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Abstract

We derive concentration inequalities for the spectral measure of large random matrices, allowing
for certain forms of dependence. Our main focus is on empirical covariance (Wishart) matrices,
but general symmetric random matrices are also considered.

1 Introduction

In this short paper, we study concentration of the spectral measure of large random matrices
whose elements need not be independent. In particular, we derive a concentration inequality for
Wishart matrices of the form X ′X/m in the important setting where the rows of the m× n matrix
X are independent but the elements within each row may depend on each other; see Theorem 1.
We also obtain similar results for other random matrices with dependent entries; see Theorem 5,
Theorem 6, and the attending examples, which include a random graph with dependent edges,
and vector time series.
Large random matrices have been the focus of intense research in recent years; see Bai [3] and
Guionnet [8] for surveys. While most of this literature deals with the case where the underlying
matrix has independent entries, comparatively little is known for dependent cases. Götze and
Tikhomirov [7] showed that the expected spectral distribution of an empirical covariance matrix
X ′X/m converges to the Marčenko-Pastur law under conditions that allow for some form of de-
pendence among the entries of X . Bai and Zhou [2] analyzed the limiting spectral distribution
of X ′X/m when the row-vectors of X are independent (allowing for certain forms of dependence
within the row-vectors of X ). Mendelson and Pajor [16] considered X ′X/m in the case where
the row-vectors of X are independent and identically distributed (i.i.d.); under some additional
assumptions, they derive a concentration result for the operator norm of X ′X/m − E(X ′X/m).
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Concentration of the spectral measure of large Wishart matrices with dependent entries 335

Boutet de Monvel and Khorunzhy [5] studied the limiting behavior of the spectral distribution
and of the operator norm of symmetric Gaussian matrices with dependent entries.
For large random matrices similar to those considered here, concentration of the spectral measure
was also studied by Guionnet and Zeitouni [9], who considered Wishart matrices X ′X/m where
the entries X i, j of X are independent, as well as Hermitian matrices with independent entries
on and above the diagonal, and by Houdre and Xu [11], who obtained concentration results for
random matrices with stable entries, thus allowing for certain forms of dependence. For matrices
with dependent entries, we find that concentration of the spectral measure can be less pronounced
than in the independent case. Technically, our results rely on Talagrand’s inequality [17] and on
the Azuma/Hoeffding/McDiarmid bounded difference inequality [1, 10, 15].

2 Results

Throughout, the eigenvalues of a symmetric n×n matrix M are denoted by λ1(M)≤ · · · ≤ λn(M),
and we write FM (λ) for the cumulative distribution function (c.d.f.) of the spectral distribution of
M , i.e., FM (λ) = n−1

∑n

i=1 1{λi(M) ≤ λ}, λ ∈ R. The integral of a function f (·) with respect to
the measure induced by FM is denoted by FM ( f ), i.e.,

FM ( f ) =
1

n

n
∑

i=1

f (λi(M)).

For certain classes of random matrices M and certain classes of functions f , we will show that
FM ( f ) is concentrated around its expectation EFM ( f ) or around any median med FM ( f ). For a
Lipschitz function g, we write ||g||L for its Lipschitz constant. Moreover, we also consider functions
f : (a, b)→ R that are of bounded variation on (a, b) (where −∞≤ a < b ≤∞), in the sense that

Vf (a, b) = sup
n≥1

sup
a<x0≤x1≤···≤xn<b

n
∑

k=1

| f (xk)− f (xk−1)|

is finite; cf. Section X.1 in [12]. [A function f is of bounded variation on (a, b) if and only if it can
be written as the difference of two bounded monotone functions on (a, b). Note that the indicator
function g : x 7→ 1{x ≤ λ} is of bounded variation on R with Vg(R) = 1 for each λ ∈ R.]
The following result establishes concentration of FS( f ) for Wishart matrices S of the form S =

X ′X/m where we only require that the rows of X are independent (while allowing for dependence
within each row of X ). See also Example 9 and Example 10, which follow, for scenarios that also
allow for some dependence among the rows of X .

Theorem 1. Let X be an m× n matrix whose row-vectors are independent, set S = X ′X/m, and fix

f : R→ R.

