.

Theorem 2.4 is a dual form of Theorem 2.1. Here, all test functions f in FIIT
, FIT

, fFIIT
and fFIT

are decreasing, while test functions in Theorem 2.1 are increasing.

Proof of Theorem 2.4. For any l > 0, denote

λl
0,T
= inf
�

D( f ) : f ∈ C∞
0
(R+),‖ f ‖= 1 and f |[l,∞) = 0

	
.

It is easy to check that

lim
l→∞
λl

0,T
= λ0,T . (2.11)

Note that λl
0,T

is just the first eigenvalue of −L with Neumann boundary at x = 0 and Dirichlet

boundary at x = l. So λl
0,T

can be written as

λl
0,T
= inf
�

Dl( f ) : f ∈ C1
0
([0, l]),µl( f 2) = 1 and f (l) = 0

	
,

where Dl( f ) =
∫ l

0
f ′(x)2eC(x)d x and µl( f ) =

∫ l
0

f (x)µ(d x). For any f ∈ C1
0
([0, l]) with f (l) = 0,

define g(x) = f (l − x). Then

λl
0,T
= inf

�∫ l

0

g ′(x)2e−C(l−x)d x : g ∈ C1
0
([0, l]),

∫ l

0

g(x)2a(l − x)−1eC(l−x)d x = 1 and g(0) = 0

�
.

That is, λl
0,T

is also the first eigenvalue of

←−
L := a(l − x)d x/d x2+ b(l − x)d/d x
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with Dirichlet boundary at x = 0 and Neumann boundary at x = l. Note that all the assertions in

Theorem 2.1 still hold for [0, D] with Neumann boundary at x = D if D <∞ (c.f. see [4, 5, 6]).

Then,

inf
f ∈ fFII

sup
x>0

←−
II ( f )(x)−1 = inf

f ∈ fFI

sup
x>0

←−
I ( f )(x)−1 ≥ λl

0,T
≥ sup

f ∈FI

inf
x>0

←−
I ( f )(x)−1 = sup

f ∈FII

inf
x>0

←−
II ( f )(x)−1,

where
←−
I (resp.

←−
II ) is the operator I(resp. II) in (2.3) by replacing a(x) and b(x) with a(l − x)

and b(l− x), respectively. Changing variables yields the following Chen-type variational formulas

for λl
0,T

:

inf
f ∈ fF l

IIT

sup
x>0

IIT ( f )(x)
−1 = inf

f ∈ fF l
IT

sup
x>0

IT ( f )(x)
−1 ≥ λl

0,T
≥ sup

f ∈F l
IT

inf
x>0

IT ( f )(x)
−1 = sup

f ∈F l
IIT

inf
x>0

IIT ( f )(x)
−1,

(2.12)

where the operators IT , IIT are defined in Theorem 2.4; moreover,

F
l
IIT
={ f ∈ C([0, l]) : f > 0 and f (l) = 0},

fF l
IIT
={ f ∈ C([0, l]) : there exists x0 such that f = f (· ∧ x0), f |[0,x0)

> 0 and f (x0) = 0},

F
l
IT
={ f ∈ C1([0, l]) : f ′ < 0 and f (l) = 0},

fF l
IT
={ f ∈ C1([0, l]) : there exists x0 such that f = f (· ∧ x0), f ∈ C1([0, x0]), f ′|(0,x0)

< 0 and f (x0) = 0}.

Now, the required assertion follows by combining (2.11) with (2.12) and letting l →∞. �

By using Theorem 2.4, one can also present the second proof of (1.9). We only give a sketch here.

Firstly, applying f (x) =
∫∞

x
e−C(u)du to infx>0 IT ( f )(x)

−1, one has λ0,T ≥ (4δT )
−1 by following

the proof of (2.6) with some modifications. For λ0,T ≤ δ
−1
T

, instead applying the test function f

in part (2) of the proof of Theorem 1.3 to infx>0 IT ( f )(x)
−1, the required assertion follows by the

same argument of (2.7). So, Theorem 2.4 implies (1.9) in Theorem 1.3.
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