(i) Suppose that f is such that the mapping x 7→ f (x2) is convex and Lipschitz, and suppose that

|X i, j | ≤ 1 for each i and j. For each ε > 0, we then have

P

��

�FS( f )−med FS( f )
�

�≥ ε
�

≤ 4 exp

�

−
nm

n+m

ε2

8|| f (·2)||2L

�

. (1)

(ii) Suppose that f is of bounded variation on R. For each ε > 0, we then have

P

��

�FS( f )−EFS( f )
�

�≥ ε
�

≤ 2 exp



−
n2

m

2ε2

V 2
f
(R)



 . (2)
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In particular, for each λ ∈ R and each ε > 0, the probability P(|FS(λ)−EFS(λ)| ≥ ε) is bounded by

the right-hand side of (2) with Vf (R) replaced by 1.

Remark 2. From the upper bound (1) one can also obtain a similar bound for P(|FS( f )−EFS( f )| ≥
ε) using standard methods.

The upper bounds in Theorem 1 are of the form

P(|FS( f )− A| ≥ ε) ≤ B exp [−nC] , (3)

where A, B, and C equal med FS( f ), 4, and mε2/
�

(n+m)8|| f (·2)||2
L

�

in part (i) and EFS( f ),

2, and n2ε2/(mV 2
f
) in part (ii), respectively. For the interesting case where n and m both go

to infinity at the same rate, the next example shows that these bounds can not be improved
qualitatively without imposing additional assumptions.

Example 3. Let n= m= 2k, and let X be the n×n matrix whose i-th row is Ri v
′
i
, where R1, . . . ,Rn

are i.i.d. with P(R1 = 0) = P(R1 = 1) = 1/2, and where v1, . . . , vn are orthogonal n-vectors with
vi ∈ {−1,1}n for each i. [The vi ’s can be obtained, say, from the first n binary Walsh functions;
cf. [18].] Note that the eigenvalues of S = X ′X/m are R2

1, . . . ,R2
n
. Set f (x) = x for x ∈ {0,1}.

Then nFS( f ) is binomial distributed with parameters n and 1/2, i.e., nFS( f ) ∼ B(n, 1/2). By
Chernoff’s method (cf. Theorem 1 of [6]), we hence obtain that

P(FS( f )−EFS( f )≥ ε) = exp [−n(C(ε) + o(1))] , (4)

for 0 < ε < 1/2 and as n→∞ with k→∞, where here C(ε) equals log(2) + (1/2+ ε) log(1/2+
ε)+(1/2−ε) log(1/2−ε); the same is true if EFS( f )−FS( f ) replaces FS( f )−EFS( f ) in (4). These
statements continue to hold with med FS( f ) replacing EFS( f ), because the mean coincides with

the median here. To apply Theorem 1(i), we extend f by setting f (x) =
p

|x | for x ∈ R; to apply
Theorem 1(ii), extend f as f (x) = 1{x ≤ 1/2}. Theorem 1(i) and Theorem 1(ii) give us that
the left hand side of (4) is bounded by terms of the form 4 exp

�

−nC1(ε)
�

and 2 exp
�

−nC2(ε)
�

,
respectively, for some functions C1 and C2 of ε. It is easy to check that C(ε)/Ci(ε) is increasing in
ε for i = 1,2, and that

lim
ε↓0

C(ε)

C1(ε)
= 32 and lim

ε↓0

C(ε)

C2(ε)
= 1.

In this example, both parts of Theorem 1 give upper bounds with the correct rate (−n) in the
exponent. The constants Ci(ε), i = 1,2, both are sub-optimal, i.e., they are too small, but the
constant C2(ε), which is obtained from Theorem 1(ii), is close to the optimal constant for small ε.

Under additional assumptions on the law of X , FS( f ) can concentrate faster than indicated by (3).
In particular, in the setting of Theorem 1(i) and for the case where all the elements X i, j of X are
independent, Guionnet and Zeitouni [9] obtained bounds of the same form as (3) but with n2

replacing n in the exponent, for functions f such that x 7→ f (x2) is convex and Lipschitz. (This
should be compared with Example 10 below.) However, if f does not satisfy this requirement, but
is of bounded variation on R so that Theorem 1(ii) applies, then the upper bound in (2) can not
be improved qualitatively without additional assumptions, even in the case when all the elements
X i, j of X are independent. This is demonstrated by the following example.

Example 4. Let X be the n × n diagonal matrix diag(R1, . . . ,Rn), where R1, . . . ,Rn are as in
Example 3. Set f (x) = 1{x ≤ 0}. Clearly, Theorem 1(ii) applies here so that the left hand
side (2) is bounded by 2 exp

�

−nC2(ε)
�

for C2(ε) as in Example 3. Moreover, since for each i,
f (R2

i
/n) = 1− Ri , it follows that nFS( f )∼ B(n, 1/2), and then (4) holds again.
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Theorem 1 can also be used to get concentration inequalities for the empirical distribution of
the singular values of a non-symmetric m× n matrix X with independent rows. Indeed, the i-th
singular value of X/

p
m is just the square root of the i-th eigenvalue of X ′X/m.

Both parts of Theorem 1 are in fact special cases of more general results that are presented next.
The following two theorems, the first of which should be compared with Theorem 1.1(a) of [9],
apply to a variety of random matrices besides those considered in Theorem 1; some examples are
given later in this section. In the following theorem, we view symmetric n×n matrices as elements
of Rn(n+1)/2 by collecting the entries on and above the diagonal.

Theorem 5. Let M be a random symmetric n×n matrix that is a function of m independent [−1,1]p-

valued random vectors Y1, . . . , Ym i.e., M = M(Y1, . . . , Ym). Assume that M(·) is linear and Lipschitz

with Lipschitz constant CM when considered as a function from [−1,1]mp with the Euclidean norm

to the set of all symmetric n× n matrices with the Euclidean norm on Rn(n+1)/2. Finally, assume that

f : R→ R is convex and Lipschitz with Lipschitz constant || f ||L . For S = M/
p

m, we then have

P

��

�FS( f )−med FS( f )
�

� ≥ ε
�

≤ 4 exp

�

−
nm

p

ε2

32C2
M || f ||2L

�

(5)

for each ε > 0.

Theorem 6. Let M be a random symmetric n× n matrix that is a function of m independent ran-

dom quantities Y1, . . . , Ym, i.e., M = M(Y1, . . . , Ym). Write M(i) for the matrix obtained from M after

replacing Yi by an independent copy, i.e., M(i) = M(Y1, . . . , Yi−1, Y ∗
i

, Yi+1, . . . , Ym) where Y ∗
i

is dis-

tributed as Yi and independent of Y1, . . . , Ym (i = 1, . . . , m). For S = M/
p

m and S(i) = M(i)/
p

m,

assume that

||FS − FS(i)
||∞ ≤ r/n (6)

holds (almost surely) for each i = 1, . . . , m and for some (fixed) integer r. Finally, assume that

f : R→ R is of bounded variation on R. For each ε > 0, we then have

P

��

�FS( f )−EFS( f )
�

� ≥ ε
�

≤ 2 exp



−
n2

m

2ε2

r2V 2
f
(R)



 . (7)

Also, if a and b, −∞ ≤ a < b ≤∞, are such that P
�

a < λ1(S) and λn(S)< b
�

= 1, then (7) holds

for each function f : (a, b)→ R of bounded variation on (a, b), where now Vf (a, b) replaces Vf (R)

on the right hand side of (7).

To apply Theorem 6, one needs to establish the inequality in (6) for each i = 1, . . . , m. This can
often be accomplished by using the following lemma, which is taken from Bai [3], Lemma 2.2
and 2.6, and which is a simple consequence of the interlacing theorem. [Consider a symmetric
n× n matrix A and denote its (n− 1)× (n− 1) major submatrix by B. The interlacing theorem,
a direct consequence of the Courant-Fisher formula, states that λi(A) ≤ λi(B) ≤ λi+1(A) for i =

1, . . . , n− 1.]

Lemma 7. Let A and B be symmetric n× n matrices and let X and Y be m× n matrices. Then the

following inequalities hold:

||FA− FB||∞ ≤
rank(A− B)

n
,

and

||FX ′X − FY ′Y ||∞ ≤
rank(X − Y )

n
.
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We now give some examples where Theorem 5 or Theorem 6 can be applied, the latter with the
help of Lemma 7.

Example 8. Consider a network of, say, social connections or relations between a group of n

entities that enter the group sequentially and that establish connections to group members that
entered before as follows: For the i-th entity that enters the group, connections to the existing
group members, labeled 1, . . . , i − 1, are chosen according to some probability distribution, inde-
pendently of the choices made by all the other entities. Denote the n × n adjacency matrix of
the resulting random graph by M , and write Yi for the n-vector (Mi,1, Mi,2, . . . , Mi,i , 0, . . . , 0)′ for
i = 1, . . . , n. By construction, Y1, . . . , Yn are independent and M (when considered as a function of
Y1, . . . , Yn as in Theorem 5) is linear and Lipschitz with Lipschitz constant 1. Hence Theorem 5 is
applicable with m= p = n and CM = 1.
Theorem 6 can also be applied here. To check condition (6), write M(i) for the matrix obtained
from M by replacing Yi by an independent copy denoted by Y ∗

i
as in Theorem 6. Clearly, the i-th

row of the matrix M−M(i) equals δi = (Yi,1−Y ∗
i,1, . . . Yi,i−Y ∗

i,i , 0, . . . , 0), the i-th column of M−M(i)
equals δ′

i
, and the remaining elements of M −M(i) all equal zero. Therefore, the rank of M −M(i)

is at most two. Using Lemma 7, we see that Theorem 6 is applicable here with r = 2 and m= n.

The following two examples deal with the sample covariance matrix of vector moving average
(MA) processes. For the sake of simplicity, we only consider MA processes of order 1. Our argu-
ments can be extended to also handle MA processes of any fixed and finite order. In Example 9,
we consider an MA(1) process with independent innovations, allowing for arbitrary dependence
within each innovation, and obtain concentration inequalities of the form (3). In Example 10, we
consider the case where each innovation has independent components (up to a linear function)
and obtain a concentration inequality of the form (3) but with n2 replacing n in the exponent.

Example 9. Consider an m× n matrix X whose row-vectors follow a vector MA process of order
1 i.e., (X i,.)

′ = Yi+1+ BYi for i = 1 . . . m, where Y1, . . . Ym+1 are m+1 independent n-vectors and B

is some fixed n× n matrix. Set S = X ′X/m.

(i) Suppose that f is such that the mapping x 7→ f (x2) is convex and Lipschitz, and suppose that
Yi ∈ [−1,1]n for each i = 1, . . . , m+ 1. For each ε > 0, we have

P

��

�FS( f )−med FS( f )
�

�≥ ε
�

≤ 4 exp

�

−
nm

n+m

ε2

8C2
B || f (·2)||2L

�

. (8)

Here CB equals 1+ ||B||, where ||B|| is the operator norm of the matrix B.

(ii) Suppose that f is of bounded variation on R. For each ε > 0, we then have

P

��

�FS( f )−EFS( f )
�

�≥ ε
�

≤ 2 exp



−
n2

m+ 1

ε2

2V 2
f
(R)



 . (9)

The proofs of (8) and (9) follow essentially the same argument as used in the proof of Theorem 1
using the particular structure of the matrix X as considered here.

Example 10. As in Example 9, consider an m × n matrix X whose row-vectors follow a vector
MA(1) process (X i,·)

′ = Yi+1+BYi for some fixed n×n matrix B, i = 1, . . . , m. For the innovations Yi ,
we now assume that Yi = UZi , where U is a fixed n×n matrix, and where the Zi, j , i = 1, . . . , m+1,
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j = 1, . . . , n, are independent and satisfy |Zi, j | ≤ 1. Set S = X ′X/m. For a function f such that the
mapping x 7→ f (x2) is convex and Lipschitz, we then obtain that

P

��

�FS( f )−med FS( f )
�

�≥ ε
�

≤ 4 exp

�

−
n2m

n+m

ε2

8C2|| f (·2)||2L

�

(10)

for each ε > 0, where C is shorthand for C = (1 + ||B||) ||U || with ||B|| and ||U || denoting the
operator norms of the indicated matrices. The relation (10) is derived by essentially repeating the
proof of Theorem 1(i) and by employing the particular structure of the matrix X as considered
here.
We note that the statement in the previous paragraph reduces to Corollary 1.8(a) in [9] if one sets
B to the zero matrix and U to the identity matrix. Moreover, we note that Theorem 6 can also be
applied here (similarly to Example 9(ii)), but the resulting upper bound does not improve upon
(9).

A Proofs

We first prove Theorem 5 and Theorem 6 and then use these results to deduce Theorem 1. The
proof of Theorem 5 is modeled after the proof of Theorem 1.1(a) in Guionnet and Zeitouni [9].
It rests on a version of Talagrand’s inequality (see Talagrand [17] and Maurey [14]) that is given
as Theorem 11 below, and also on Lemma 1.2 from Guionnet and Zeitouni [9] that is restated as
Lemma 12, which follows.

Theorem 11. Fix m ≥ 1 and p ≥ 1. Consider a function T : [−1,1]mp → R that is quasi-convex1

and Lipschitz with Lipschitz constant σ. Let Y1, . . . , Ym be independent p-vectors, each taking values

in [−1,1]p and consider the random variable T = T (Y1, . . . , Ym). For each ε > 0, we then have

P (|T −med T | ≥ ε)≤ 4 exp

�

−
1

pσ2

ε2

16

�

. (11)

The result is derived from Theorem 6.1 of [17] by arguing just like in the proof of Theorem 6.6
of [17], but now using [−1,1]p instead of [−1,1]. (When p = 1, Theorem 11 reduces to Theorem
6.6 of [17].) Alternatively, it also follows from Theorem 3 of [14] using standard arguments.

Lemma 12. Let A n denote the set of all real symmetric n× n matrices and let u : R→ R be a fixed

function. Let us denote by Λn
u

the functional A 7→ FA(u) onA n. Then

(i) If u is convex, then so is Λn
u
.

(ii) If u is Lipschitz, then so is Λn
u

(when considering A n with the Euclidean norm on Rn(n+1)/2 by

collecting the entries on and above the diagonal). Moreover, the Lipschitz constant of Λn
u

satisfies

||Λn
u
||L ≤
p

2
p

n
||u||L .

Remark 13. For a proof of this lemma, see Guionnet and Zeitouni [9, Proof of Lemma 1.2]. A simpler

proof (along with other similar results) of Lemma 12(i) can be found in Lieb and Pedersen [13]. See

also [9] and [13] for earlier references for Lemma 12(i).

1A real valued function T is said to be quasi-convex if all the level sets {T ≤ a} , a ∈ R, are convex.
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Proof of Theorem 5. Set T = FS( f ) and let A n be as in Lemma 12. In view of Theorem 11, it
suffices to show that T = T (Y1, . . . , Ym) is such that the function T (·) is quasi-convex and Lips-
chitz with Lipschitz constant ≤ (2/(nm))1/2CM || f ||L . To this end, we write T as the composition
T2 ◦ T1, where T1 : ([−1,1]p)m → A n and T2 : A n → R denote the mappings (y1, . . . , ym) 7→
M(y1, . . . , ym)/

p
m and A 7→ FA( f ), respectively. By assumption, T1 is linear and Lipschitz with

||T1||L = CM/
p

m. Also, since f is assumed to be convex and Lipschitz, Lemma 12 entails that
T2 is convex and Lipschitz with ||T2||L ≤ (2/n)1/2|| f ||L . It follows that T is convex (and hence
quasi-convex) and Lipschitz with ||T ||L ≤ (2/(nm))1/2CM || f ||L . The proof is complete.

To prove Theorem 6, we use the Azuma/Hoeffding/McDiarmid bounded difference inequality. The
following version of this inequality taken from Proposition 12 in [4]:

Proposition 14. Consider independent random quantities Y1, . . . , Ym, and let Z = f (Y1, . . . , Ym)

where f is a Borel measurable function. For each i = 1, . . . , m, define Z(i) like Z, but with Yi replaced

by an independent copy; that is, Z(i) = f (Y1, . . . , Yi−1, Y ∗
i

, Yi+1, . . . , Ym), where Y ∗
i

is distributed as Yi

and independent of Y1, . . . , Ym. If
�

�Z − Z(i)
�

�≤ ci

holds (almost surely) for each i = 1, . . . , m, then, for each ε > 0, both P (Z −EZ ≥ ε) and P (Z −EZ ≤ −ε)
are bounded by exp

�

−2ε2/
∑m

i=1 c2
i

�

.

Proof of Theorem 6. It suffices to prove the second claim. Hence assume that a and b, −∞ ≤ a <

b ≤ ∞ are such that P
�

a < λ1(S) and λn(S)< b
�

= 1 and that f : (a, b) → R is of bounded
variation on (a, b). We shall now show that

|FS( f )− FS(i)
( f )| ≤ rVf (a, b)/n for each i = 1, . . . , m. (12)

With this, we can use the bounded difference inequality, i.e., Proposition 14, with Z , Z(i), and ci

(1 ≤ i ≤ m) replaced by FS( f ), FS(i)
( f ), and rVf (a, b)/n, respectively, to obtain (7), completing

the proof.
To obtain (12), set G(λ) = FS(λ)−FS(i)

(λ) and choose α and β satisfying a < α <min{λ1(S),λ1(S(i))}
and b > β > max{λn(S),λn(S(i))}. With these choices, we can write FS( f ) − FS(i)

( f ) as the

Riemann-Stieltjes integral
∫ β

α
f dG. In particular, we have

�

�

�FS( f )− FS(i)
( f )

�

�

� =

�

�

�

∫ β

α

f dG

�

�

� =

�

�

�

∫ β

α

Gd f

�

�

� ≤ ||G||∞Vf (a, b),

where the second equality is obtained through integration by parts upon noting that G(α) =

G(β) = 0. By assumption, ||G||∞ = ||FS − FS(i)
||∞ ≤ r/n, and (12) follows.

Proof of Theorem 1. Our reasoning is similar to that used in the proof of Corollary 1.8 of Guionnet
and Zeitouni [9]. Set ñ= m+ n and write M̃ as shorthand for ñ× ñ matrix

M̃ =

�

0n×n X ′
n×m

Xm×n 0m×m

�

.

Moreover, set S̃ = M̃/
p

m, and write Yi for the i-th row of X , 1 ≤ i ≤ m, i.e., Yi = (X i,·)
′. We view

M̃ as a function of Y1, . . . , Ym. Also let f̃ (x) = f
�

x2
�

. Clearly

S̃2 =

�

X ′X/m 0
0 X X ′/m

�

=

�

S 0
0 X X ′/m

�

.
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This, along with the fact that the matrices S = X ′X/m and X X ′/m have the same nonzero eigen-
values, allows us to deduce that

FS̃( f̃ ) =
2n

ñ
FS( f ) +

m− n

ñ
f (0),

and hence

P
�

|FS( f )−µ|> ε
�

= P

�

|FS̃( f̃ )− µ̃|>
2n

ñ
ε

�

,

where µ (µ̃) can be either EFS( f ) (EFS̃( f̃ )) or med FS( f ) (med FS̃( f̃ )).
To prove (i), it suffices to note that Theorem 5 applies with M̃ , S̃, ñ, n, f̃ , and 1 replacing M , S,
n, p, f , and CM , respectively. Using Theorem 5 with these replacements and with 2n

ñ
ε replacing ε,

we see that the left hand side of (1) is bounded as claimed.
To prove (ii), we first note that ||FS̃ − FS̃(i) ||∞ ≤ 2/ñ in view of Lemma 7 (where S̃(i) is defined as
S̃ but with the i-th row of X replaced by an independent copy). Also, note that f̃ is of bounded
variation on R with Vf̃ (R)≤ Vf (R). Hence, Theorem 6 applies with M̃ , S̃, ñ, X i,·, 2, and f̃ replacing
M ,S, n, Yi , r, and f respectively and (2) follows after elementary simplifications.
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